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We show that the inherent entanglement of the ground state of strongly correlated systems can be exploited
for both classical and quantum communications. Our strategy is based on a single-qubit rotation that encodes
information in the entangled nature of the ground state. In classical communication, our mechanism conveys more
than one bit of information in each shot, just as dense coding does, without demanding long-range entanglement.
In our scheme for quantum communication, the quality is higher than the widely studied attaching scenarios.
Moreover, we propose to implement this way of communication in optical lattices.
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I. INTRODUCTION

Strongly correlated systems often have nontrivial entangled
ground states. When one wants to use the dynamics, as
opposed to measurements [1], of such a system for propagating
information [2], the inherent entanglement plays a little role
and only the symmetries of the state and the Hamiltonian
seem to be important [3]. The only mode of transmission
studied so far is to attach a qubit encoding an unknown
quantum state to the system [2,3], which does not seek to
harness the entanglement of many-body systems. Note that
the entanglement in strongly correlated system is notoriously
short ranged [4] (with rare exceptions [5]), so it cannot be
used directly to teleport [6] an unknown state, accomplish
remote state preparation [7] of a known state, or double
the rate of classical communication by dense coding [8].
Thus, a natural question is whether the entanglement in
many-body systems can practically benefit some mode of
information transfer. In particular, it is highly desirable
to design alternative protocols for dynamic communication
through strongly correlated systems, which are dense-coding-
like or remote-state-preparation-like despite the absence of
long-range entanglement.

Cold atoms in an optical lattice are now an established
field for many-body experiments. Both bosons [9] and
fermions [10] have been realized in the Mott-insulator phase,
where there is exactly one atom per site, and by properly
controlling the intensity of laser beams one can get an
effective spin Hamiltonian [11] between atoms. Superlat-
tices have been used to take singlet-triplet measurements
of simulated spins in such systems [12–14]. Striking recent
developments [15–19] make it timely to seriously consider
the implementation of communication schemes in optical
lattices. Alternative cooling techniques [15] have enabled the
attainment of the temperatures required for observing quantum
magnetic phases. Moreover, single-atom detection [16] with
single-site resolution as well as single-qubit operation and
measurement [17–19] has been achieved. Hence, near-future
experiments are likely to look at the effects of local ac-
tions, e.g., spin flips [17,18], in optical lattice simulated
spin systems. A good question then is whether the same
experiments can also provide interesting quantum information
protocols.

In this Rapid Communication we introduce a mechanism
for both quantum and classical communications in spin chains
that uses a local rotation by a sender, followed by nonequilib-
rium dynamics and subsequent reception and measurements
by a receiver. Surprisingly, despite the absence of long-range
entanglement, we find that even a single-qubit rotation can
convey more than one bit of information in the same spirit
used by the dense-coding protocol [8]. We also find that the
fidelity of quantum state transfer is enhanced compared to the
fidelity achieved by attaching a qubit to the system.

II. SETUP

We consider a chain of N spin-1/2 particles, where N is
even, interacting through a dimerized Hamiltonian

H = J

N−1∑
k=1

[1 + (−1)k+1δ]σ̂k · σ̂k+1, (1)

where J > 0 is the coupling, σ̂k = (σx
k ,σ

y

k ,σ z
k ) denotes the

Pauli operators at site k, and 0 < δ < 1 determines the
dimerization of the chain. A schematic of this system is shown
in Fig . 1(a). We assume that the system is initially in its ground
state |g.s.〉. Due to the SU(2) symmetry of the Hamiltonian,
the reduced density matrix of the first two qubits is a Werner
state ρ1,2 = p|ψ−〉〈ψ−| + (1 − p)Î4/4, where În represents an
n × n identity matrix, |ψ−〉 = (|01〉 − |10〉)/√2 is the singlet
state, and 0 � p � 1 is controlled by δ (if δ → 1 then p → 1).
We assume that the sender (Alice) controls qubit 1, as shown
in Fig. 1(a), while the receiver (Bob) controls the qubits N − 1
and N , as shown in Fig. 1(b).

