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Higher-order proton structure corrections to the Lamb shift in muonic hydrogen
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The recent conundrum with the proton charge radius inspires reconsideration of the corrections that enter
into determinations of the proton size. We study the two-photon proton-structure corrections, with special
consideration of the nonpole subtraction term in the dispersion relation and using fits to modern data to evaluate
the energy contributions. We find that individual contributions change more than the total and present results
with error estimates.
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The recent measurement of the proton charge radius using
the Lamb shift in muonic hydrogen [1] has given a value that is
a startling 4%, or 5 of the previous standard deviations, lower
than the values obtained from energy level shifts in electronic
hydrogen [2] or from electron-proton scattering experiments
[3,4]. Specifically, the new muonic hydrogen measurement [1]
gives

RE = 0.84184 (67) fm, (1)

compared to the CODATA value [2]

RE = 0.8768 (69) fm, (2)

or the latest electron scattering value [4]

RE = 0.879 (8) fm, (3)

where we have added in quadrature the several uncertainties
given in Ref. [4].

The promise of the muonic hydrogen measurement was
that, because a muon would orbit closer to the proton than an
electron, the effect of the proton structure on the energy level
splittings would be enhanced and a more accurate proton radius
could be obtained. Based on the quoted error limit, that promise
has been achieved. However, the discrepancy from the previous
results requires an explanation and invites a reconsideration of
the theoretical corrections that are involved in connecting the
experimental energy shift to the proton charge radius [5,6]. In
this Rapid Communication, we focus on one of the corrections,
namely the order α5 proton size corrections to the Lamb
shift.

The leading O(α4) and O(α5) proton structure contribu-
tions to the hydrogen Lamb shift are often given as

�E = 2πα

3
φn(0)2

(
R2

E − 1

2
mrαR3

(2)

)
, (4)

where φ2
n(0) is the square of the nS-state wave function

at the origin (which contains a factor α3) and mr is the
lepton-proton reduced mass. The quadratic term was obtained
nonrelativistically in Ref. [7], and one can verify from a
relativistic calculation that RE is indeed the proton charge
radius [8].

The O(α5) term was given by Friar [9] as

R3
(2) =

∫
d3r1 d3r2 |�r1 − �r2|3ρE(r1)ρE(r2), (5)

where ρE is the charge density of the proton itself. Friar called
R3

(2) the third Zemach moment, because it is reminiscent of
an integral found by Zemach [10] in the related context of
hyperfine splitting.

In modern times, one should calculate the O(α5) corrections
field theoretically using the diagram shown in Fig. 1, as has
been done by Pachucki [11,12] and by others [13,14]. We wish
to re-examine the calculation here for the purpose of better
assessing the connection between the elastic and inelastic
contributions and to better evaluate the subtraction term needed
in a dispersion relation that is part of the work.

The calculation of the elastic and inelastic contributions
should be done together. Perhaps in the future a direct QCD
calculation will be possible, and there is an exploration of the
hadronic corrections to the Lamb shift using chiral perturbation
theory [15], but for the present to obtain the required accuracy
the calculation needs to be done dispersively, connecting the
off-shell Compton scattering which is the hadronic side of
the diagram to information obtained from electron-proton
scattering. In particular, done that way, the elastic contri-
butions require no (nonexistent) knowledge of form factors
for situations where a proton is off-shell. It also means that
certain nonpole contributions to the Compton amplitudes are
not picked up by the dispersive calculation and in fact do not
contribute.

We also analyze more concretely the subtraction function
that appears because one of the dispersion relations does not
converge if unsubtracted. The subtraction function depends
on the photon four-momentum squared, Q2, and its value at
Q2 = 0 is given in terms of the proton magnetic polarizability.
Its Q2 dependence can be estimated by calculating a two-pion
loop contribution which couples to the nucleon as a scalar.
One does not need to use a Q2 dependence assumed given
by the nucleon electromagnetic form factor, as has been done
previously.

