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Conclusive discrimination among N equidistant pure states
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We find the allowed complex overlaps for N equidistant pure quantum states. The accessible overlaps define
a petal-shaped area on the Argand plane. Each point inside the petal represents a set of N linearly independent
pure states and each point on its contour represents a set of N linearly dependent pure states. We find the optimal
probabilities of success of discriminating unambiguously in which of the N equidistant states the system is. We
show that the phase of the involved overlap plays an important role in the probability of success. For a fixed
overlap modulus, the success probability is highest for the set of states with an overlap with phase equal to zero.
In this case, if the process fails, then the information about the prepared state is lost. For states with a phase
different from zero, the information could be obtained with an error-minimizing measurement protocol.
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I. INTRODUCTION

Discriminating among different nonorthogonal quantum
states becomes a fundamental issue in quantum information
and computation theory [1–4]. There are two schemes for
discriminating in which pure state a system was prepared. One
scheme is the unambiguous quantum states discrimination
(UQSD) about which has been written many interesting works,
some generic [5–8] and others concerned with particular
applications [9–12]. The UQSD scheme requires a set of
outcomes which allow us to infer the prepared state without
error, i.e., unambiguously. This can be performed at the
expense of having a nonzero probability of an inconclu-
sive outcome. An optimum UQSD protocol holds when
the probability for success is maximum. For discriminating
one among N nonorthogonal and linearly independent (LI)
pure states, it is required to map or to represent them
onto two orthogonal subspaces which can be called the
conclusive subspace and the inconclusive subspace. In the
conclusive subspace, each state has no null component on only
one state belonging to an orthonormal basis. In the inconclu-
sive subspace, each state has no null components on N states
of a linearly dependent (LD) set. Thus, the overlaps among the
states are completely in the inconclusive subspace. Another
scheme for state discrimination is called the error-minimizing
measurement protocol (EMMP). EMMP tolerates error, which
means that a given outcome says which is the most probable
state but without discarding absolutely the other ones. An
optimum measurement process minimizes the probability of
making a wrong guess about the prepared state [13,14,16–18].
The advantage of this procedure is that it can be applied for
extracting partial information about LD states.

The article is organized as follows: In Sec. II, we character-
ize the allowed complex numbers associated with the overlap
of the N equidistant pure quantum states. We find that the
permitted area on the Argand plane has the form of a petal,
where LI sets are inside the petal and the LD sets are on its
contour. In Sec. III, we study the protocol for discriminating
unambiguously one among N equidistant states. We find the
success probability of achieving the discrimination when the
N states have been prepared with equal a priori probabilities.
In the last section, we summarize our results.

II. N EQUIDISTANT STATES

The modulus of the overlap of two normalized states is a
measure of the separation or distance between them [20]. The
separation goes from 0 to 1, where 0 corresponds to orthogonal
states and 1 refers to parallel states. Two nonparallel states, i.e.,
whose separation is less than 1, are always LI. For more than
two states, the fact that their distances are different from 1
does not guarantee that they are linearly independent. Thus,
an interesting question arises in this issue: given the set AN (α)
of N normalized and equidistant states,

AN (α)
.= {|α1〉,|α2〉, . . . ,|αN 〉 : 〈αk|αk′ 〉 = α, ∀ k < k′},

what are the α overlaps for which AN (α) is a LI or a LD set?
The set AN (α) is LI if and only if the equation

N∑
k=1

Ak|αk〉 = null (1)

implies that the N unknown coefficients Ak = 0, otherwise it
is a LD set [19]. This criteria is equivalent to considering the
Gram determinant

DN×N = det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 α α · · · α

α∗ 1 α · · · α

α∗ α∗ 1 · · · α

...
...

...
. . .

...

α∗ α∗ α∗ · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

(2a)

= α(1 − α∗)N − α∗(1 − α)N

α − α∗ , (2b)

which is higher than or equal to zero. DN×N is not zero for all
LI sets and is equal to zero for each LD set [19].

