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Optimized multiparty quantum clock synchronization
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A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal
limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members.
But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of
Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when
�n/2� of its members have their qubits with a |1〉 eigenstate.
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I. INTRODUCTION

Entanglement as a physical resource has been extensively
investigated for a variety of applications in distributed systems,
for instance, QKD (quantum key distribution) and QCS
(quantum clock synchronization). QCS protocols have been
published referring to the synchronization of a pair of clocks
and later to the multiparty case.

In the Introduction we describe basic quantum clock
synchronization ideas and the multiparty protocol proposed
by Krco and Paul [1] based upon W states. In the remainder
of the paper, we introduce Z states1 as a generalization of W
states (in Sec. II), use Z-state properties to show that one can
optimize multiparty quantum clock synchronization beyond
the Krco and Paul protocol (in Sec. III), and conclude with a
discussion (in Sec. IV).

A. Related work

Josza et al. [3] is a basic reference for the synchronization
of two spatially separated parties based upon shared prior
quantum entanglement and classical communications. The
accuracy of the protocol is independent of the two parties’
knowledge of their relative locations or of the intervening
medium properties.

Chuang [4] describes a quantum TQH (ticking qubit
handshake) protocol allowing two spatially separated clocks to
be synchronized independently of the uncertainties in message
transport time between them. This protocol requires O(n)
quantum messages to obtain the n digits of the time deviation
� between the clocks.

Optimization and limiting issues have been dealt with in
the quantum clock literature, in particular with respect to QCS.
Buzek et al. [5] have shown that as the dimension of the clock’s
Hilbert space grows to infinity, the time resolution bound
given by the energy eigenvalues difference and the Holevo
bound on classical information encoded by quantum means are
satisfied simultaneously. Preskill [6] considers entanglement
distillation and quantum error-correcting codes as ways to
improve the robustness of QCS protocols. Giovannetti et al. [7]
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1Z stands for time (Zeit in German). Z states were also coined

“symmetric Dicke” states [2].

proposed the combination of entanglement and squeezing of
light pulses to enhance the accuracy of clock synchronization
relative to classical protocols with light of the same frequency
and power. Yurtsever and Dowling [8] present a relativistic
analysis of the basic QCS protocol [3] and conclude that some
method of entanglement distribution is needed to overcome
entanglement purification issues. Burt et al. [9] in a reply
to [3] state that it is essentially a kind of Eddington slow
clock transfer synchronization protocol, while discussing its
limitations.

Experimental work has also been done on QCS imple-
mentation. Valencia et al. [10] report on a distant clock
synchronization experiment (picosecond resolution at 3 km
distance) based upon entangled photon pairs. Bahder et al. [11]
describe two-party synchronization, based on second-order
quantum interference between entangled photons generated by
parametric down-conversion. Multiparty QCS protocols were
first considered by Krco and Paul [1] based upon W states, as
referred to in Sec. I C.

B. Essentials of quantum clock synchronization

Quantum clock synchronization is based upon the prepara-
tion of entangled states, to be later used for synchronization.
Once entangled states are prepared, measurements may be
performed triggering a well-defined time evolution between
these states, enabling synchronization up to a given preci-
sion. Josza et al. [3] proposed a two-party quantum clock
synchronization protocol requiring a shared entangled state
and classical messages between the two parties, in which the
classical messages do not carry timing information.

C. Multiparty clock synchronization protocols

Krco and Paul [1] extended the Josza et al. two-party
protocol to a multiparty synchronization protocol. Its purpose
is to synchronize n spatially separated clocks, any one of which
can be later taken as the standard clock. The protocol starts
from an initial W state (see, e.g., Dur et al. [12], although they
are not called as such in Krco and Paul’s paper). W states are
entangled states which have n terms in the following form:

|W (N )〉 = (|100 . . . 0〉 + |010 . . . 0〉
+ |001..0〉 + · · · |000 . . . 1〉). (1)

Each of these terms contains a single qubit in the |1〉 state.
The initial W state |W 〉 is an energy eigenstate, since |0〉 and |1〉
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are themselves assumed to be energy eigenstates with different
energies. This ensures that |W 〉 is invariant until measurements
are made.

