
PHYSICAL REVIEW A 84, 014701 (2011)

Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories
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The branching classical trajectory method for inelastic atomic collision processes is proposed. The approach
is based on two features: (i) branching of a classical trajectory in a nonadiabatic region and (ii) the nonadiabatic
transition probability formulas particularly adapted for a classical trajectory treatment. In addition to transition
probabilities and inelastic cross sections, the proposed approach allows one to calculate incoming and outgoing
currents. The method is applied to inelastic Na + H collisions providing the results in reasonable agreement with
full quantum calculations.
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Inelastic collision cross sections are in permanent demand
in many fields of physics and chemistry, e.g., it is generally
recognized that inelastic collisional processes in the stellar
atmospheres are of fundamental importance in modern astro-
physics [1]. Cross sections are predominantly obtained from
theoretical treatments, which are mainly performed within the
standard adiabatic approach. It results in electronic structure
calculations followed by nuclear dynamical studies. While
quantum dynamical calculations possess high accuracy, they
require complete quantum-chemical data and are rather costly
when many channels are taken into account. The use of models
continues to be an important alternative because of their lower
computational costs and the physical insight they provide into
the dynamics of a process. Inelastic cross sections are required
for a wide variety of atomic collision processes, but accurate
quantum calculations are rather seldom. For lack of a better
alternative, the Drawin formula is often used in astrophysical
applications. It has recently been reviewed and has been
pointed out [2] that the Drawin formula overestimates cross
sections by up to 8 orders of magnitude for optically allowed
transitions, underestimates cross sections by several orders of
magnitude for optically forbidden transitions, and provides no
data for charge-exchange processes. It is concluded [2] that,
in order to provide estimates for a wide range of elements,
simplified models, based on the physical understanding, are
required. This is the goal of the present Brief Report: to
propose an approach that provides estimates for atomic
collision inelastic cross sections, based only on adiabatic
potential data (when nonadiabatic couplings are not available)
and on evidence of the existence of avoided crossings (e.g.,
ionic-covalent crossings).

The nonadiabatic models, e.g., the Landau-Zener (LZ)
model [3], are formulated as two-state problems in a dia-
batic representation for an isolated nonadiabatic region and
encounter the following problems in practical applications:
(i) A collision usually involves many channels with a variety of
nonadiabatic regions; (ii) quantum-chemical data are usually
provided in an adiabatic representation, and often, only
adiabatic potentials are known. In practice, it is a challenge
to extract diabatic parameters in order to apply an analytical
model, even the most widely used LZ model, in its simplest
form. More rigorous solutions of the LZ problem [4–6] lead

to more complicated formulas, which makes its applications
even more difficult. Reference [7] points out that many states
contribute to dynamics, and unless all these channels are
included in the theory, an accurate description of dynamics
and, hence, determination of cross sections is not possible,
as well as this makes theoretical calculation very heavy and
time consuming. In model treatments, to account for several
channels, the multichannel models have been proposed [8,9] in
which nonadiabatic regions are passed in a particular order, that
is, a single diabatic term crosses several noninteracting diabatic
terms. In practical applications, however, incoming and outgo-
ing currents are distributed among many channels after travers-
ing many nonadiabatic regions without any particular order.

In this Brief Report, these problems are solved by means of
the branching classical trajectory approach applied to atomic
collisions. The simplicity of classical trajectory surface-
hopping methods, developed by Tully and others [10–13],
renders them attractive for the study of high-dimensional
quantum systems. The present approach has some similarities
to that used in polyatomic nonadiabatic dynamics [11–13]
and can be applied to multidimensional systems as well; a
multidimensional study is beyond the scope of this Brief
Report and will be published elsewhere [14]. Within the
proposed method, all nonadiabatic regions are accounted for
by classical trajectories in any order that they appear during
a collision. The basis of the method is twofold: branching of
a classical trajectory and the formulas for LZ nonadiabatic
transition probabilities adapted for classical trajectories. A
classical trajectory simulation of nonadiabatic dynamics in-
volves the following steps: (i) sampling of the initial condition,
(ii) performing classical trajectory propagation, (iii) account-
ing for nonadiabatic effects, and (iv) evaluation of the
observables of interest from the ensemble of trajectories. The
branching classical trajectory method for atomic collisions
performs these tasks as follows.

