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Pulse buildup from noise and intrinsic polarization of plasma-based x-ray lasers
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The paper presents a theoretical analysis of the pulse buildup from the spontaneous noise level and variations
in the intrinsic polarization state of x-ray lasers, devices utilizing amplified spontaneous emission in a high-
gain medium. Maxwell-Bloch equations with incorporated randomness of spontaneous emission, atomic level
degeneracy, and time-dependent gain are used to describe the wave nature of the amplification process properly.
The dynamics of pulse growth and polarization variation are analyzed for the entire amplification process starting
from the initial state of random noise to the full saturation. It is shown that, within the used one-dimensional
model, the output pulse can be polarized to a substantial degree. These results provide the basic understanding
of x-ray lasers in a wave-optics perspective.
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I. INTRODUCTION

X-ray lasers (XRLs) based on laser-produced plasma have
evolved dramatically during the last decade. With the grazing
incidence pumping geometry [1], the pump energy was re-
duced to less than 1 J [2], and the output pulses were shortened
to nearly bandwidth-limited ones of a typical duration of about
5 ps [3]. Injection of high harmonics into XRLs realized
strong, fully coherent XRL output [4,5] with a prospect to get
a linearly polarized beam [6]. This progress was accompanied
by attempts to understand the underlying mechanisms of XRL
dynamics using numerical simulation. Most of the simulations
were performed using the Frantz-Nodvik model [7,8], that
is, rate equations of radiation intensity and atomic level
populations [9], which were extended in the kinetic part to take
into account complicated atomic level structure and various
atomic processes. The basic dynamics of amplification and
spatiotemporal formation of gain in typical situations were
understood well with such a treatment. However, the salient
wave properties such as polarization and coherence could not
be addressed at all since the rate equations ignore the phases
of radiation and medium polarization.

Maxwell-Bloch (MB) equations offer more comprehensive
formulation including the wave features as they describe
radiation as a classical field and matter as a quantum system
[10]. These equations have been used to describe XRL
dynamics, after being modified to include the elements relevant
to the lasing process: three-dimensional propagation and
coherence [11], radiation polarization and atomic level de-
generacy [12], statistical randomness of spontaneous emission
(SE) [13], pumping and decay processes typically described by
hydrodynamics simulation of laser-plasma interaction [13,14],
and nonadiabatic dynamics of medium response [15]. In fact,
no attempt was undertaken to implement all these aspects in
one model. This is probably due to the complexity of such an
attempt. However, getting a trade-off between the simplicity
and completeness of the physical description is worth a try.

In the present paper, we investigate, by solving numerically
the MB equations, the fundamental dynamics of pulse buildup
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and radiation polarization in XRLs including most of the ef-
fects mentioned earlier. The elements of the model describing
resonant interaction were incorporated in full detail while
those describing pulse propagation and gain formation were
treated in a simplified fashion but without losing the wave-
optics perspective and self-consistency of radiation-matter
interaction. The detailed formulation of the theoretical model
is given in Sec. II. In Sec. III, the main results obtained by
using the model are discussed: amplification of pulse energy,
dynamics of pulse buildup from the random noise of SE up
to a fully saturated signal, and origin of radiation polarization
of XRL pulses with an idea of experimental proof. A brief
summary and conclusion are given in Sec. IV.

II. THEORETICAL MODEL

To describe the generation process of an XRL pulse in
a reasonable way, without losing generality and any of the
crucial elementary effects, the treatment of spatial dimensions
and gain dynamics were simplified in some aspects: one-
dimensional propagation with uniform distribution in the
transverse plane was assumed, and spatiotemporally varying
gain and atomic decay processes were approximated by
an effective time-dependent gain and relevant constants,
respectively. Radiation polarization, atomic level degeneracy,
statistical randomness of SE, and nonadiabatic dynamics of
the medium response were incorporated in detail since these
determine the fundamental properties of the XRL output pulse.

The lasing transition 3d94d(1S0) – 3d94p(1P1) of nickel-
like silver (Ag+19) was selected for analysis due to the
abundant experimental reports about the lasing action with
this element [16–19]. Its transition wavelength is 13.9 nm, at
which high-quality x-ray optical elements are commercially
available. Figure 1(a) shows schematically the atomic energy
levels and sketches physical processes relevant to lasing.

