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Evolution dynamics of discrete-continuous light bullets
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We experimentally and numerically investigate the propagation of light bullets (LBs) excited in two-
dimensional fiber arrays. The combination of nonlinear self-frequency shift, wavelength dependence of the
dispersion, and the interwaveguide coupling strength induce an adiabatic variation of the parameters of the LBs
along their propagation paths, until they reach the limits of the regime of existence and decay. The relative strength
of the various perturbative effects can partially be controlled by the array’s geometry. The characterization of the
LB dynamics is carried out by implementing a spatiotemporal, cross-correlating, and spectrally resolved imaging
system with femtosecond resolution. The experimental results are in good agreement with the numerical data if
higher-order nonlinear effects and the wavelength dependence of the dispersion and coupling are included. The
observed wave packets are linked to the stationary solutions of the simplified nonlinear Schrödinger equation.
Furthermore, the maximum possible range of existence of LBs in arrays of waveguides is discussed.
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I. INTRODUCTION

In the past three decades, considerable effort has been
devoted to the investigation of optical solitary waves [1,2]
due to their fundamental impact on nonlinear wave prop-
agation, spawning exciting applications on the way, such
as supercontinuum light sources [3], soliton lasers [4], and
an improved understanding of the development and control
of rogue waves [5]. Solitary waves are wave packets that
balance linear dispersive and/or diffractive broadening with the
nonlinear response of the optical medium. Their particlelike
behavior makes them a formidable subject for the study of
wave propagation in nonlinear media and suitable elements to
deliver and process quantized packets of energy.

Starting with the investigation of solitons in optical fibers
[1,6,7], research has diversified [2] also addressing optical
solitary waves in higher-dimensional media, which display a
more complex phenomenology due to the increased degrees
of freedom [8].

In this context, the generation, the observation, and the
control of wave packets that are simultaneously nondispersive
and nondiffractive in bulk optical media (the so-called light
bullets (LBs) [9]) have been long-lasting challenges in nonlin-
ear optics. In fact, LBs in pure Kerr media are unstable, i.e.,
small perturbations lead either to spreading or to catastrophic
collapse of the wave packet. However, theoretical research
has pointed out that stable LBs may be observed in media
featuring different types of nonlinearity [10–14] and/or in
microstructured media [15–19].

Despite considerable theoretical work, experimental re-
search lagged behind, mainly due to the fact that detrimental
higher-order nonlinear effects are not negligible because
existing materials are only weakly dispersive and cause LBs
to be extremely short.

Considerable advances toward the generation of LBs have
been achieved in χ (2) media, where two-color spatiotemporal
solitons [20,21] have been observed with a tilted pulse
[22,23]. In these experiments, pulse tilting was required to
achieve group-velocity matching between nonlinearly coupled
harmonics and to induce an unusually high level of effective
anomalous dispersion. However, this technique is limited to
a single effective transverse dimension. The generalization
of the technique for two transverse dimensions leads to the
generation of so-called X-waves, i.e., wave packets featuring
an angularly dispersed spatiotemporal spectrum with axial
symmetry. X-waves can be generated spontaneously in χ (2)

[24,25] or χ (3) media [26,27] but feature a weak spatiotemporal
localization of light and a theoretically infinite energy content
due to the slowly decaying wings of the wave packet. Also of
infinite energy content are linear LBs, which are a spatiotem-
poral superposition of nondiffracting and nondispersing Airy
and/or Bessel beams [28,29].

Another approach, which has been investigated experi-
mentally, is the nonlinear propagation of ultrashort pulses
in transversally structured optical lattices. These media sup-
port not only nonlinear lattice X-waves [30,31], but also
stable lattice solitons in one or two spatial dimensions
[32–36] featuring improved stability properties over their
homogeneous counterparts, including LBs [9,16–18,37,38].
Until recently, the experimental characterization of nonlinear
spatiotemporal pulse evolution in structured χ (3) media did
not produce a clear identification of LBs [39–41] due to
limitations of the diagnostic tools used for spatiotemporal
characterization. Improved characterization techniques based
on the spatially resolved cross-correlation method [24,25,
42–44] allowed us recently to identify LBs [45] excited in
highly regular two-dimensional arrays of coupled waveguides
[46,47].

013836-11050-2947/2011/84(1)/013836(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.013836


FALK EILENBERGER et al. PHYSICAL REVIEW A 84, 013836 (2011)

In Ref. [45], we reported that the excited wave packets
propagate as LBs for many dispersion lengths while experienc-
ing self-frequency shift and adiabatic adaptation to changing
dispersion conditions. This evolution process lasts until the
energy budget of the LBs is no longer sufficient to support
nonlinear confinement against the growing dispersion and
diffraction strength.

In this paper, we address, in more detail, the propagation of
LBs by providing additional experimental data, and we provide
an analysis of the parameters controlling the existence range
of the LBs.

The paper is set up as follows. In Sec. II, we give
an overview of the properties of the waveguide array and
idealized discrete-continuous bullet solutions of the nonlinear
Schrödinger equation (NLSE). In Sec. III, we summarize the
experimental results of the paper, reporting the observation
of LBs, and we describe the linear dispersive properties
of the waveguide arrays. We present experimental data for
waveguide arrays featuring reduced coupling strength as
compared to previous experiments. In the following Sec. IV,
we explain the observed phenomena with the help of numerical
simulations based on the unidirectional Maxwell equations
and discuss the wave-packet evolution dynamics by relating
them to adiabatically evolving LB solutions of the NLSE. The
consequences of our findings on the extension of the stability
and the existence range of the LB are then presented in the
concluding Sec. V. A summary of the experimental as well as
the numerical methods are included in the Appendices.