(i) Sampling of initial conditions. Since an atomic collision
treatment is reduced to a one-dimensional problem of a radial
nuclear motion, there is no need for an initial condition
sampling distribution. A given collision energy E and a given
total angular momentum quantum number J generate the only
initial trajectory in a chosen initial adiabatic state with a unit
weight. At the initial moment, an initial internuclear distance
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R is taken to be larger than a distance for an outermost
nonadiabatic region. An initial velocity at this distance is
readily determined from the energy conservation law.

(ii) Classical trajectory propagation. Between nonadia-
batic regions, a classical trajectory is propagated along a
corresponding effective adiabatic potential. The propagation
is straightforward. In a one-dimensional case, the energy
conservation law can also be used for calculating a trajectory.
After each traverse of a nonadiabatic region, each classical
trajectory branches into two trajectories (adjusting momen-
tum); each of them carries a weight that is determined by the
old weight and the nonadiabatic transition probability. This
approach is similar to the splitting of quantum incoming and
outgoing probability currents taking place in rigorous quantum
treatments of inelastic atomic collisions [15,16]; see also
Refs. [11–13]. If a weight for a new trajectory is smaller than
a critical weight, a new trajectory is not created; if a remaining
weight after a nonadiabatic region is smaller than the critical
weight, the old trajectory is stopped, and the remaining weight
is transported into a new trajectory.

(iii) Nonadiabatic transitions. The important feature of a
surface-hopping approach is a way of calculating nonadiabatic
transition probabilities, which distinguishes different surface-
hopping methods. In the branching classical trajectory method,
transition probabilities are calculated within the LZ model by
two formulas that do not require a diabatization procedure
and are particularly adapted for classical trajectories without a
priori analysis, see below. Within the LZ model, the center of a
nonadiabatic region corresponds to a minimum of an adiabatic
splitting Zjk = |Uj − Uk|, Uj,k(R) being adiabatic potentials
for states j and k. The code calculates splitting Zjk between
adjacent adiabatic potentials along a trajectory. If the function
Zjk(t) attains a local minimum (except for classical turning
points), a branch occurs. The main assumption of the approach,
the applicability of LZ estimates, is valid when there is
physical evidence for avoided crossings, such as ionic-covalent
crossings or a clear structure of adiabatic potentials.

(iv) Observables. The computed observables are the time-
and distance-dependent adiabatic-state populations, which are
calculated as sums over all corresponding trajectories with
proper weights. This readily allows one to extract incoming
and outgoing currents as well as final nonadiabatic transition
probabilities. Calculations of inelastic cross sections are
straightforward.

Nonadiabatic transition probability formulas. The way of
incorporating nonadiabatic transitions is crucial. The most
widely used nonadiabatic model is the LZ one [3]. Within
this model, the probability pLZ

if for the nonadiabatic transition
i → f after a single traverse of a nonadiabatic region is
expressed by the conventional analytical formula in a diabatic
representation,

pLZ
if = exp

(
− 2πH 2

if

h̄|H ′
ii − H ′

ff |v

)
, (1)

where Hif is a constant off-diagonal matrix element, Hii and
Hff are linear R-dependent diagonal matrix elements, and
v = Ṙ is a radial velocity of colliding atoms. All values are
evaluated at the center of the nonadiabatic region Rc, where
diabatic potentials cross. Primed quantities are referred to as

derivatives with respect to the distance R, while a dot stands
for a time derivative.

The diabatic representation allows one to calculate
adiabatic potentials Ui(R) and Uf (R) as well as the splitting
Zif . Within the LZ model, this leads to Hif = Zif (Rc)/2
and, hence, to a relation between |Hii − Hff | and Zif ,
which gives a slope difference derived via the splitting
|H ′

ii − H ′
ff | =√

Zif Z′′
if at Rc. It turns out that the nonadiabatic

transition probability within the LZ model is written by means
of the following formula:

pif = exp

⎛
⎝− π

2h̄v

√√√√Z3
if

Z′′
if

⎞
⎠ = exp

⎛
⎝− π

2h̄

√
Z3

if

Z̈if

⎞
⎠ , (2)

which expresses the transition probability only in terms of the
adiabatic splitting Zif and its second time (or distance) deriva-
tive at Rc. Equation (2) can be called the adiabatic-potential-
based transition probability formula. This formula (the right-
hand side) is particularly adapted for classical trajectories.