A. Major kinetic processes in the active medium

According to the selection rules of the electric dipole
transitions, the resonant optical transition between the state
b and the state a−1 (alternatively, the state b and the state
a1) involves only the left-handed (right-handed) circular
polarization component of the radiation propagating along
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FIG. 1. (Color online) (a) Atomic energy level structure of and
physical processes in an Ag+19 ion relevant to Ag+19: 3d94d(1S0) –
3d94p(1P1) transition and (b) time-dependent gain of the medium.
LHC (RHC) refers to the left-handed (right-handed) circular polariza-
tion component of radiation. The upper level 3d94d(1S0) is denoted
by the letter b and the lower one 3d94p(1P1) by the letter a. The
different states of the degenerate lower level are distinguished by
their magnetic quantum numbers (m = −1,0,1). Various γ ’s refer to
the rates of the relaxation processes.

the z axis [Fig. 1(a)] [12]. Population of the upper level
[pumped at a rate of Rb(τ )] and relaxation of this population
are induced dominantly by inelastic electron-ion collisions
while a minor contribution to the depopulation (at a rate
of 3γse) comes from SE. The total depopulation rate of the
upper level is denoted by γb. In contrast, the depopulation
of the lower level (at a rate of γa) occurs dominantly via
fast radiative decay [20]. The population transfer among
the different states of the degenerate lower level (at a rate
of γpt) is due to elastic electron-ion collisions, which also
contribute to dephasing of atomic dipoles (at a rate of
γdp). Both level depopulation and atomic dipole dephasing
determine the decay of medium polarization. The medium
polarization decay rate γba is given by γba = (γb + γa)/2 + γdp

for homogeneous broadening [10]. This decay rate is related
to the homogeneously broadened linewidth by the formula
γba = π�νFWHM [21]. As a result of time-dependent pumping
and depopulation, the medium demonstrates time-dependent
gain [Fig. 1(b)] obtained from the hydrodynamics-atomic
physics simulation with the EHYBRID code [22]. The peak
small-signal-gain coefficient is equal to 70 cm−1, and the
temporal width [full width at half maximum (FWHM)] of
the gain is estimated to be 10.9 ps.

B. Maxwell-Bloch equations

A real laser pulse is amplified in a spatiotemporally
inhomogeneous medium with the parameters of relaxation
and pumping varying both in space and in time. In such a
case, a three-dimensional description is necessary to relate the
computational results closely to the experimental values. As
mentioned in the Introduction, we focused our attention on a
simplified description to make essential physical processes to
be also intuitively understood without losing the generality of
the treatment. It was assumed that the medium is uniformly
pumped in the ideal traveling-wave amplification scheme,
and the pulse, uniform in the xy plane (plane wave front),
propagates along the z axis. Hence, the spatiotemporal depen-
dence of various relaxation parameters can be neglected, and
variation of physical quantities is considered along only one
spatial dimension and in time. With these approximations, the

MB equations describing amplification process for the atomic
level scheme presented in Fig. 1 are given as follows:

∂Nb/∂τ = −γbNb + Im(PRE∗
R + PLE∗

L)/2 + Rb(τ ),

(1)

∂Na,−1/∂τ = −γaNa,−1 − Im(PLE∗
L)/2

+ γseNb + γpt(Na1 + Na0 − 2Na,−1), (2)

∂Na1/∂τ = −γaNa1 − Im(PRE∗
R)/2 + γseNb

+ γpt(−2Na1 + Na0 + Na,−1), (3)

∂Na0/∂τ = −γaNa0 + γseNb + γpt(Na1 − 2Na0 + Na,−1),

(4)

∂PL/∂τ = −γbaPL − iz2
ba[EL(Nb − Na,−1) + niρ1,−1ER]

+	L(Nb,τ ), (5)

∂PR/∂τ = −γbaPR − iz2
ba[ER(Nb − Na1) + niρ−1,1EL]

+	R(Nb,τ ), (6)

∂(niρ1,−1)/∂τ = −γ1,−1niρ1,−1 + i(P ∗
REL − PLE∗

R)/4,

(7)

∂EL/∂z = (i2πω0/c)
(
PL − neEL/ω2

0

)
, (8)

∂ER/∂z = (i2πω0/c)
(
PR − neER/ω2

0

)
, (9)

where N , P , and E refer to the population, complex amplitude
of medium polarization, and complex amplitude of the electric
field, respectively [23]. These variables are functions of
propagation distance z and of the reduced time τ = t − z/c.
The subscripts L and R refer to left-handed circular (LHC) and
right-handed circular (RHC) components of the beam polariza-
tion. The resonant frequency of the transition is denoted by ω0,
while ne and ni are electron and ion densities, respectively. The
dipole matrix element of the resonant transition is denoted by
zba. The complex random function 	 simulates the statistical
character of SE [13]. The off-diagonal density matrix element
ρ1,−1 of the states a1 and a−1 can be used as a measure of
atomic coherence [10,24]. Its relaxation rate γ1,−1 is given
by the formula γ1,−1 = γa + γdp, in analogy with the formula
for γba.

The formulated equations were solved self-consistently
[23]. Given an electric field at a fixed position, (1) through (7)
are solved to obtain material response to radiation, and then the
resulting medium polarization components are substituted into
(8) and (9). These give the electric field at the next position.
By repeating these steps, the spatiotemporal evolution of the
interacting radiation and matter are described properly. The
Runge-Kutta fourth-order algorithm was used for numerical
solutions.