The Feynman diagram for the two-photon proton-structure
correction to the Lamb shift is shown in Fig. 1. To the
level of accuracy needed here, all external lines have zero
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FIG. 1. (Color online) The box diagram for the O(α5) corrections.

three-momentum. The blob corresponds to off-shell for-
ward Compton scattering, given in terms of the Compton
tensor

T μν(p,q) = i

8πM

∫
d4x eiqx〈p|Tjμ(x)jν(0)|p〉

=
(
− gμν + qμqν

q2

)
T1(ν,Q2)

+ 1

M2

(
pμ− p · q

q2
qμ

)(
pν−p · q

q2
qν

)
T2(ν,Q2),

(6)

where q2 = −Q2, ν = p · q/M , and M is the nucleon mass. A
spin average is implied and the state normalization is 〈p|p′〉 =
(2π )3 2E δ3( �p − �p′). The functions T1,2(ν,q2) are each even in
ν and their imaginary parts are related to the structure functions
measured in electron or muon scattering by

Im T1(ν,Q2) = 1

4M
F1(ν,Q2),

(7)

Im T2(ν,Q2) = 1

4ν
F2(ν,Q2),

with ν > 0 and where F1,2 are standard [16].
After doing a Wick rotation, where q0 = iQ0 and �Q = �q,

one obtains the O(α5) energy shift as

�E = 8α2m

π
φ2

n(0)
∫

d4Q

×
(
Q2 + 2Q2

0

)
T1(iQ0,Q

2) − (
Q2 − Q2

0

)
T2(iQ0,Q

2)

Q4
(
Q4 + 4m2Q2

0

) ,

(8)

where m is the lepton mass and φ2
n(0) = m3

r α
3/(πn3) with

mr = mM/(M + m). From Eq. (8) we must remove contribu-
tions which are iterations of lower order terms.

The Ti are obtained using dispersion relations. Regge argu-
ments [17] suggest that T2 satisfies an unsubtracted dispersion
relation in ν at fixed Q2, but that T1 will require one subtraction.
Before proceeding, we will note that the Born terms, obtained
from the elastic box and crossed box of Fig. 2 and the
vertex function 	μ = γ μF1(Q2) + (i/2M)σμνqνF2(Q2) for
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FIG. 2. Elastic contributions to the box diagram.

an incoming photon, are

T B
1 (q0,Q

2) = 1

4πM

[
Q4G2

M (Q2)

(Q2 − iε)2 − 4M2q2
0

− F 2
1 (Q2)

]
,

(9)

T B
2 (q0,Q

2) = MQ2

π (1 + τp)

G2
E(Q2) + τpG2

M (Q2)

(Q2 − iε)2 − 4M2q2
0

,

where τp = Q2/(4M2), and the electric and magnetic form
factors are

GE(Q2) = F1(Q2) − τpF2(Q2),
(10)

GM (Q2) = F1(Q2) + F2(Q2).

The Born terms are reliable for obtaining the imaginary parts
of the nucleon pole terms, but not reliable in general, since the
given vertex assumes the incoming and outgoing nucleons are
both on shell.

Calling the first term in T B
1 the pole term, one can split the

whole of T1 into pole term and nonpole terms,

T1(q0,Q
2) = T

pole
1 + T 1 . (11)

The pole term alone evidently allows an unsubtracted disper-
sion relation, and this term calculated from the dispersion
relation simply reproduces itself. With a once subtracted
dispersion relation for T 1, one has

T1(q0,Q
2) = T

pole
1 (q0,Q

2) + T 1(0,Q2)

+ q2
0

2πM

∫ ∞

νth

dν
F1(ν,Q2)

ν
(
ν2 − q2

0

) . (12)

The nucleon pole is isolated in T
pole

1 and the integral begins
at the inelastic threshold νth = (2Mmπ + m2

π + Q2)/(2M).
Similarly, as T B

2 contains only a pole term,

T2(q0,Q
2) = T B

2 (q0,Q
2) + 1

2π

∫ ∞

νth

dν
F2(ν,Q2)