The formula (2) is derived from the conventional LZ
formula (1) without any approximation, so the results of
applications of both formulas must coincide if the LZ model
prerequisites are fulfilled. We have performed test calculations
for a model case (fixed H ′

ii , H ′
ff , v; varying Hif ) and found

perfect agreement of trajectory results based on Eq. (2) with
the LZ formula (1) over a wide range of the LZ parameter

s = 2πH 2
if

h̄|H ′
ii−H ′

ff |v , see Fig. 1(g). As discussed above, practical

applications of the conventional LZ formula (1) are often
troublesome, as diabatic LZ parameters are usually unknown
and their determination can give substantial uncertainties, see,
e.g., Refs. [17,18]. The formula (2) is easy implemented in
practice.

It is worth mentioning that one version of the
Zhu-Nakamura formula [6] for the LZ model nonadiabatic
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FIG. 1. The transition probabilities (a)–(c) P (J ) and the products
(d)–(f), (h), (i) (2J + 1)P (J ) as a function of J for different
transitions and energies in Na + H collisions as well as (g) P (s)
as a function of the LZ parameter s obtained by Eq. (1) (dot-dashed
line) and by the present method based on Eq. (2) (crosses). The
solid lines, the branching classical trajectory calculations; the dashed
curves, the quantum results [18].
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transition probability is obtained in terms of several parameters
expressed via adiabatic potentials. Those parameters are
different from Zif (Rc) and Z̈if |R=Rc

used in the present Brief
Report, and hence, the adiabatic-potential-based formula (2)
is different from the Zhu-Nakamura formula. In Refs. [12,19],
transition probabilities were also calculated within the LZ
model based on adiabatic potentials along a trajectory. In
those works, the conventional LZ formula (1) was used, and
diabatic LZ parameters were calculated numerically from
adiabatic potentials in a nonadiabatic region.

A nonadiabatic transition probability within the LZ model
can also be written in terms of parameters in an adiabatic
representation when complete information also includes a
nonadiabatic radial coupling 〈i|∂/∂R|f 〉. In this case, the
LZ transition probability is given as follows [17]: pLZ

if =
exp(− πZif

4h̄DRv
) , where DR = max |〈i|∂/∂R|f 〉|. The product

of velocity v and matrix element 〈i|∂/∂R|f 〉 gives a matrix
element of a derivative with respect to time t , 〈i|∂/∂t |f 〉,
see also Ref. [20]. Taking this into account, the nonadiabatic
transition probability within the LZ model reads

pif = exp

(
−πZif

4h̄Dt

)
, (3)

where Dt = |〈i|∂/∂t |f 〉| is taken at the center of a nona-
diabatic region Rc. This formula allows one to calculate a
transition probability via the adiabatic splitting Zif and the
time-derivative nonadiabatic coupling 〈i|∂/∂t |f 〉 at Rc. Let us
call Eq. (3) as the time-derivative-based transition probability
formula. If a Hamiltonian matrix is known in a diabatic
representation, a time-derivative nonadiabatic coupling is
readily evaluated numerically.

It should be pointed out that the value similar (but not
identical) to 〈i|∂/∂t |f 〉 was used in Ref. [21]. In that paper,
the value similar to 〈i|∂/∂t |f 〉 represented the nonadiabatic
coupling over a time period, was evaluated via the nonadiabatic
coupling vector in the coordinate space, and was used for a
switching between two adiabatic surfaces.

In a pure LZ case, all the formulas (1)–(3) give identical
results. In practice, however, results of using different formulas
may deviate substantially, see, e.g., Ref. [17].

Thus, the formulas (2) and (3) derived in the present Brief
Report provide a nonadiabatic transition probability within the
LZ model based either on the adiabatic splitting Zif and its
second time derivative Z̈if at the center of a nonadiabatic
region Eq. (2) or on both Zif and the time-derivative
nonadiabatic coupling 〈i|∂/∂t |f 〉 at the same distance Eq. (3).
Equation (2) gives a probability when only adiabatic potentials
are known and a nonadiabatic coupling is unknown, while
Eq. (3) is applicable when both adiabatic potentials and a
coupling are available.

Na + H application. In this Brief Report, the branching clas-
sical trajectory method based on Eq. (2) is applied to inelastic
Na + H collision processes. The available quantum-chemical
data for the NaH molecule are discussed in detail in Ref. [18].
The present treatment is performed on the potentials from the
pseudopotential calculation [22]. We consider the five 1�+
state potentials: the four lowest 1�+ adiabatic potentials and
the hybrid 1�+ potential, which corresponds to the fifth 1�+
adiabatic potential at short distances (R < 40 a.u.) and to the
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FIG. 2. (Color online) The NaH adiabatic potentials (dotted lines)
as well as the (a) and (c) incoming and (b) and (d) outgoing currents
for (a) and (b) Na(3s) + H and (c) and (d) Na(4s) + H collisions;
E = 10 eV and J = 0. The currents are depicted by widths between
solid curves along the corresponding potentials.

ionic 1�+ diabatic potential otherwise; see Ref. [18]. The ionic
potential is taken into account because the ion-pair production
processes are especially important in astrophysics [23] and
have the largest cross sections [18]. The potentials are shown
in Fig. 2 by dots; a number of avoided crossings is clearly
seen.