II. OVERVIEW OF THE PHYSICAL SYSTEM

Nonlinear light propagation in arrays of coupled waveg-
uides entails a complex dynamics, which can be understood
by means of the concept of discrete-continuous LB and the
knowledge of higher-order linear and nonlinear properties
of the array. In this section, we summarize the properties
of the array and ideal discrete-continuous LB solutions,
presenting the definition of quantities that are relevant for the
interpretation of the experiments.

A. Properties of the array of waveguides

We investigate light propagation in arrays of evanescently
coupled single-mode fiber cores, a sample of which is depicted
in Fig. 1(a). They have been fabricated by a rod-in-tube
process [46,47] of fluorine-doped tubes placed around pure
silica cores with special boundary rods to ensure a high quality
of the array all the way to the edges. Their high degree of
regularity is reflected by the high symmetry of the linear
discrete diffraction pattern, depicted in Fig. 1(b). This allows
for neglecting effects, which stem from stochastic variations
of the interwaveguide coupling across the array [36,48,49].

Linear properties of the infinite array are determined by
numerical simulation of the band structure of a homogenous
circular rod with a refractive index n(ω) embedded in the
center of a hexagonal unit cell. The background refractive
index is lowered to n(ω) − �n where ω is the angular carrier
frequency related to the wavelength by ω = 2πV/λ with the
speed of light V . The index difference between the core and
the background is nondispersive at �n = 1.1 × 10−3 whereas,

FIG. 1. (Color online) Linear properties of a typical fiber array.
(a) Image of the front facet of a fiber array with a unit cell
pitch of � = 34.7 μm and a core radius of r = 10.3 μm.
(b) Linear diffraction pattern of the array depicted in (a). (c) Linear
length scales of the array depicted in (a) as a function of the
wavelength. (Blue) The dispersion length for a pulse with τ0 =
20 fs. The gray section on the left marks the normal dispersion
range, whereas, the white section to the right marks the anomalous
dispersion regime, which supports bright LB solutions for n2 > 0.
(Red) The discrete diffraction length for the array depicted in (a) as a
function of the wavelength. (d) Band structure of the Bloch modes of
an infinitely extended array. The first Brillouin zone is marked with
the white line.

the base refractive index is modeled with chromatic dispersion
using the Sellmeier equation and tabulated data for fused
silica [1].

A typical isofrequency curve (band structure of the first
Brillouin zone at a fixed frequency) is shown in Fig. 1(d).
The band structure can be fitted to an analytic expression [50],
yielding the propagation constant of the fundamental guided
mode of an individual waveguide β0(ω) and the interwaveguide
coupling strength c(ω) which describes the discrete diffraction.
These two quantities determine the linear spatial and temporal
evolution lengths LDiff and LDisp, respectively. They are
defined as

LDiff(ω) = π

2
√

6c(ω)
,

(1)

LDisp(ω) = τ 2
0

|β2(ω)| ,

where τ0 is the 1/e width of a pulse, with the carrier frequency
ω and β2(ω) = d2β/dω2 is the group-velocity dispersion
(second derivative of the propagation constant with respect
to the angular frequency). If it is positive, one speaks of
normal dispersion and of anomalous dispersion otherwise. A
typical wavelength dependence of these parameters is plotted
in Fig. 1(c). Note that, in the anomalous dispersion regime,
both characteristic length scales decrease almost exponentially
upon the increase in the wavelength, which is due to the
increased material dispersion induced by the far-infrared
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resonance of the host material and the exponential increase
in the overlap of neighboring modes.

As discussed later in our paper, we have observed a
significant spectral and temporal reshaping of the light pulses
propagating in the array. Thus, for a given pulse, both LDiff and
LDispare not constant along the propagation coordinate. Thus,
we define pulse-trajectory-averaged quantities to analyze the
robustness of the solitonic propagation,

〈LDiff〉 = (z2 − z1)−1
∫ z2

z1

π

2
√

6c[ωc(z̃)]
dz̃,

(2)

〈LDisp〉 = (z2 − z1)−1
∫ z2

z1

τ0(z̃)2

|β2[ωc(z̃)]|dz̃,

where ωc(z) is the pulse’s spectral center of gravity.

B. Properties of LBs

In a first approximation, light propagating in arrays of
waveguides is described by the discrete-continuous NLSE
[16]. See Appendix B and Fig. 2 for the equation and
the relation of the normalized quantities to their physical
counterparts used below.

This equation is known to support bright solitary solutions
as discussed in Refs. [16,17,19] and as discussed in more
detail in Appendix B. One finds a family of LBs by solving
Eq. (B1) for stationary solutions with the ansatz Anm(Z) =
A(stat)

nm exp(ibZ) characterized by the nonlinear shift b of the
propagation constant. Properties of this family are displayed in
Fig. 2. Note that the family consists of two distinct sections—
whereas, LBs with b < 8.2 are unstable as predicted by the
Vakhitov-Kolokolov theorem [51] and are confirmed by linear
stability analysis shown in Fig. 2(c); there is a regime of stable
LB solutions for b > 8.2. This feature is a direct consequence
of the periodicity of the array and extends over a finite range

of nonlinear parameters to a value bcrit, linked to a peak power
Pcrit, which depends on the modulation depth of the refractive
index and is discussed below in Appendix B.