We recall that DN×N > 0 is a real hypervolume in the
Hilbert space defined by the N equidistant states. DN×N = 0
corresponds to a hypersurface, which means that at least one
state can be written as a superposition of the other ones.

014302-11050-2947/2011/84(1)/014302(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.014302


BRIEF REPORTS PHYSICAL REVIEW A 84, 014302 (2011)

First, we consider α = x real. It is easy to show from
Eq. (2b) that, in this case, the N states {|αk〉} are LI if and
only if

− 1

N − 1
< x < 1.

For x = 1, the N states become only one and for x = −1/(N −
1) the N states are LD and form a symmetric structure in a (N −
1)-dimensional subspace. The range −1 � x < −1/(N − 1)
is not accessible for N equidistant states. For instance, three
equidistant states are LD for x = −1/2, which means that they
lie on a 2-dimensional plane on which they are separated by
an angle of 2π/3. That family of three states is the well-known
trine set [14,16]. Four equally separated states become LD for
x = −1/3, i.e., they are at a 3-dimensional subspace and form
a tetrahedron.

Now, we consider the imaginary case α = iy. From
Eq. (2b), we find that AN (iy) is a LI set for

− sin π
2N

cos π
2N

< y <
sin π

2N

cos π
2N

.

The extreme values ± sin(π/2N )/ cos(π/2N ) correspond
to two sets of N equidistant LD states. The range
sin(π/2N )/ cos(π/2N ) < |y| � 1 is not accessible.

In general, the overlap α = |α|eiθ of N equidistant LI states
satisfies the constraint

0 � |α| <
∣∣〈αLD

k (θ )
∣∣αLD

k′ (θ )
〉∣∣, (3)

with

∣∣〈αLD
k (θ )

∣∣αLD
k′ (θ )

〉∣∣ = sin π−θ
N

sin
(
θ + π−θ

N

) . (4)

This function must be evaluated with θ inside the interval
[0,2π ] only; we mean that if θ = −π/4, then the Eq. (4)
function has to be evaluated at θ = 7π/4. We obtain the
previous results for θ = 0, θ = π (α real), and θ = ±π/2
(α imaginary) by means of a limit process. On the contour
defined by Eq. (4), the N equidistance states are LD. The LI
allowed equidistant states have overlap α, which is inside the
region defined by Eqs. (3) and (4). In other words, each point
inside the Eq. (4) contour represents a LI set and each point on
the contour represents a LD set. Notice that for a given phase
θ there are an infinite number of LI sets AN (|α|eiθ ) and only
one LD set {|αLD

k (θ )〉, k = 1,2, . . . N}. Figure 1 shows with
grey-degradation the allowed region in the Argand plane for
different values of N : (a) 3, (b) 7, (c) 11, and (d) 31. The white
means the inaccessible values of α. It is worth emphasizing
that on a radius (θ fixed) the modulus of the overlaps go from
zero up to the maximum allowed value of Eq. (4) where the
N states become LD. These LD states lie symmetrically on a
(N − 1)-dimensional subspace. We can notice that the allowed
surface in the Argand plane decreases as N increases, being a
circle for N = 2, petal-shaped for N > 2, and a narrow petal
around the positive real axis for N ≫ 2.

These features are illustrated in the following example. By
choosing an arbitrary orthonormal basis {|0〉,|1〉,|2〉,|3〉} in a

FIG. 1. Argand plane: grey-degradation represents the allowed
values of α and white means the inaccessible values of α for N

equidistant states. Specifically, for (a) N = 3, (b) N = 7, (c) N = 11,
and (d) N = 31. The linear grey degradation represents the value of
the success probability of Eq. (8) going from 1 (white color at |α| = 0)
down to 0 (black color at |α| = |〈αLD

k (θ )|αLD
k′ (θ )〉|).

four-dimensional Hilbert space, a set of four equidistant states
can be represented as follows:

|α1〉 = |0〉
|α2〉 = α|0〉 +

√
D2×2|1〉

|α3〉 = α|0〉 + α − |α|2√
D2×2

|1〉 +
√
D3×3

D2×2
|2〉

|α4〉 = α|0〉 + α − |α|2√
D2×2

|1〉 + D3×3 − (1 − α)D2×2√
D2×2D3×3

|2〉

+
√

D4×4

D2×2D3×3
|3〉.