The incoming and outgoing probability currents calculated
by means of the present approach are shown in Fig. 2 by
widths between solid curves along corresponding potentials
for Na(3s) + H and Na(4s) + H collisions at the collision
energy E = 10 eV and J = 0. The physical mechanisms of
the processes are clearly seen from the figure and correspond
to the avoided crossings.

The results of the branching classical trajectory calculations
are compared with the accurate quantum dynamical calcu-
lations [18]. Figure 1 shows the probabilities P (J ) and the
products (2J + 1)P (J ) for several transitions calculated by the
present approach and by the quantum method. The products
are important for cross sections. The results agree reasonably
well, apart from the fact that the classical trajectories do
not reproduce quantum interference effects, in particular, the
Stückelberg oscillations [4]. Marked interference effects at
small J are washed out for the products, see Figs. 1(d)–1(f),
1(h), and 1(i) [cf. Figs. 1(a)–1(c)].

Figure 3 compares the cross sections for the excitation and
the ion-pair production processes in collisions Na(nl) + H
calculated by the present method and by the full quantum
approach. Satisfactory agreement is obtained. Again, the
classical trajectory calculations do not provide the Stückelberg
oscillations, which are substantially washed out for cross
sections and deviate in the near-threshold Na(3s → 3p) + H
excitation region. The point is that the LZ prerequisites
are not entirely fulfilled in the broad nonadiabatic region
around 7.7 a.u., where the 3s → 3p transition mainly occurs
[16–18]. As usual, the LZ model works better for other
narrow nonadiabatic regions. Moreover, the near-threshold
Na(3s → 3p) + H excitation quantum cross section is very
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FIG. 3. (Color online) The cross sections for the excitation
Na(3s) + H → Na(nl) + H and the ion-pair production Na(nl) +
H → Na+ + H− processes. The solid lines, branching classical
trajectories; the dashed curves, the quantum calculations [18] based
on the pseudopotential data; the dotted curve, the quantum cal-
culation based on the multireference single- and double-excitation
configuration-interaction (MRD-CI) data [16].

sensitive to the nonadiabatic coupling [18,24]. Using the
MRD-CI data increases the quantum Na(3s → 3p) + H cross
section up to 2 orders of magnitude [16,18], see Fig. 3. Thus,
the branching classical trajectory method provides reasonable
estimates even for the low-energy cross sections, although
as stated in Ref. [10]: As with any mixed quantal-classical

dynamics approach, a method cannot succeed in all situations,
e.g., in cases of quantum interference.

In astrophysics, the ion-pair production processes are of
particular importance [23]. For this reason, Fig. 3(b) compares
the ion-pair production cross sections obtained by the present
method and by the quantum approach [18]. Except for the
oscillations, the classical trajectory approach reproduces the
quantum results well, in particular, for the Na(4s) + H →
Na+ + H− process with the largest cross section in Na + H
collisions [18].

Thus, it has been demonstrated that the branching classical
trajectory method applied to atomic Na + H collisions provides
reliable nonadiabatic transition probabilities and inelastic
cross sections that agree reasonably well with the results of
the accurate quantum calculations. The proposed method is
essentially based on two features: (i) branching of a classical
trajectory after a traverse of a nonadiabatic region with proper
weights according to a nonadiabatic transition probability and
(ii) the adiabatic-potential-based formula (2) derived in the
framework of the LZ model for calculations of transition
probabilities along classical trajectories. The alternative is the
time-derivative-based formula (3) also obtained in the present
Brief Report. The test calculations show that applications of
these two formulas to Na + H collisions give close results.
The adiabatic-potential-based formula (2) has the advantage
that it requires information only about a splitting between
adjacent adiabatic potentials along a trajectory, so it provides
estimates when a nonadiabatic coupling is unknown but there
is avoided-crossing evidence. In addition, the proposed method
allows one to calculate incoming and outgoing currents and to
determine a mechanism for a process.
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