ν2 − q2
0

. (13)

With

�E = �Esubt + �Einel + �Eel, (14)

we obtain

�Esubt = 4πα2

m
φ2

n(0)
∫ ∞

0

dQ2

Q2

γ1(τ�)√
τ�

T 1(0,Q2) , (15)

�Einel = − 2α2

mM
φ2

n(0)
∫ ∞

0

dQ2

Q2

∫ ∞

νth

dν

[
γ̃1(τ,τ�)F1(ν,Q2)

ν

+ γ̃2(τ,τ�)F2(ν,Q2)

Q2/M

]
, (16)

�Eel = α2φ2
n(0)

∫ ∞

0

dQ2

Q2

{
16mM
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E(0)

+ m

M(M2 − m2)

[ (
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(
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]}
.

(17)
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where τ = ν2/Q2 and τ� = Q2/(4m2). In �Eel we have
subtracted terms from iterations of lower order contributions,
with G′

E = dGE/dQ2. The auxiliary functions are

γ1(τ ) = (1 − 2τ )[(1 + τ )1/2 − τ 1/2] + τ 1/2,
(18)

γ2(τ ) = (1 + τ )3/2 − τ 3/2 − 3
2τ 1/2.

Both are monotonically falling functions, reducing to 1 at
τ = 0 and falling like τ−1/2 at large τ . Also

γ̃1(τ,τ�) = 1

τ� − τ
[
√

τ�γ1(τ�) − √
τγ1(τ )],

(19)

γ̃2(τ,τ�) = 1

τ� − τ

[
γ2(τ )√

τ
− γ2(τ�)√

τ�

]
.

The subtraction function T (0,Q2) has unphysical argu-
ments, excepting the point Q2 = 0. It comes from the
excitation of the proton and can at low Q2 (and low ν, in
general) be described using the electric (αE) and magnetic
(βM ) polarizabilities and the effective Hamiltonian

H = − 1
2 4παE

�E 2 − 1
2 4πβM

�B 2. (20)

For small ν and Q, this gives

lim
ν2,Q2→0

T 1(ν,Q2) = ν2

e2
(αE + βM ) + Q2

e2
βM . (21)

The ν2 term is shown to connect to known results in another
context [18], and the Q2 term was obtained by Pachucki [11].
With the above result, the integral over T 1(0,Q2) converges at
the lower limit.

For higher Q2, the subtraction function comes from non-
nucleon-pole contributions, and the forward amplitude is
dominated by low-mass intermediate states. With the Q2 → 0
limit fixed in terms of βM , we estimate the Q2 dependence
from pion loop contributions where the two-pion state has a
scalar coupling to the nucleon, as illustrated in Fig. 3.

With standard Feynman rules for scalar QED and an
effective gSN̄φ†φN coupling for the lower vertex, one obtains
from these terms

T
μν = gS

192π3m2
π

(q2gμν − qμqν)Floop(Q2) , (22)

where, with λ = 4m2
π/Q2,

Floop(Q2) = 3λ

2

{√
1 + λ ln

√
1 + λ + 1√
1 + λ − 1

− 2

}

=
⎧⎨⎩1 − Q2

10m2
π

+ O
(

Q4

m2
π

)
, Q → 0

6m2
π

Q2

(
ln Q2

m2
π

− 2
)

+ O
(m4

π

Q4

)
, Q → ∞

.

(23)
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FIG. 3. Diagrams used for estimating the Q2 dependence of the
nonpole part of the subtraction term.

We can identify βM = αgS/48π2m2
π and obtain

T 1(0,Q2) = βM

4πα
Q2Floop(Q2) . (24)

The Particle Data Group gives [16]

βM = (1.9 ± 0.5) × 10−4 fm3. (25)

However, according to some recent analyses,

βM =
{

(4.0 ± 0.7) × 10−4 fm3 [19]
(3.4 ± 1.2) × 10−4 fm3 [20,21]

(26)

Using the subtraction function from Eq. (24), we find

�Esubt = 5.3 μeV × βM

(3.4 × 10−4 fm3)
. (27)

Much of the support for the integral is at low Q2, being
controlled by γ1 as well as by the Q2 dependence from the
pion loop, and half the contributions to �Esubt come from
Q2 � 0.04 GeV2, albeit with a long tail.

