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Density profile of interacting fermions in a one-dimensional optical trap
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The density distribution of the one-dimensional Hubbard model in a harmonic trapping potential is investigated
in order to study the effect of the confining trap. Strong superimposed oscillations are always present on top
of a uniform density cloud, which show universal scaling behavior as a function of increasing interactions.
An analytical formula is proposed on the basis of bosonization, which describes the density oscillations for all
interaction strengths. The wavelength of the dominant oscillation changes with interaction, which indicates the
crossover to a spin-incoherent regime. Using the Bethe ansatz the shape of the uniform fermion cloud is analyzed
in detail, which can be described by a universal scaling form.
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Ultracold gases in optical traps and lattices have become a
promising tool for simulating strongly correlated systems with
a full control of all relevant parameters [1]. While the first
simulations were mostly made on bosonic setups, ultracold
fermions are by now also well established [2]. In order to
simulate interacting electron systems such as Hubbard-type
models, fermionic atoms with two different hyperfine states
are used in order to represent the two spin channels [2]. It
is therefore possible to test theoretical predictions even for
systems that are less common or hard to produce in nature,
such as perfectly clean isolated one-dimensional (1D) quantum
wires. However, the experimental setup will always possess a
smoothly varying potential due to the intensity profile of the
laser beams, usually forming a harmonic confinement.

Recent experimental developments have made it possible
to locally probe the density profile of ultracold atomic
condensates directly in space using optical microscopy [3]
or electron beam scanning [4]. In this work we therefore want
to provide a detailed theoretical quantitative analysis of the
1D fermion density profile as a function of the interaction
strength and the confining potential, which in turn can be used
to analyze interaction effects from the experimental signals.

The fermion density can generally be characterized in terms
of two distinct features, namely the overall size of the cloud
on the one hand and superimposed density oscillations on
the other hand. From works on quantum wires and quantum
dots it is well known that density oscillations may appear
from reflections at sharp edges and boundaries, which are
due to interference (Friedel oscillations) and/or localization
(Wigner crystallization) [5-10]. However, it is not a priori
clear how these oscillations are modified if a harmonic
potential is present as a confinement. In this work we now
show that the oscillations remain strong in a harmonic trap
with interactions, despite the lack of any sharp edges which
may cause Friedel oscillations. In a pioneering work [11] from
1993, Schulz predicted the possibility of a one-dimensional
“Wigner crystal” in form of strong 4kg density correlations,
which however only dominate for rather extreme values of
the interaction parameter, that cannot be reached in a short-
range Hubbard model even for infinite U. In contrast to this
expectation, we now find a surprising crossover toward rather
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strong 4kg “Wigner oscillations” in a trap even for intermediate
short-range interactions. Moreover, both Friedel and Wigner
oscillations can actually be very well analyzed with the help
of an analytic formula on the basis of a bosonization approach.
The overall size and shape of the density cloud is also analyzed
in quantitative detail, which follows a universal scaling form.

We consider the standard 1D Hubbard Hamiltonian with an
external trapping potential

H=Y" %" [— JOWl W, 1 +He)

X o=t
2.2 U
+ (PLO + w'x )an,x + Ena,xna,x (1)

in the limit of large particle separations (small densities)
relative to the lattice spacing. In this limit [12] the Hamiltonian
can also be approximated by the continuous problem of
fermions with contact interactions,

N N
U
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where we assume a nonmagnetic state with fixed particle
number N = 2N; = 2N, . The lattice spacing and the hopping
J are the natural units for this problem which are set to unity
in what follows. The condition for large particle separation
corresponds to Nw <« 1. It should be noted that the opposite
limit of small particle separations (i.e., of the order of the
lattice spacing) has been studied elsewhere and is governed
by a transition to a Mott insulator [13—19]. A good qualitative
understanding of the continuous problem has been achieved
using density functional methods [20,21].

In order to simulate the Hamiltonian in Eq. (1) we use
the numerical density-matrix renormalization group (DMRG)
[22]. While the DMRG is best suited for homogeneous systems
with open boundary conditions, it is also possible to implement
the algorithm to describe inhomogeneous traps as long as the
actual system size in the simulation is much larger than the
spread of the confined fermions.

In Fig. 1 typical density distributions from DMRG are
plotted for different U in a trap with N = 30 particles
and w? =4 x 1072, showing a localized fermion cloud with
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FIG. 1. (Color online) DMRG data for the fermion density n(x) in
a harmonic trap with N = 30 and »® = 4 x 10~ (points) compared
to the analytical approximation in Eq. (12) (solid lines).

superimposed characteristic oscillations of different wave-
lengths. An analytical approximation to the data is also shown
(solid lines), which will be derived in the following using
bosonization and Bethe ansatz methods.