Similarly, there is a lower limit for the peak power of stable
LBs,

Pmin ≈ 14.5, (3)

which is the peak power of the LB at the transition point
between stable and unstable LBs at b = 8.2.

One interesting consequence of this behavior is that pulse
widths of all stable LBs of this equation belong to a finite range
and cannot be chosen arbitrarily. This behavior is in sharp
contrast to solitons of the one-dimensional (1D) NLSE. The
upper bound, which has already been found for 1D waveguide
arrays [37], is the temporal width of the solutions at the point
b = 8.2, where the solution originally stabilizes,

TFWHM � 0.46. (4)

If transferred back into real-world quantities, one acquires
a value of TFWHM < 22 fs for a wavelength of λ = 1550 nm
and the geometry depicted in Fig. 1 with LDiff = 22 mm.

Consequentially, there is a lower threshold energy for the
LB,

E > Emin = 9.05, (5)

below which no LB solutions exist. This is caused by the
dimensionality of the system and cannot be observed in a 1D
system.

Another feature is that all LB solutions have a characteristic
and nearly constant ratio of dispersion to diffraction lengths.
The diffraction length is given by Eq. (1) as L

(LB)
Diff = 0.64 c−1,

whereas, an upper limit for the dispersion length is determined

FIG. 2. (Color online) Family properties of LB solutions of Eq. (B1). (a) LB energy as a function of the nonlinear parameter b. (b) Temporal
full width at half maximum (FWHM) of the pulse in the central waveguide. (c) Inset of (a) in the region close to the point of minimal energy.
Shown are (blue, left axis) the energy of the LB and the largest real parts of the eigenvalues of the linear stability analysis (gray, right axis),
whose sign determines the stability of the solution. (d) Peak power as a function of the nonlinear parameter. (e) The portion of the LB’s energy
that is guided in the central waveguide as a measure of spatial confinement. (f) The spatial energy distribution of the LB at the point with the
lowest energy. The (vertical) red lines in (a)–(e) denote the border between stable and unstable LB solutions. The inset formulas relate the
depicted normalized quantities to their physical counterparts.
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FIG. 3. (Color online) Pulses with a wavelength of 1550 nm
from an optical parametrical amplifier (OPA), pumped by an 800
nm source (purple/gray) are launched into the central core of a fiber
array. The resulting spatiotemporal light distribution is imaged onto
a 10-μm-thin β-barium-borate (BBO) crystal where it is overlapped
with a synchronized short and wide 800-nm pump pulse (green/light
gray), with adjustable delay. A sum-frequency field (blue/dark gray)
is generated at the overlap of the signal and pump pulse, which
is proportional to the signal pulse at the time given by the delay.
It is imaged onto a charge-coupled-device (CCD) camera, which
records an image for each setting of the delay, thus, sampling the
spatiotemporal intensity map of the signal with a temporal resolution
on the order of the pump pulse width (60 fs). The pictures on top of
the arrows are artist’s impressions of the temporal and spatial light
distributions at the points denoted thereby for different settings of the
delay stage.

by the upper limit of the LB width in Eq. (4) as L
(LB)
Disp �

0.083 c−1 Thus, one finds, for stable LB solutions,

L
(LB)
Diff /L

(LB)
Disp ≈ 7.5, (6)

which can be used to gauge whether wave packets are of
solitary nature. Correspondingly, one can use Eq. (3) to find a
maximum value for the nonlinear length,

L
(LB)
NL = (cP )−1 � 0.07 c−1, (7)

which is consistent with the assumption that, for solitary
waves, the nonlinearity has to balance both the diffraction
and the dispersion simultaneously, so LNL has to be smaller
than both LDiff and LDisp but not much smaller.

III. PHENOMENOLOGY OF LBS IN WAVEGUIDE ARRAYS

In recent experiments [45], we generated optical LBs by
launching 170-fs pulses at λ0 = 1550 nm into the central
waveguide of a 91-element hexagonal array of coupled
waveguides. The output pulse was characterized by means
of an imaging cross-correlation technique [43,44] featuring
60-fs resolution. Figure 3 displays the experimental setup,
which is explained in more detail in Appendix C, while Fig. 4
summarizes the observed phenomenology. At an input pulse
energy of E = 36 nJ, spatiotemporal broadening is observed
as expected for linear propagation. If the input power is
increased to E = 90 nJ, an abrupt change takes place. A
resolution-limited short pulse carrying much of the wave
packet’s energy is observed in the central waveguide of the
array. In the spatiotemporal trace, one can clearly observe
that the nonlinearly confined wave packet is spatiotemporally
separated from weaker residual radiation, which diffracts.
The wave packet arrives at a later time, suggesting that it
is considerably redshifted, which is typical for solitary waves
propagating under the influence of the Raman effect. At even
higher input powers of E = 180 nJ, the spatial picture is
mostly unchanged, but two temporally separated peaks are now
observed in time, reminiscent of soliton splitting in ordinary
optical fibers.