References [12] and [22] found �Esubt to be 1.8 and
2.3 μeV, using βM = 1.5 and 1.9 × 10−4 fm3, respectively,
and using a Q2 falloff related to the nucleon electromagnetic
form factor. For the same βM , our results are about 30% larger
due to having flatter Q2 falloff.

One can also consider inserting a form factor Fπ for each
incoming photon coupling to pions, modifying the subtraction
function of Eq. (24) by multiplying it with Fπ (Q2)2. Obtaining
Fπ from the fit of Ref. [23], we find �Esubt = 3.8 μeV.

The inelastic contributions depend on F(1,2)(ν,Q2), and
good data in the low-Q2 and resonance region is available from
Jefferson Lab. Analytic representations of these data are given
by Christy and Bosted [24] in a fit valid for 0 < Q2 < 8 GeV2

and W from threshold to 3.1 GeV, where W is the final hadronic
mass for inelastic ep scattering, W 2 = M2 + 2Mν − Q2.
From the Bosted-Christy region, we obtain a −12.2-μeV
contribution to �Einel. We also use the fit of Capella et al. [25],
valid for data at low and intermediate Q2 above the resonance
region, specifically 0 < Q2 < 5 GeV2 and W > 2.5 GeV.
This gives a −0.5-μeV contribution using Ref. [25] for
W > 3.1 GeV in the allowed Q2 region. Contributions from
higher Q2 are quite small (on the order of 0.002 μeV from
Q > 5 GeV2 and W > 3.1 GeV). We thus have

�Einel = −12.7 μeV. (28)

References [12] and [22] quoted −13.9 and −13.8 μeV for
this contribution.

TABLE I. Numerical results for the O(α5) proton structure
corrections to the Lamb shift in muonic hydrogen. Energies are in
μeV.

(μeV) This work Refs. [11,12] Ref. [22]

�Esubt 5.3 ± 1.9 1.8 2.3
�Einel −12.7 ± 0.5 −13.9 −13.8
�Eel −29.5 ± 1.3 −23.0 −23.0
�E −36.9 ± 2.4 −35.1 −34.5
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The elastic contribution depends on the nucleon form
factors and for a selection of modern form factors we get

�Eel =
⎧⎨⎩ −27.8 μeV (Ref. [26])

−29.5 μeV (Ref. [27])
−30.8 μeV (Refs. [4,28])

. (29)

Reference [11] quoted −23 μeV using the Simon et al. form
factors [29] from 1980. However, the main difference between
our results is not due to the newness of the form factors but
rather to our exclusion of the nonpole contributions from
the elastic contributions. The nonpole contributions would
be a positive 4.7 (Ref. [26]) or 4.8 μeV (Refs. [4,27,28])
contribution were they included.

Table I summarizes our numerical results (selecting the
AMT form factors [27] for the elastic terms) and compares
them to earlier work. (The authors of Ref. [22] did not
calculate the elastic term, so we carried over the result
from [11].)

Regarding the uncertainties, for the subtraction term energy,
we took βM from Ref. [21] and propagated their error limits,
which are large enough to accommodate the other two βM

values. The inelastic energy, comes mainly from Ref. [24],
which states that most of the data points are fit to within
3%. The data itself typically had 3% error limits, and we
added these two errors in quadrature. For the elastic term,
we estimated the error from the spread between the two newer
form factor fits that we used. We added the errors in quadrature
to obtain the total error.

Our results are similar to previous results in aggregate. This
seems to be happenstance, since changes in the individual
contributions are larger than the change in the total. The main
changes occurred because we feel use of a larger magnetic
polarizability is justified and because using a dispersive
treatment throughout does not allow keeping the elastic
nonpole contributions.
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