At standard time tA = 0, Alice—who has the standard
clock—measures the qubit in her possession in the mea-
surement (|+〉,|−〉) basis. She then publishes classically the
measurement results. Bob—a generic name for the holder of
a clock to be synchronized—also measures his qubits in the
measurement basis, at time tB , which is skewed by �t from
the standard time.

Following the application of the time evolution operator,
for sets measured by Alice as |+〉, Bob gets the probabilities
P of its two possible outcomes:

P |±〉 = 1

2
± cos(ω�t)

n
. (2)

Assuming that |ω�t | < 2π , Bob’s measurements allow
him to estimate �t and adjust his clock.

Krco and Paul in the analysis of their result state that
the accuracy of determination of �t decreases with n,
since—following Eq. (2)—the amplitude of the probability
variation decreases with n. They attribute it to the decrease in
entanglement with n of the initial state, in Eq. (1). Furthermore,
while they state that it is worthwhile to look for a different
initial state other than Eq. (1), they suggest that their limits
are universal. In the following section, we show that indeed
a different initial state changes the view that the accuracy of
determination of �t decreases with n.

II. Z STATE: A GENERALIZATION OF W STATES

A. Preliminaries: Z-state notation

We start by defining the Z-state notation. Z state is shorthand
for a fully symmetric entangled state with N qubits. It is fully
symmetric under the operation of particle exchange. It is a
generalization of W states, as seen below.

A Z state is denoted by |Zk(N )〉 where N is the total number
of qubits (particles) and k is the number of qubits in the |1〉
state in each term. It generalizes W states for which there is
the restriction that k = 1. The state |000 . . .〉 with N particles
is |Z0(N )〉. It is the null state of the Z-state structure, as it has
no entanglement [it is dual to |ZN (N )〉].

The first actually entangled example of a Z state is given by
the (non-normalized) Z state |Z1(N )〉 of N particles with one
particle in the |1〉 state, identical to a W state, as follows:

|Z1(N )〉 = (|100 . . . 0〉 + |010 . . . 0〉
+ |001 . . . 0〉 + · · · + |000 . . . 1〉). (3)

The normalized Z state2 can be derived from the non-
normalized one. For k = 1,

|Z̃1(N )〉 = 1√
N

|Z1(N )〉. (4)

2The tilde ∼ above the Z means that it is normalized.

B. Z-state properties relevant to synchronization

Here we assume that for every single qubit, the |1〉 state is
in a different energy than the |0〉 state. Before setting up the
clock we are interested in time-invariant states, i.e., stationary,
up to at most an overall time-dependent phase. We naturally
focus on states with well-defined energy (linear combination
of states with definite numbers of |0〉 and |1〉 states), since
these are eigenfunctions of the Hamiltonian, i.e., they may be
composed only of degenerate eigenvectors of the Hamiltonian.
We only discuss states that are symmetric with respect to
particle exchange, as this is a natural property of our systems.

One can easily verify that for |0〉 and |1〉 states differing
in energy—of relevance for time synchronization—the Z state
|Zk(N )〉 is stationary for any k. Indeed there is a global time-
dependent phase; however, since the quantum states are rays
in the Hilbert space, the overall total phase is irrelevant. In
what follows we shall consider Z states for any values of k.

III. QUANTUM CLOCK SYNCHRONIZATION
OPTIMIZATION

A. Optimization idea

We follow the approach of Krco and Paul to multiparty
synchronization. We relax the constraint that the number of |1〉
valued qubits per member of the initial state is exactly k = 1.
Thus our normalized initial state has k qubits with value |1〉
per member and (n − k) qubits with value |0〉:

|Z̃k(N )〉 =
(√

n!

(n − k)!k!

)−1

(|111 . . . 000〉

+ |11 . . . 01 . . . 000〉 + · · · + |000 . . . 111〉). (5)

The idea is very simple. Once the k = 1 constraint is relaxed,
one has an additional degree of freedom for optimization, viz.,
the variability of k, which can be optimized. Moreover, one
can guess that since our systems display duality between |0〉
and |1〉 states, the optimal value of k is k = n/2, as it will be
shown in the next sections.