III. CLASSICAL COMMUNICATION

For classical communication, Alice encodes two bits of
classical information (i.e., 00, 01, 10, and 11) in the state of the
chain by a single operation σα

1 on qubit 1, where α ∈ {I,x,y,z}
and σ I

1 = Î2 such that σ I
1 represents 00, σx

1 represents 01, etc.
Unlike the dense-coding proposal put forth in Ref. [8], this
encoding is local since there is no long-range entanglement
between Alice and Bob. Accordingly, the quantum state of
the whole system changes to |ψα(0)〉 = σα

1 |g.s.〉. The reduced
density matrix of the first two qubits after this local action
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FIG. 1. (Color online) (a) Dimerized chain where solid (dashed)
lines represent strong (weak) bonds and encoding is achieved
through a local rotation on qubit 1. (b) Decoding is done through
measurements on qubits N − 1 and N .

becomes ρα
1,2

(0) = σα
1 ρ1,2σ

α
1 = p|bα〉〈bα| + (1 − p)Î4/4, with

Bell states |bα〉 = σα
1 |ψ−〉. Notice that, for p < 1 the encoded

states are not fully distinguishable.
After encoding, the system evolves as |ψα(t)〉 =

e−iH t |ψα(0)〉 and the time evolution of the system transfers
ρα

1,2
(0) dispersively along the chain. At time t the density matrix

of qubits N − 1 and N is ρα
N−1,N

(t), for which Bob can define
a superoperator E as ρα

N−1,N
(t) = E(ρα

1,2
(0)). At an optimal

time t = t∗, the density matrix ρα
N−1,N

(t∗) has its maximal
fidelity with ρα

1,2
(0) and by performing Bell measurement on

qubits N − 1 and N Bob can identify the operator σα
1 (and

accordingly two classical bits encoded by Alice) through his
measurement outcome |bα〉. However, Bob may have some
errors in his decoding as (i) the initial encoding may not be
perfect (p < 1) and (ii) the dynamics is dispersive and the
received state ρα

N−1,N
(t∗) is not exactly equal to ρα

1,2
(0). To

quantify the quality of communication for each σα
1 one can

numerically compute the fidelity Fα(t) = 〈bα|ρα
N−1,N

(t)|bα〉. In
Fig. 2(a) we plot Fα(t) versus time for a chain of N = 20 in
which the fidelity peaks at the time t = t∗.

In classical communication, Holevo information is usu-
ally employed to quantify the information that is sent.
For our proposed mechanism, the Holevo information
is C(t) = S(E(

∑
α qaρ

α
1,2

)) − ∑
α qαS(E(ρα

1,2
)), where S(ρ) =

−tr(ρ log ρ) is the von Neumann entropy and qα is the
probability of applying σα

1 . We assume qα = 1/4, which also
maximizes C(t). Holevo information also peaks at t = t∗ and
with time-dependent density-matrix renormalization-group
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FIG. 2. (Color online) (a) F α as a function of time for a chain of
N = 20 and δ = 0.7. (b) Scaling of C(t∗) in terms of N . The inset
shows the scaling of the optimal time t∗ versus N (δ = 0.7).

techniques we numerically simulate systems up to 30 sites.
In Fig. 2(b) we plot C(t∗) as a function of N . It shows that
C(t∗) is still above 1 bit for a chain of length N = 30 (for
δ = 0.7). In the inset of Fig. 2(b) we plot the optimal time t∗
versus N , which linearly increases with length.

IV. QUANTUM COMMUNICATION

We can use the same recipe for quantum communication.
To encode one qubit in a pure state Alice applies

R1(θ,φ) =
(

cos θ
2 − sin θ

2 e−iφ

sin θ
2 eiφ cos θ

2

)
(2)

on the first qubit of the chain. The application of the operator
R1 on state |0〉 (or |1〉) gives the most general pure state of a
qubit on the surface of the Bloch sphere determined by two
angles θ and φ. After the operation of R1, the state of the
system changes to |ψθ,φ(0)〉 = R1(θ,φ)|g.s.〉 and the reduced
density matrix of the first two qubits becomes ρθ,φ

1,2
(0) =

pR1|ψ−〉〈ψ−|R†
1 + (1 − p)Î4/4. After encoding, the system

evolves as |ψθ,φ(t)〉 = e−iH t |ψθ,φ(0)〉 and the density matrix
of Bob’s qubits, i.e., ρθ,φ

N−1,N
(t), accordingly changes with time.