More information on the nature of the nonlinearly confined
wave packets is given by the experimental cross-correlation-
based frequency-resolved optical gating (XFROG) traces of
the wave packets in the central waveguide. Figure 5 depicts
measured and simulated traces at an input peak power of

FIG. 4. (Color online) Results of light propagation through a fiber array with LDiff = 22 and L = 40 mm. (First row) Spatial distribution
of power in the array. (Second row) Isointensity trace of the field at the end of the waveguide array, obtained from the cross-correlation setup.
The isosurfaces correspond to the levels denoted in the legend of (d). (First column) Propagation at low power, exhibiting spatial and temporal
broadenings. (Second column) Propagation at intermediate peak power. Most light is confined in the central waveguide, and considerable
temporal contraction to the minimum temporal resolution of 60 fs is observed. A clear spatiotemporal separation of the nonlinearly confined
wave packet and residual radiation is observed in the cross-correlation traces. (Third column) Propagation at higher powers. Similar to the
intermediate case but two nonlinearly confined wave packets are observed. (Adapted from Ref. [45].)
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FIG. 5. (Color online) (Upper) Experimental and (lower) simu-
lated XFROG traces of the field in the central waveguide. The initial
peak power was P0 = 0.9 MW, and LDiff = 22 mm. Shown are sample
lengths of (left) 25 mm, (middle) 40 mm, and (right) 60 mm. Note
that there is no common color scale. The figures show the excitation
of two heavily redshifted and delayed pulses at 25 mm. At 40 mm, the
more heavily redshifted one has left the wavelength window, only the
small part is still visible in the simulated data. Residual radiation with
a shorter wavelength precedes the nonlinearly confined wave packets,
which is the only detectable radiation left at 60 mm. (Adapted from
Ref. [45].)

P0 = 0.9 MW. At z = 20 mm, it shows the development and
evolution of two distinct wave packets with a spectral FWHM
of δλ > 100 nm, corresponding to a temporal FWHM of
δT < 20 fs, indeed, much shorter than the resolution-limited
information from the cross-correlation intensity plots and
within the range of pulse widths expected for LBs given by

Eq. (4). The results are in excellent agreement with the syn-
thetic XFROG traces calculated from numerical simulations
based on the unidirectional Maxwell equations [52,53]. Both
wave packets are continuously redshifted and consecutively
slow down. At z = 40 mm, the stronger more redshifted
wave packet has already left the experimental wavelength
limit and is barely discernable at the border of the simulated
one. Both pulses have disappeared at z = 60 mm, leaving
only residual radiation in the central waveguide. Propagation
lengths in between those depicted in Fig. 5 are shown in
the corresponding movie, which displays the evolution of the
XFROG trace for z � 50 mm. Note the striking agreement of
measured and simulated data in both Figs. 4 and 5.

The complete evolution of the pulse in the central waveg-
uide is depicted in Fig. 6(a). After the pulse initially contracts
in time, it decays into multiple fragments, the first of which is
clearly visible from z = 15 mm. It can be traced for a length
of LLB = 25 mm to z = 40 mm, where it decays rapidly. A
second fragment, which develops at z = 25 mm, undergoes
a similar evolution pattern. Figures 6(b) and 6(c) display the
properties of the most redshifted pulse fragment. After strong
temporal contraction, the pulse width settles at approximately
25 fs at z = 15 mm and starts to grow slowly from there.
This slow broadening is not due to dispersion as displayed
by the dotted line in Fig. 6(b), which represents dispersive
broadening of a hypothetical pulse of the same width. The
evolution is accompanied by a decelerating redshift, starting
at λ = 1600 nm and ending at λ = 1950 nm, which is typical
for the influence of self-induced Raman scattering. Note that,
under the influence of linear discrete diffraction, blueshifting
would be observed because the spectral components with
longer wavelengths diffract faster (see Fig. 1).

FIG. 6. (Color online) Pulse evolution in the central waveguide of a fiber array with (a)–(c) LDiff = 22 mm with an input power of
P0 = 0.9 MW and (d)–(e) LDiff = 96 mm with an input power of P0 = 50 kW. (a) and (d) Power as a function of
time and propagation length. (b) and (e) Pulse width (red/right axis) and pulse wavelength (blue/left axis) of the slowest most
redshifted pulse fragment. (Red, dotted) Evolution of a hypothetical pulse of the same length as the observed wave packet,
assuming purely linear dispersion. (c) The fraction of the total energy, which is confined in the central waveguide part of
the slowest most redshifted pulse. The vertical lines in (a)–(c) denote the region of nonlinearly confined adiabatically redshifting pulse
evolution. The pulse-averaged diffraction and dispersion lengths for this range are displayed in (a) and (d). (f) Experimental cross-correlation
trace.
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FIG. 7. (Color online) Cross-correlation measurements of the central waveguide of an array with LDiff = 22 mm (a) after the point of
creation of the first LB at L = 20 mm and (b) after the point of LB decay at L = 60 mm for various input intensities. Marked are (blue, small
dashes) the dispersive wave peak, (red, solid) the LBs, and (red, large dashes) the residual leftovers of decayed LBs. (Media 1) [59] Movie of
isointensity plots for the data depicted in (a). (Media 2) [59] Movie of isointensity plots for the data depicted in (b).

The energy content of the central waveguide component
of the pulse is depicted in Fig. 6(c). After an initial content
of roughly 40% at z = 15 mm, it slowly drops to about 15%
at z = 40 mm. Note that this is not the total energy content
of the nonlinearly confined pulse because the pulse also has
a spatial structure and increasing energy content in the other
waveguides.