We see explicitly that only for θ �= 0 the four states converge
to four different LD states as |α| goes to |〈αLD

k |αLD
k′ 〉| < 1. For

θ = 0, the four states converge to the |0〉 single state as α goes
to |〈αLD

k |αLD
k′ 〉| = 1.

It is important to point out that a nonorthogonal equidistant
basis is a generalization of a equidistant orthogonal one. On
the other hand, a nonorthogonal equidistant basis becomes a
set of symmetric states only for α real because the elements
〈αk|αk′ 〉 form a circulant matrix [21].

III. PROBABILITY FOR UNAMBIGUOUS
DISCRIMINATION

Let us suppose that the system of interest is prepared in
the state |αk〉 with a priori probability pk . The |αk〉 belong
to AN (α), i.e., they are a set of equidistant states. In order
to discriminate the state in which the system of interest was
prepared, we couple it to an auxiliary system by means of
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a joint unitary operation Û . We consider that the ancillary
system is initially in a known and normalized state |�〉a and
assume that Û transforms as follows:

Û |αk〉|�〉a =
√

1 − |sk|2|k〉| ⊥〉a + sk

∣∣αLD
k

〉| 
〉a, (5)

where {| ⊥〉a,| 
〉a} is an orthonormal basis of the auxiliary
system. The set {|k〉}k=1,2,...,N is an orthogonal basis of the
unambiguous subspace of the system of interest. The {|αLD

k 〉}
are N LD states lying on the ambiguous subspace of the system
of interest. In this transformation, the {|αLD

k 〉} set preserves the
phase θ and the sk probability amplitudes preserve the modulus
of the overlap. The unambiguous state discrimination can
be achieved probabilistically by performing a von Neumann
measurement on the auxiliary system. Thus, the system of
interest is mapped onto the unambiguous subspace with
probability of success

Ps = 1 −
N∑

k=1

pk|sk|2, (6a)

= 1 − |s|2 (6b)

and on the ambiguous subspace with probability Pf = 1 − Ps .
In the equality Eq. (6b), we have considered that the possible
states are prepared with equal a priori probabilities pk = 1/N .
In this case, due to the symmetry of the equidistant states, the
sk probability amplitudes do not depend on k.

Since the overlap is preserved under unitary transforma-
tions, we get from Eq. (5),

〈αk|αk′ 〉 = |s|2〈αLD
k (θ )

∣∣αLD
k′ (θ )

〉
,

|α|e±iθ = |s|2∣∣〈αLD
k (θ )

∣∣αLD
k′ (θ )

〉∣∣e±iθ ,

with minus sign for k < k′ and plus for k > k′. From here we
obtain

|s|2 = |α|∣∣〈αLD
k (θ )

∣∣αLD
k′ (θ )

〉∣∣ . (7)

Inserting this expression of |s| and Eq. (4) into Eq. (6b), we
obtain the probability of success for discriminating unambigu-
ously the prepared equidistant state:

Ps = 1 − |α|
|〈αLD

k (θ )|αLD
k′ (θ )〉| ,

= 1 − |α| sin
(
θ + π−θ

N

)
sin

(
π−θ
N

) . (8)