In order to understand the behavior of the density let us
first consider the noninteracting case. In the continuous limit
the wave functions of the single-particle oscillator levels are
given by h,(x) = M(%)W o—0¥/2 H,(\/wx), where H,(x)
denotes the nth Hermite polynomial. The ground-state density
distribution at U = 0 can be calculated as the sum over the
filled Fermi sea of oscillator levels

N/2—1
n(x) =2 Y |hx) 3)

n=0

for a system containing N electrons. Using an expansion
around the center of the trap, this function can be well
described by a simple closed formula [23-25]
(—DN/2 cos[2kg(x)x]
mLlyg 1 —x%/L%

n(x) ~ no(x) —

“4)

for |x| < Ly, where the density cloud is given by

no(x) = 2":3/1 — X212, (5)

with a Thomas-Fermi size of Lg = /N /w for U = 0. The
result in Eq. (4) resembles the corresponding expression
for Friedel oscillations in a 1D box [5], which also decay
proportional to the reciprocal distance from the turning points
+Lg. The slowly varying part of the density no(x), Eq. (5),
replaces the normally constant filling ny. The period of the
oscillations is related to the filling, so that the wave vector
also becomes position dependent and is given by the nonlocal
expression

2kp(x)x = 71/ no(y)dy
0

= wLg[xy/1 — x2/L} + Lparcsin(x/Lg)],  (6)

which follows from an expansion of the summed-up oscillator
wave functions in Eq. (3). Note that the integration in Eq. (6)
is similar to the usual WKB approximation, where the local
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momentum k(x) &~ wn(x)/2 is integrated in space in order
to predict the behavior in a changing potential. For constant
filling the expression in Eq. (6) reduces to the usual relation
kF = %I’l().

Before we analyze the oscillations in the presence of
interactions, let us first consider the overall shape of the density
cloud ny(x) for repulsive interactions U > 0. For a translation-
ally invariant 1D Hubbard model, the density is known as a
function of U and chemical potential i from the nontrivial
solution of the Bethe ansatz equations [26]. This is in sharp
contrast to bosonic systems where the density is well described
by a mean-field approach, which can even be applied locally
to nonuniform systems with the help of the Gross-Pitaevskii
equation. One promising approach for the nonhomogeneous
fermion system may be to use the exact solution. In particular,
if the external potential is slowly varying, the Bethe ansatz
density for the chemical potential u(x) = o + w?x> could
be a good approximation for each location x in the trap.
Since strong long-range correlations exist, it is not a priori
clear whether such a local Bethe ansatz approximation with
a translationally invariant system at each point is appropriate,
but it agrees very well with our DMRG data for all U. This is
especially surprising near the edges where the filling is low and
also the discrete energy spectrum should play arole. AtU = 0
this approach corresponds to the density in Eq. (5). AtU — oo
the interaction induces a Pauli principle between spin-up and
spin-down electrons, so that the system contains effectively
twice N = N; + N noninteracting spin-incoherent particles,
which results again in the density in Eq. (5), but with Lg
multiplied by a factor of +/2. For intermediate U the total
size of the cloud therefore becomes interaction dependent
with /N/w < Le(U) < /2N /w. We find that the interaction
dependence of the effective size Lg(U) in fact follows a
universal scaling behavior as a function of U/+/Nw, as shown
in Fig. 2, which is related to the scaling behavior of the Bethe
ansatz equations with U /ng at low filling n¢ [7,26]. The Bethe
ansatz density at intermediate U does not follow exactly the
simple expression in Eq. (5), but can be approximated by
the normalized shape if it is raised by a small exponent of
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FIG. 2. (Color online) The width Lg(U) of the fermion cloud
in the trap as determined from the local Bethe ansatz density as
a function of the scaling variable U/+/Nw. The different symbols
(colors) correspond to many different choices of U € [0,20], w® €
[107°,16 x 107], and N € [10,70]. Inset: Effective exponent §
determined from a fit of ng(x) to the local Bethe ansatz density.
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FIG. 3. (Color online) Density oscillations around the slowly
varying part ng(x) for N = 30 and w? = 4 x 107> compared to the
analytical form in Eq. (12).

8 < 1.3 as shown in the inset in Fig. 2. It should be noted
that Fig. 2 gives a quantitative estimate of the screening cloud
for all interaction strengths U and trap parameters as long as
No <« 1.

We can now subtract the Bethe ansatz estimate for the
slowly varying part of the density no(x) from the DMRG
data in order to analyze the oscillations as shown in Fig. 3.
For weak interactions the Friedel-type oscillations in Eq. (4)
can clearly be seen. At intermediate interactions U = 4 two
dominant wave vectors can be observed. At larger U the faster
oscillations dominate, corresponding to exactly one density
maximum per particle, which is one typical signature of
Wigner crystal oscillations. The oscillating signal is quite
sensitive to the estimate of the uniform density, which has been
subtracted. However, as can be seen in Fig. 3 the oscillations
are symmetric in the entire trap without any visible bias toward
positive or negative values, which shows that the local Bethe
ansatz estimate works well.