B. Density matrix calculations for Zk(N) states

The density matrix calculations for Zk(N) states are outlined
as follows:

(1) Density matrix in computational basis. Obtain the partial
density matrix in the computational basis for the standard clock
A and a generic clock to be synchronized B. This is denoted
ρc

AB (the superscript c stands for computational, i.e., for qubit
states |1〉 and |0〉). This matrix is

ρc
AB = 1

n(n − 1)

×

⎛
⎜⎝

(n − k)(n − k − 1) 0 0 0
0 k(n − k) k(n − k) 0
0 k(n − k) k(n − k) 0
0 0 0 k(k − 1)

⎞
⎟⎠ .

(6)

(2) Density matrix in measurement basis. Transform the
previous partial density matrix into ρm

AB (the superscript m
stands for measurement states |+〉 and |−〉).
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(3) Bob’s density matrix. Obtain the density matrix of Bob
ρm

B , corresponding to Alices’s |+〉 states.
(4) Bob states’ probabilities. Using ρm

B one finds that the
probabilities of Bob states P (±) are

P (±) = 1
2 ± ρC

AB(01,01) cos(ω�t), (7)

hence

P (±) = 1

2
± k(n − k)

n(n − 1)
cos(ω�t). (8)

C. Optimization detailed

To improve the clock adjustment accuracy one chooses an
optimal k for a given N as follows. We denote by A0 the
amplitude of the time probability fluctuation. Hence

A0(k,n) = k(n − k)

n(n − 1)
. (9)

For any given n we wish to choose k such that A0 is
maximized. One can easily see that kopt(optimal k) is

kopt = �n/2�, (10)

for which

A0(kopt,n) = �n/2��n/2�
n(n − 1)

. (11)

For n � 4 our result is a clear improvement over the original
W state (k = 1), for which A0(1,n) = 1/n.

D. Benefits and limits

The entanglement-dependent coefficient A0(k,n) in Eq. (9)
is a symmetric function of k, with a maximal value in k =
�n/2�. The symmetry of A0 is an expression of the duality
between |0〉 and |1〉. In addition, if for some reason one cannot
use the optimal k, one can still improve accuracy to a certain
desirable extent by using an intermediate value of k. It is
noteworthy that for kopt : A0 →

n→∞
1
4 , i.e., for the optimal choice

of k the accuracy of the clock synchronization does not suffer
a significant reduction as a function of N.

IV. DISCUSSION

Previous results concerning multiparty synchronization
were disappointing in the sense that, in order to achieve
a constant amount of error, each party member would (at
least naively) be required to hold O(n2) of qubits in order to
compensate for the 1/n reduction in the probability fluctuation
amplitude. This amount of qubits is even larger than holding
one qubit per party member as in the bipartite case [totaling
O(n) qubits for N-member parties). Our result shows that using
the correct “preclock” state reduces the amount to one qubit
per party member.

In addition it has been shown that even for nonentangled
pairs one could achieve [6] A0 = 1

4 . It is rather interesting to
see that for kopt the correlation amplitude is always larger, i.e.,
A0 > 1

4 for any n.
Open Issues. We intend to address in depth in future work

the interesting relations between clock fidelity and entangle-
ment measures in multiparty states. Future investigation may
also consider the issue of choosing optimal k in the presence
of decoherence [13] and noise models. It should be clear that
the current improved accuracy attained does not solve the
relative phases problem mentioned, e.g., in the Krco and Paul
paper. Our results also impinge on entanglement distillation
issues for multiparty states (see, e.g., [2]), requiring a deeper
investigation.

Main contribution. We have shown that for multiparty
synchronization, a suitable choice of the initial entangled
state—viz., Z states Zk(n), a generalization of W states—
improves the accuracy of quantum clock synchronization over
the straightforward use of W states. The improvement increases
as the number of participants grows such that the accuracy of
the time measurement does not depend on N for a large enough
number of participants.
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