Experimental support for these findings is given by data
plotted in Fig. 7. It shows the power in the central waveguide
as a function of the input energy for a sample length of L
= 20 and L = 60 mm, respectively. It was obtained from the
full cross-correlation data, which are displayed in (Media 1 and
2) [59]. A length of L = 20 mm was chosen to observe the state
of the wave packet after the point of creation of the first LB.
At this point, a single LB, which is redshifted if a higher input
energy is applied, and a blueshifted broadened dispersive wave
can be distinguished. The length of L = 60 mm lies beyond
the point of LB decay. Nevertheless, some light of the former
LBs has not yet tunneled out of the central waveguide and can
clearly be observed as delayed pulses trailing the dispersive

waves. The number of delayed pulses grows if the input energy
is increased.

IV. ADIABATIC LB EVOLUTION MECHANISM

The simulations reported in Fig. 6 prove the subdiffractive
subdispersive properties of the observed localized wave
packets but offer only an indirect link to the concept of LBs.
The verification that adiabatically evolving LBs were indeed
excited is given by Figs. 8(a) and 8(b). They show the pulse
evolution of the strongest, most redshifted wave packets of the
simulations depicted in Fig. 6 in the pulse’s parameter space.
This space is spanned by the pulse’s central wavelength, its
central waveguide energy content, and its FWHM pulse width
during propagation. Depicted as well is the central waveguide
energy of a LB solution of Eq. (B1) with the given FWHM
and wavelength by the blue-red surface. This surface has been
obtained by rescaling the results displayed in Fig. 2 to physical
quantities, using the wavelength-dependent linear properties of
the respective waveguide arrays as shown in Fig. 1.

FIG. 8. (Color online) Adiabatic LB evolution in phase space for two different fiber geometries with (a) LDiff (1550 nm) = 22 mm
and (b) LDiff (1550 nm) = 96 mm. The blue-red surface denotes the width of the LB solution of Eq. (B1), with the given pulse energy E
and wavelength λ, transformed into real quantities, according to the fiber-array parameters. The green line is the evolution of the most redshifted
pulse in parameter space. The gray lines are the green line’s projection onto the coordinate surfaces. Points A and B mark the beginning and
the end of the adiabatic evolution regime of the LB. (Media 3 and 4) [59] Animation of the pulse evolution for both array geometries.
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The limits of nonlinearly confined behavior are marked with
points A and B in the projection of the parameter curve onto the
wavelength-energy plane. These points split the evolution into
three distinct regimes. In the first regime, the pulse undergoes
rapid nonlinear contraction and subsequent pulse splitting until
one or more fragments of the pulse acquire a shape that is very
close to the one defined by the surface. In the second regime,
which has a length of LLB ≈ 1.9〈LDiff〉 = 9.0〈LDisp〉, the
wave packet propagates as such a LB, while the higher-order
nonlinear terms lead to a slow redshift. The wave packets
evolve adiabatically because the redshift imposes stronger
coupling and dispersion. Although the LB’s energy content
is (almost) constant in physical units, it drops in normalized
units. Eventually, it does not have enough normalized energy
anymore to fulfill the existence criterion defined in Eq. (5)
and, thus, decays. In Fig. 8, this point is marked by the motion
of the parameter curve beyond the blue-red plane and by the
crossing of the projected parameter curve into the blue region
without LB solutions. Thus, the LB decay is not mediated by
losses but by a slow evolution toward a state where the limited
energy budget can no longer support solitary propagation.

A striking observation is the fact that the LB solutions
of the simplified NLSE model are a useful tool at all for the
description of the complex evolution mechanisms of ultrashort
pulses in a heavily dispersive medium under the influence
of higher-order linear and nonlinear terms, described by the
much more complicated Eq. (C1). This underlines the potency
of adiabatically evolving solitary solutions as a conceptual
tool to describe and to understand nonlinear wave propagation
phenomena in systems with a broad range of perturbations.

The question that naturally arises is whether the decay
process of LBs could be slowed down by tuning the diffraction
length. As outlined in Sec. IIB, a longer diffraction length
implies a longer dispersion length, thus, LB solutions of longer
pulse widths can be excited. As a consequence, higher-order
effects are expected to be less relevant and possibly extending
the life span of the bullet.

To verify this scenario, we investigate the formation
and evolution of LBs in an array with a much larger
diffraction length of LDiff(1550 nm) = 96 mm. Results are
depicted in Figs. 6(d)–6(f). After an initial phase of strong
pulse contraction, multiple solitary wave packets are excited,
which propagate, while slowly changing, until they decay.
The slow evolution is related to a continuous redshift and
subdispersive pulse broadening. The fragment is characterized
by a pulse-averaged diffraction length 〈LDiff〉 = 68.9 mm and
a dispersion length 〈LDisp〉 = 10.3 mm. Note that the ratio
of both lengths is consistent with Eq. (6). Both are much
shorter than the range of nonlinearly confined propagation.
Figure 6(d) depicts the experimental cross correlation trace
at z = 160 mm, which shows the nonlinearly confined wave
packet trailing a well-separated linearly diffracting under-
ground. The additional movie shows the evolution of the
XFROG trace in the simulation. One interesting point, which
can be observed in the movie, is that the most redshifted wave
packet is unchirped, as expected for a LB. When, however,
it starts to decay at z = 300 mm, an onset of linear-chirped
broadening is clearly visible by the clockwise tilt of the pulse
in the XFROG trace, consistent with the anomalous dispersion
at this wavelength.