At time t = t∗, the two parameters of R1 (i.e., θ and φ) are
encoded in the density matrix of Bob’s qubits, i.e., ρθ,φ

N−1,N
(t∗),

and he can localize this information in a single qubit by
performing a single-qubit measurement in the computational
basis on site N − 1. In an ideal case, where both encoding and
transmission are perfect, Bob receives R1|ψ−〉〈ψ−|R†

1. One
can easily show that in the state R1|ψ−〉 when qubit N − 1
is projected on |0〉 or |1〉 the state of qubit N is collapsed
according to

|0〉
N−1 → |ψ0〉N

= cos
θ

2
|1〉 + sin

θ

2
e−iφ |0〉,

|1〉
N−1 → |ψ1〉N

= cos
θ

2
|0〉 − sin

θ

2
e+iφ |1〉, (3)

where |ψk〉N (k = 0,1) is the state of site N when site
N − 1 is projected on state |k〉. However, in a realistic
situation qubit N remains mixed even after measuring qubit
N − 1. So the measurement fidelity is defined as FM (θ,φ,t) =
p0〈0,ψ0|ρθ,φ

N−1,N
(t)|0,ψ0〉 + p1〈1,ψ1|ρθ,φ

N−1,N
(t)|1,ψ1〉, where pk

denotes the probability of projecting qubit N − 1 on state |k〉.
We compute the average measurement fidelity by integrating
FM (θ,φ,t) over the surface of the Bloch sphere as FM

av (t) =∫
FM (θ,φ,t)d	. One can show that

FM
av (t) = 1

2 + 1
12 (F2 − F1) + 2

3F3, (4)

where

F1 = 〈g.s.|σ z
N−1(0)σ z

N (0)|g.s.〉,
F2 = 2〈g.s.|σ+

1 (0)σ z
N−1(t)σ z

N (t)σ−
1 (0)|g.s.〉, (5)

F3 = Re[〈g.s.|σ+
1 (0)σ z

N−1(t)σ−
N (t)|g.s.〉].

These components can be computed numerically by means of
exact diagonalization. In Fig. 3(a) we plot FM

av (t∗) as a function
of N for δ = 0.7. According to Fig. 3(a), the average fidelity
decays very slowly and fits by the line FM

av (t∗) = −0.0062N +
1.03. Remarkably, extrapolation shows that the average fidelity
is above the classical threshold 2/3 for chains up to N = 58.
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FIG. 3. (Color online) F M
av (t∗) as a function of N (blue circles)

and its linear fit (red dashed line) for a chain with δ = 0.7. (b) F M
av (t∗)

as a function of dimerization δ for a chain of N = 20. The inset shows
the optimal time t∗ as a function of δ.

Our protocol is fundamentally different from the usual
attaching schemes because of the direct role of the inherent
short-range entanglement in strongly correlated systems. We
compare the average fidelities achieved in our proposal
and ferromagnetic-antiferromagnetic attaching scenarios in
Table I. As the numbers evidently show, FM

av (t∗) is always
higher than both attaching schemes.

V. MECHANISM

In almost all works in the context of quantum communica-
tion through many-body systems (see, for instance, Ref. [20])
people first establish long-range entanglement between the
sender and receiver through entanglement propagation and
then use that entanglement for teleportation. Our mechanism
is fundamentally different as distributing entanglement is not
our aim. We instead exploit the inherent local entanglement
(i.e., between proximal spins) in the initial state of the system
for communication. In the absence of local entanglement, for
instance, in a ferromagnetic initial state, the actions of σx

1
and σ

y

1 are identical (spin flip) and hence cannot be used for
encoding different states. The capability of using localized
entanglement for some tasks that in general need long-range
entanglement is the unique feature of strongly correlated
systems that we point out. To have a purer local entanglement,
and thus a better encoding, one has to use a proper δ. In a chain
of length N = 20 for δ > 0.5 we have p > 0.99. In contrast,
by increasing δ the propagation becomes slower due to the
emergence of small couplings [i.e., J (1 − δ)], which favors

TABLE I. Comparison between different strategies of quantum
communication, namely, antiferromagnetic (AFM) and ferromag-
netic (FM) chains with attaching an extra spin as well as F M

av (t∗)
achieved in our scheme.

N FM AFM F M
av (t∗)

6 0.820 0.954 0.993
8 0.787 0.935 0.980
10 0.763 0.919 0.967
12 0.745 0.906 0.961
14 0.731 0.895 0.941
16 0.719 0.885 0.932
18 0.708 0.877 0.918
20 0.699 0.871 0.906

FIG. 4. (Color online) Schematic for optical lattice realization.
(a) Encoding through a local rotation on the first qubit. (b) Bell
measurement in which two atoms hop to a single site when their
internal state is singlet and remain apart otherwise. (c) Single-site
measurement by an intense laser beam that pushes the atom of the
lattice if it is in state |1〉 and leaves it there if it is in |0〉.

intermediate values of δ. In Fig. 3(b) we plot FM
av (t∗) as a

function of δ for a chain of length N = 20, which oscillates
upward to take its maximum value around δ = 0.7. In the
inset of Fig. 3(b) we plot t∗ as a function of δ, which increases
exponentially for δ > 0.8. For relatively large δ, the ground
state of the system is almost a series of singlets; thus, instead
of the |g.s.〉, a series of singlets can be prepared, which may be
possible in an independent process that avoids sophisticated
cooling.