A natural tool for calculating the density oscillations
with the help of correlation functions in one-dimensional
systems is bosonization [7]. In the presence of a trapping
potential, bosonization has been considered for interacting
spinless fermions before [27-30]. For the spinful case we
will now derive the central definitions of the bosonic creation
and annihilation operators. Instead of the usual left- and
right-moving bosons, only one bosonic field each for spin
and charge (v = c¢,s) is defined:

MR, &0
$ou) = ¢0 + ~———Lu+ > (—=e™b,, +He. ),
' V2 Jn o

n=1

)
where the bosonic annihilation and creation operators
bn == 8)

1
N ) T .
v,n m ;(CT,ernCT,m + CL,in+nC¢,m)

are expressed in terms of fermion operators c;m of the mth
oscillator mode that are extended to include nonphysical states
m < 0 (with & corresponding to v = c,s, respectively). The
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number operators N == N | are canonical conjugate to the zero
modes ¢°. The auxiliary variable u € [—7,7[ should not be
confused with the position x. Following the usual steps of the
bosonization procedure [31], it is then easy to show that free-
particle excitations relative to the Fermi edge are reproduced
by the bosonic Hamiltonian

H:hw(z

v,n>0

nbi,nbv,n + (N% + Nf)/Z) . 9)

The Fourier transformation of the oscillator levels defines a
canonical auxiliary fermion field which can be bosonized as a
vertex operator as usual:
- 1 A A N
I/IT(M) = el of ¢ il E /Y2 (10)
o m ; o,m
The auxiliary field can in turn be used to give a nonlocal
expression of the physical fermion fields in terms of the bosons:

Yl =) e,
n=0

> ha()e ™ Pl@ydu. (1)

1 f”

A/ 27'[ -,
This expression can be made approximately local in
x by noticing that the wave functions near the Fermi
edge oscillate roughly as a function of n with h,(x) ~
cos[n arccos(x/Lg)]. Therefore, wj,(x) ~ o= ilPc)ES]/V2 +
e~ i19:-E,(—l/V2 with 4 A arccos(x/Lr), which also leads
to densities in terms of derivatives of the boson field [27-30].
Without interactions this bosonization approximation is in fact
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FIG. 4. (Color online) Amplitudes A, , (top) and exponents «; »
(bottom) as determined by fitting Eq. (12) to DMRG data for different
choices of U, w, and N.
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more accurate than for translationally invariant systems due to
the linear oscillator spectrum. However, spinful interactions
become quite complicated in the bosonized language, since
general scattering terms appear that are not even momentum
conserving.

Although we are not able to solve the system by a simple
Bogoliubov transformation, the bosonization picture is useful
since it is reasonable to expect that the leading instabilities
are again a 2kp Friedel and a 4kr Wigner oscillation as for the
translationally invariant system [7,11] albeit with a changing
wave vector along the trap according to Eq. (6). We can
therefore generalize Eq. (4) analogously to the Hubbard model
with fixed boundary conditions and propose a general ansatz
for the density in the trap for |x| < Lg:

(=DN2 cos[2kp(x) x]
Ly [1—x2/L3]"
1 cos[4kg(x) x]
2wl [1 - x2/L2]

n(x) = no(x) — A

(12)

where Lp(U) is given in Fig. 2 and kp(x) is given in Eq. (6)
as a function of Lg. The amplitudes A; , and the exponents
aj are unknown and have to be determined from fitting
the DMRG data. As can be seen in Fig. 3 this formula fits
the data extremely well even to within the last oscillation
near the edge. In Fig. 4 the results for the amplitudes and
the exponents are shown which again follow a scaling law
as a function of U/+/Nw. For smaller amplitudes A, <
0.2 the corresponding exponents in Fig. 4 could no longer
be accurately determined. A clear increase of the faster
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Wigner-crystal oscillations A, can be seen with increasing
U. At the same time the slower Friedel-type oscillations A
are suppressed. Both decay exponents generally decrease with
increasing interactions which is qualitatively similar to the
translationally invariant Hubbard model [26].

In conclusion we have analyzed the detailed behavior of
the fermion density of the one-dimensional Hubbard model in
a harmonic trap with the help of bosonization and the Bethe
ansatz. The proposed analytical formula in Eq. (12) and the
scaling behavior of the parameters in Figs. 2 and 4 provide
very accurate predictions for the position-dependent density
n(x) as a function of arbitrary interaction strengths U and trap
parameters in the limit No < 1. Significant deviations can
only be observed in the last oscillations near the edge of the
density cloud. The overall density n((x) follows a local Bethe
ansatz approximation and the oscillations in the trap remain
strong despite the lack of any hard-wall boundary conditions.
A crossover from slower Friedel oscillations to faster Wigner
crystal oscillations can be observed with increasing U. We
hope that our results will be useful in the analysis of future
experiments on ultracold fermions in a one-dimensional trap
with local resolution. At the same time the good fit to the
proposed analytical formula in Eq. (12) strongly suggests
that the problem can be solved by further analyzing the
bosonization formulas in Egs. (7)—(11) in the presence of
interactions, which might inspire future research on the topic.
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