The length of confined propagation LLB is approxi-
mately LLB ≈ 3.5〈LDiff〉 and LLB ≈ 25〈LDisp〉, roughly two
to three times longer than that for the previously investigated
LDiff(1550 nm) = 22 mm-sample, suggesting a scaling of ap-
proximately LLB/〈LDisp〉 ∼ c−1/2. This behavior is consistent
with the range of possible exponents derived from simple
scaling laws, as predicted in Appendix D, Eq. (D4).

Although this is proof that a reduction in the coupling
strength leads to an extension of the LB life span, this also
shows that the influence is weak, scaling much slower than
c−1 (see Appendix D). The ultimate limit to this scaling
behavior is the length scale LRand at which variations in the
waveguides lead to dephasing, and the linear propagation
starts to be dominated by Anderson localization [36,48,49,54].
We estimate this length to be on the order of not much more
than LRand = 1 m for our highly regular samples, limiting the
nonlinear propagation to roughly 10〈LDiff〉 or 100 〈LDisp〉.

Because any experimental system with nonlinear wave
propagation will inevitably experience a certain level of
redshift due to the noninstantaneous nonlinear response of
the medium and some linear and/or nonlinear losses, we
believe that the decay mechanism, which we have discussed,
is of very generic nature for nonlinear self-confined wave-
propagation phenomena. Thus, any LB in a real system will
have a finite lifetime, after which it will inevitably decay.
This mechanism can only be observed in high-dimensional
systems, being in sharp contrast to the situation in integrable
low-dimensional systems where infinite soliton propagation
is, in principle, possible. Nevertheless, the understanding of
the decay mechanism will greatly ease the development of
systems with longer lived LBs, which would either have to
experience less redshift or need to be designed to exhibit
less wavelength dependence of the dispersive properties to
withstand considerable redshift.

V. CONCLUSIONS

We have investigated nonlinear light propagation in arrays
of evanescently coupled fiber arrays. The linear properties
of the array have been carefully modeled to understand the
dispersive and diffractive characteristics. A family of station-
ary solutions, termed LBs, has been investigated numerically.
Important properties of this family have been thoroughly
discussed, among which are ranges of stable solutions, energy
and power thresholds, and a narrow window of possible pulse
widths, which lies in the range of a few optical cycles for the
properties of our experimental system. Keeping this finding in
mind, we have expanded our model to numerically describe
the propagation of such ultrashort excitations under the
influence of the wavelength dependence of the dispersion, the
interwaveguide coupling, and the noninstantaneous nonlinear
response of the medium.

The results of the numerical simulation are in excellent
agreement with various experiments in which we have used
a cross-correlation technique to sample the spatiotemporal
structure of the light field leaving the sample with a spatial
resolution in the range of micrometers and a temporal
resolution in the range of 60 fs, limited only by the pulse
duration of the pump laser. A further modification of the
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technique allows us to record spatiotemporal XFROG traces,
giving insight into the wavelength structure of our pulse.

We find that the propagation can be split into three distinct
regimes. In the first regime, the pulse undergoes strong
nonlinear contraction and eventually splits into fragments. In
the second regime, some of the fragments propagate nearly
unchanged for many dispersion lengths. Their shape corre-
sponds to the LB solutions of the simplified NLSE equation,
although the system is heavily perturbed by nonlinear and
linear effects of higher order. During this propagation, the wave
packets undergo continuous redshift under the influence of
the Raman effects, which forces the LBs to adapt to the
changing dispersive properties of the medium. Eventually, the
energy budget of the wave packet is insufficient to counteract
the increasing dispersion and diffraction strength at longer
wavelengths, and it decays quickly. We further argue that this
decay mechanism is of generic nature for the propagation
of solitary waves in higher-dimensional media, being only
weakly dependent on the strength of the discrete diffraction.

APPENDIX A: EXPERIMENTAL SETUP AND IMAGING
CROSS-CORRELATION SCHEME

The experimental setup is depicted in Fig. 3. The beam of
a Ti:sapphire amplifier emitting 60-fs pulses at λP = 800 nm
with a pulse energy of 0.6 mJ is split. Ninety percent is used to
pump an OPA, which, in turn, is emitting 170-fs pulses at λ0 =
1550 nm and a pulse energy of 50 μJ. These are attenuated
and are launched into the central core of a fiber array. The
pulse Esig(x,y,t) which is leaving the array, is imaged onto an
InGaAs camera, which is sensitive in this spectral region, and
on a 10-μm thin BBO crystal, which is cut and is oriented for
collinear broadband sum-frequency generation of light at λP

and λ0 ± 250 nm. The InGaAs camera is used to record the
time-averaged spatial profile of the wave packet at the end of
the sample IInGaAs(x,y) = ∫ |Esig(x,y,t)|2dt .