VI. APPLICATION

As an application, we propose an array of cold atoms
in their Mott-insulator phase sitting in the minima of a
superlattice potential [12–14] formed by counterpropagating
laser beams with two frequencies, with one being twice the
other [Fig. 4(a)]. In the limit of high on-site energy the
interaction between atoms is effectively modeled by a spin
Hamiltonian [11]. The alternating barriers between the atoms
allows for realizing the dimerized Hamiltonian of Eq. (1). For
encoding information, classical or quantum, we need a unitary
operation acting on site 1, which is achieved by shining a laser
on qubit 1, as shown in Fig. 4(a). To have a local gate operation
without affecting the neighboring qubits one may apply a weak
magnetic field gradient [17] or use a tightly focused laser
beam [18] to split the hyperfine levels of the target atom. Then
a microwave pulse, tuned only for the target qubit, operates
the gate locally, as has been realized in Refs. [17,18].

When encoding finishes, Bob should wait for a period of t∗
and then decodes information. As discussed before, in classical
communication decoding is a Bell measurement on sites N − 1
and N while in quantum communication it is a single-site
measurement on site N − 1. Since the measurement itself takes
time and in particular a Bell measurement may not be very fast,
we may stop the dynamics at t = t∗ by raising the barriers
quickly such that J → 0. Notice that in a superlattice one can
control the even (odd) couplings independently by tuning the
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intensity of the low- (high-) frequency trapping laser beam
[13,14]. Freezing the dynamics allows for slow measurements
to be accomplished. For a Bell measurement, we can measure
the singlet fraction through the spin triplet blockade technique,
which has been recently proposed [12] and subsequently
realized [13,14]. In that method a spin-dependent offset is
applied on both sites to deform the superlattice such that one
atom hops to the other site to have both atoms together only if
their internal state is a singlet [12] [Fig. 4(b)]. Subsequent
fluorescent photography [16], which can be done without
disturbing the internal states [19], reveals the position of the
atoms and therefore determines the singlet or triplet state of the
atoms; however, it does not discriminate the nonsinglet Bell
states. To distinguish between nonsinglet Bell states Bob has
to apply a local Pauli rotation on qubit N − 1 to convert one
of the nonsinglet Bell states to singlet and then a subsequent
singlet or triplet measurement determines whether or not the
new state is singlet. In the worst case with two local operations
followed by singlet or triplet measurements, Bob accomplishes
his Bell measurement on qubits N − 1 and N . In contrast, in
quantum communication in which a single-site measurement is
expected on site N − 1, we can use the technique of Ref. [17].
In that methodology state |1〉 is coupled to an excited state
through an intense perpendicular laser beam whose radiation
pressure pushes the atom out of the lattice. This leaves the site
empty if its atom is in state |1〉 and full if the atom is in state
|0〉, as shown schematically in Fig. 4(c). This can thereby be
read by fluorescent imaging.

VII. INITIALIZATION

Interestingly, one does not need sophisticated cooling
methods to create the initial state of our protocol. An ideal
initialization is a series of singlets (δ = 1) as long as the
subsequent nonequilibrium dynamics happens at δ �= 1. This

initial state has already been prepared [13]. Independently, by
starting from a band insulator and adiabatically changing the
lattice potential as proposed in Ref. [21], ground states with
other δ can be realized as initial states. Thus the temperature
only needs to be less than the band gap of the insulator (	J ).
A more direct strategy of cooling to the ground state requires
the temperature of the system to be less than the energy gap
[∼4J (1 + δ)]. For a typical value of J = 360 Hz [14], one
finds KBT < 100 nK. Current experiments are on the verge of
reaching this range of temperatures [15,22].

VIII. CONCLUSION

We introduced a methodology for truly exploiting the
inherent entanglement in the ground state of strongly corre-
lated systems for both classical and quantum communications.
In our proposed scheme a local rotation on a single qubit
encodes information in the entangled ground state of the
many-body system. In classical communication, this encoding
enables conveying more than one bit of information, just as
in dense coding, without any prior shared entanglement. We
also showed that the same recipe can be used for quantum
communication, which gives better quality in comparison to
the usual attaching scenarios. Moreover, this proposal is espe-
cially timely in the context of optical lattice implementations
where all the requirements of our proposal have been achieved
in recent experiments [17,18].
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