In the case of N = 2, the success probability becomes the Peres
formula Ps = 1 − |α| [3]. The Peres formula is also obtained
for all N when θ = 0. We also note that the success probability
depends on the phase θ for all N > 2 and on the modulus |α|
for all N . Specifically, Ps is linear with respect to |α| having its
maximum value 1 at |α| = 0 and its minimum value, 0, at |α| =
|〈αLD

k (θ )|αLD
k′ (θ )〉|, the petal contour. This is in agreement

with the fact that orthogonal states can be discriminated with
certainty and a set of LD states cannot be unambiguously
discriminated. These characteristics are illustrated in the grey
degradation inside the petal shape of Fig. 1. In Fig. 2, the left
panel shows such linear behavior of the success probability
as functions of |α| for N = 7 and for different values of θ : 0
(solid), π/11 (dashes), π/5 (dots), and π (dash-dots). The right
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FIG. 2. Left panel: Ps success probability as a function of |α|
for different values of the phase θ : 0(solid), π/11 (dashes), π/5
(dots), and π (dash-dots); Right panel: Ps as a function of θ for the
different values of |α|: 1/17 (solid), 1/8 (dashes), 1/5 (dots), and 1/3
(dash-dots). For both plots N = 7.

panel shows Ps as functions of θ for the different values of |α|:
1/17 (solid), 1/8 (dashes), 1/5 (dots), and 1/3 (dash-dots). The
discontinuities of the dotted and dash-dotted lines hold because
these values of |α| and θ are outside the petal-shaped area. For
N �= 2, we observe that for an allowed fixed |α| � 1/(N − 1)
the phase has no restriction, whereas for 1/(N − 1) < |α| <

|〈αLD
k (θ )|αLD

k′ (θ )〉|, the range of the phase is restricted having
a range of values inaccessible for N equidistant states.

Here we observe that for a given modulus |α|, the maximal
probability of discriminating conclusively N (> 2) equidistant
states holds for the phase θ = 0. Curiously, in this case, the
ambiguous subspace is 1-dimensional, since the N equidistant
LD states, {|αLD

k (θ )〉}, are equal. In other words, when θ = 0,
all the removable information about the prepared states is
unambiguously acquired. On the other hand, since for θ �= 0,
each set at the contour of the petal shape has N different
equidistant LD states, then in the ambiguous subspace there is
partial information about the prepared state. Even though that
partial information cannot be unambiguously obtained, it can
be ambiguously extracted by means of the LD states error-
minimizing measurement protocol [13,14,16]. Thus, when
partial information remains in the ambiguous subspace, the
success probability is smaller than when all the information
can be extracted from that subspace. We would like to point
out that for performing the UQSD protocol on N equidis-
tant states, it is required a (2N − 1)-dimensional Hilbert
space when θ �= 0 and a (N + 1)-dimensional one when
θ = 0 [7].

IV. SUMMARY

We have characterized all the sets of N equidistant states
finding the allowed values of the involved overlap. We find
that the permitted surfaces in the Argand plane decrease as N

increases, being a circle for N = 2, petal-shaped for N > 2,
and a narrow petal around the positive real axis for N ≫ 2.
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In addition, we studied the unambiguous discrimination of
N equidistant pure quantum states, finding the probability of
success in the case of equal a priori probabilities. The success
probability depends on both the modulus and the phase of the
overlap. We also find that the success probability for UQSD
of N equidistant pure states reaches the maximal value when
there is not information about them in the ambiguous subspace.
If the phase of the overlap is different from zero and the UQSD
protocol fails, then an EMMP can be applied since in this case
some information remains in a set of N different equidistant
LD states. In this way, for N equidistant LI pure states with
phase different from zero we could apply a complete quantum
pure states discrimination (CQPSD) scheme, which allows

obtaining all the possible information about the prepared state
of the system of interest. The CQPSD scheme should consist
in applying first an optimal UQSD protocol and, if it fails, then
an EMMP can be implemented.

Finally, we would like to emphasize that nonorthogonal
equidistant states are a generalization of an equidistant
orthogonal basis and, in addition to their symmetry, they are
characterized by only one complex physical parameter.
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