The signal is propagating through the BBO crystal
collinearly with the remaining 10% of the pump, which has a
beam diameter much larger than the pitch of the array’s image.
The relative delay between the pulses is tunable using a motion
stage with a relative resolution of �τ < 6 fs. The generated
sum-frequency field at λSF ≈ 527 nm can be approximated
by [43,44]

ISF(x,y,τ ) ∼
∫

|Esig(x,y,t)|2|Ep(t − τ )|2dt, (A1)

which means that the signal recorded by the CCD camera is
proportional to the intensity of the signal field convoluted with
the pump pulse at the time slice defined by the delay τ between
pump and pulse. Because the pump beam is roughly 60-fs long,
one essentially records the intensity of the signal field with this
resolution. Equation (A1) is valid under the assumptions of
(i) nondepletion of the signal and pump, verified by the fact
that the sum-frequency power is much lower then either signal
or pump, (ii) negligible effects of dispersion and walk-off
in the crystal, ensured by the small thickness of the crystal,
(iii) spatial homogeneousness of the pump pulse, ensured by
a large beam diameter, and (iv) a sufficiently broad range of
phase-matched wavelengths—in our case, a range of 500 nm.

The spatiotemporal imaging scheme can be augmented
further by placing interference filters with a bandwidth of
�λIF = 10 nm centered at λIF = 510 · · · 560 nm between the
BBO crystal and the CCD camera. After recording a series of
spatiotemporal intensity images, one for each filter, one gets
a spatiotemporal XFROG [55,56] trace ISF(x,y,τ,λ), where
λ−1 = −λ−1

P + λ−1
IF , giving full insight into the spatiotemporal

structure of the light field with a spectral resolution of

�λ = (λ/λIF)2�λIF ≈ 86 nm. (A2)

This resolution is not yet high enough for model-free
reconstruction of the spatiotemporal phase by means of
an XFROG algorithm. The spectral range of the XFROG
trace is limited by the bandwidth of the BBO crystal to
1350 nm < λ < 1870 nm. Nonetheless, even at low time-
frequency resolution, the XFROG setup allows a clear picture
of the essential features of the LB dynamics in the waveguide
array.

APPENDIX B: RECALL DISCRETE-CONTINUOUS LBS

Nonlinear evolution of light under the influence of the
Kerr nonlinearity in a waveguide array is usually described
in terms of the normalized discrete-continuous spatiotemporal
NLSE [19]. This description is simplified especially in the
femtosecond regime because it does not take higher-order
linear or nonlinear terms into account. Nevertheless, the
understanding of the solutions of this model is a great
conceptual tool for the interpretation of the experiments and
the results of the simulation of the full model discussed in
Appendix C. The normalized NLSE reads as

i
∂Anm(T ,Z)

∂Z
= ∂2Anm(T ,Z)

∂T 2
+ |Anm(T ,Z)|2Anm(T ,Z)

+An±1m(T ,Z) + Anm±1(T ,Z)

+An±1m±1(T ,Z), (B1)

where Z = cz is the normalized propagation length, T =
(c/β2)1/2t is the normalized time in the moving reference
frame, and Anm(T ) = (c/γ )1/2anm(t) is the normalized am-
plitude such that Pnm = |Anm|2is the power in the waveguide
denoted by the indices n and m normalized to its physical
counterpart p = c/γP . E = ∑

nm

∫
Pnmdt is the energy in

the array normalized to the physical energy e = (cβ2)/γE.
The nonlinear coefficient γ = 2πn2(λAeff)−1 of the array
depends on the nonlinear constant of the material, which is
n2 = 2.7 · 10−20 m2/W for silica [1], and the modal area is
Aeff = [

∫
dr⊥|e(r⊥)|2]2/

∫
dr⊥|e(r⊥)|4 which can be derived

from the shape of the Bloch modes |e(r⊥)| in the unit cell. The
indices n and m denote the index of the waveguide.

Properties of the family of stationary solutions Anm(Z) =
A(stat)

nm exp(ibZ) of Eq. (B1), depending on the nonlinearly
induced shift of the wave number b, are displayed in Fig. 2
and are discussed in Sec. II. The discrete approximation of
Eq. (B1) breaks down when the transversal structure of the
linear eigenmodes is considerably altered by the nonlinearity,
as discussed in Ref. [57]. bcrit can be estimated from the
relation to the peak power P , as seen in Fig. 2(d). Then,
the breakdown of Eq. (B1) is determined by the intensity
that leads to a nonlinear index modulation on the order of
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the geometrical index modulation �n, thus, �n = n2Icrit =
n2A

−1
eff cγ

−1Pcrit = cλ/(2π )Pcrit Therefore,

Pmax � Pcrit = �n
2π

λc
. (B2)

Inequality (B2) gives a value of Pmax � 150, which, for
values taken from Fig. 1 at λ = 1550 nm, translates into a
real-world peak power,

pmax � pcrit = �n
2π

λγ
, (B3)

which is roughly pmax � 6 MW. If compared to the power of a
purely spatial Townes soliton [58] pTownes = 5.32nλ(2πn2)−1

this yields a relation, between the two, of

α = pmax

pTownes
<

4π2�n · nAeff

10.6 λ2
. (B4)

For the values discussed here, we get α1550 nm ≈ 1.5 and
more for longer wavelengths due to the growth of Aeff . Thus,
the peak power of a LB can exceed the peak power of a
Townes soliton, which is due to the dispersion that additionally
has to be balanced by the nonlinearity. The breakdown of
Eq. (B1) is typically related to a destabilization of the solutions
as previously discussed in Refs. [19,57], thus, we find a
window of stable LBs.

APPENDIX C: EXTENDED EQUATIONS AND
NUMERICAL TREATMENT

One consequence of the upper temporal bound discussed
in Sec. II is that the realistic description of an experiment
involving LBs, which are on the scale of just a few optical
cycles and, thus, extremely broadband, Eq. (B1) is insufficient.
It needs to be refined to include the wavelength dependence of
the discrete coupling and the dispersion. The noninstantaneous
nature of the nonlinear response is addressed, including
the Raman- and self-steepening responses of the medium.
Furthermore, it does not make sense to apply the slowly
varying envelope approximation. A realistic model for the
propagation of such ultrashort pulses in nonlinear media is
the set of coupled unidirectional Maxwell equations described
in Ref. [38] augmented by the nonlinear noninstantaneous
response function of silica described in Ref. [1],

−isgn(ω)
∂

∂z
Enm(z,ω)

= [β(ω) − ωβ1]Enm(z,ω)

+ c(ω)
∑
n′m′

Cn′m′
nm En′m′(z,ω) + 4

3
γP NL

nm (z,ω),

P NL
nm (z,t) = Enm(z,t)

[
(1 − f )Enm(z,t)2 (C1)

+f

∫
Enm(z,t − t ′)2h(t ′)dt ′

]
,

h(t) =

⎧⎪⎨
⎪⎩

0, t <0,

τ 2
1 + τ 2

2

τ1τ
2
2

exp (−t/τ2) sin (t/τ1) , t � 0,

where Enm(z,ω) is the square root of the instantaneous optical
power of a given carrier frequency in the core denoted by
the index nm, β1 = dβ(ω)/dω|ω=ω0 is the inverse velocity of

the comoving reference frame, sgn(ω) is the sign function,
Cn′m′

nm is a matrix, which is either 1, if the cores denoted
by the indices nm and n′m′ are nearest neighbors, or is 0
otherwise. The nonlinear parameter γ is the same as in the last
section. P NL

nm (z,t) is the nonlinear response, evaluated in time
and includes the contribution from the Kerr and the Raman
effects. The quantitiesf = 0.22, τ1 = 12.2 fs, and τ2 = 32 fs
characterize the contribution of the delayed response, its
frequency shift, and its delay time, taken from tabulated data
in Ref. [1].

Equation (C1) is solved by a modified split-step Fourier
algorithm. The linear part is solved by transformation of
Enm(z,ω) into the eigenspace of the coupling matrix Cn′m′

nm .
The nonlinear contribution is included, with a fourth-order
Runge-Kutta scheme, where Enm(z,t) is acquired by Fourier
transformation of Enm(z,ω) and the convolution operation is
again carried out in Fourier space of Enm(z,t)2 Note that,
due to the reality of the electric fields Enm(z,t) ∈ R one only
calculates the Fourier components with positive frequencies
as Enm(z,ω) = E∗

nm(z, − ω)

APPENDIX D: SCALING OF PROPAGATION LENGTH

The length of self-confined propagation LLB is mainly de-
termined by the rate of Raman-redshift LLB ∼ [d�ω(z)/dz]−1

which depends on the LB’s width T0 and peak power P0 and can
be derived by treating the Raman contribution as a perturbation
to the solutions of Eq. (B1), with

∂Anm(t,z)

∂z
= Q(A) − iγ TR

(
A

∂|A|2
∂t

)
, (D1)

where Q(A) is the part of the equation given by Eq. (B1)
and A(b)

nm(t) = Anm(t,z) exp(ibz) are its stationary solutions,
which are assumed to vary locally around a given b0 such that
A(b)

nm(t) ≈ P
1/2
0 A(b0)

nm (t/T0) with a given scaling P0 = T
α(b0)

0
determined by the stationary solutions of Eq. (B1). Thus, the
local shape A(b)

nm does depend only weakly on b. Then, the
rate of self-induced frequency change can be determined by
plugging the ansatz Anm(t,z = 0) = A(b)

nm(t) exp[−i�ω(z)t]
into Eq. (D1), yielding

d�ω(z)

dz
= 2γ TRf (b) P0

T 2
0

, (D2)

where f (b) = ∑
nm

∫
x−1 [ A(b)

nm (x) ]3 A′(b)
nm (x) dx/

∑
nm∫

(A(b)
nm(x))2dx f (b) depends on the local shape of the LB

solution but does not explicitly contribute to the scaling of
LLB, which is LLB ∼ T 2

0 P −1
0 .

The ratio between these two quantities depends directly on
the local slope dimensionality [57],

dslope = 2

(
1 − b

E

dE

db

)
, (D3)

of the LB solution, which can be taken from the slope of
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Fig. 2(a) or Fig. 2(d). The stable branch of the LB solutions
extends from the turning point with dE/db = 0 and, thus,
dslope � 2 to peak power solutions, for which the spatial
dynamics is strong decoupled, yielding dslope � 1. These two
extremes yield P0 ∼ T −1

0 and P0 ∼ T −2
0 , respectively. If one

further takes into account that T0 ∼ c−1/2 [see Fig. 2(b)] and
measures LLB in units of LDisp, in turn, being proportional to

T 2
0 , it follows that

LLB

〈LDisp〉 ∼ c−q 1

2
< q < 1. (D4)

As a consequence, this proves that reduction of the coupling
strength will extend the LB lifetime but only does so at a very
moderate rate.
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