The complex random function 	, emulating SE, is ex-
tremely spiky in time and cannot be properly expressed as
a numerical sequence [13]. However, when integrated over
short time interval (practically equal to the time step of the
Runge-Kutta algorithm), it can be treated as a Gaussian random
variable [25,26]. For the increment of medium polarization
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PL (PR) over one time step, the contribution from 	L (	R)
is given simply as the value of the random variable [27].
The amplitude and phase of the medium polarization change
randomly at every time step. A time step of 1 fs brought good
convergence of the numerical solutions. Considering that more
than 20 optical cycles of 13.9-nm radiation can reside within
an interval of 1 fs, the randomness of SE is actually emulated
by a sequence of wavelets of fixed duration and randomly
varying complex amplitudes.

C. Determination of pumping function and physical parameters

The pumping function and the physical parameters were
determined to match the medium parameter values known from
the experiment and numerical simulation. The hydrodynamics-
atomic physics code EHYBRID [22] was used to get Rb(τ ), γb,
γa , ne, and ni, the main parameters of the population kinetics.
Atomic structure code MCDFGME [28] was used to get the
SE rate γse and dipole matrix element zba. A typical value of
linewidth �λ/λ = 5 × 10−5 was used to calculate γba. The
dephasing rate γdp was calculated from γba, γb, and γa .

The population transfer rate among the states of the
degenerated lower level γpt was determined by noting that
both dipole dephasing and atomic disalignment (a measure
of the population imbalance between magnetic sublevels of
a level [29]) are caused by the elastic electron-ion collisions.
Given this, it seems reasonable to assume that the dephasing
rate γdp is equal to the disalignment rate γda, that is, γdp = γda

[29–31]. As the degree of the disalignment is proportional to
(Na1 − 2Na0 + Na,−1) [29,32], its decay rate γda is connected
to γpt by the relation γpt = γda/3 (consequently γpt = γdp/3),
which can be derived from the kinetic equations describing
the population transfer among Na1 , Na0 , and Na−1 . Some
authors used γpt calculated by applying the elastic electron-ion
collision frequency of an equilibrium plasma [32]. In this case,
γpt is much larger than γdp, which is inconsistent with the fact
that both dephasing and atomic disalignment are caused by the
elastic electron-ion collision.

The specific values of the parameters in the equa-
tions to be solved are as follows: h̄ω0 = 89.2 eV, γb =
2.6 × 1012 Hz, γa = 2.3 × 1012 Hz, ne = 2.0 × 1020 cm−3,
ni = 9.1 × 1015 cm−3, γse = 5.9 × 1010 Hz, zba = 0.274 a.u.,
γba = 3.4 × 1012 Hz, γ1,−1 = 3.3 × 1012 Hz, and γpt = 3.1 ×
1011 Hz. The beam cross section was assumed to be 400 μm2,
reasonably close to that of the experimentally observed
beams.

III. RESULTS AND DISCUSSION

A. Amplification of pulse energy

The growth of the pulse energy with the propagation length
exhibits the typical behavior of the amplified signal with a
transition from the exponential increase to the linear one
[16,18], as shown in Fig. 2. This rollover of the amplification
curve is due to the onset of saturation, and the peak position
of the second-order derivative of the curve can be used as
the mark for the onset [33]. In Fig. 2, the saturation onset
position is at z = 3.1 mm, at which the pulse energy is
33 nJ. A small-signal-gain coefficient of 55 cm−1, reasonably
consistent with the gain curve in Fig. 1(b) and the values

FIG. 2. (Color online) Pulse energy (solid line) its second-order
derivative (dashed line) vs propagation length. The energy values
were obtained by averaging the results from the 24 simulation runs
with different random sequences.

reported in experiment, has been obtained by fitting the
amplification curve between z = 0.1 mm and z = 2 mm to
an exponential function. The pulse energy reaches 590 nJ at
the end of the 5-mm-long medium.

B. Dynamics of pulse growth

The character of the pulse growth before saturation can
be understood by taking notice of negligible affecting of the
populations by the resonant interaction at this stage. In such
a case, the terms involving EL or ER in (1) through (4)
can be neglected, and, consequently, (1) through (4) can be
solved independently of (5) through (9). Then the population
inversions, �NL = Nb − Na,−1 and �NR = Nb − Na1, are
given as functions of z and τ . Under the assumption of spatially
uniform pumping, the dependence on z can be dropped
[Rb(z,τ ) = Rb(τ )], and �NL and �NR become the functions
of τ only. As the influence of electric fields in (7) is negligible
due to a low signal level, the density matrix element ρ1,−1,
initially equal to zero, also remains negligible. Then only (5),
(6), (8), and (9) remain to be solved, and among them (5) and
(8) describe only LHC components while (6) and (9) do only
RHC. This separation implies that LHC and RHC signals grow
independently of each other. The formal solution of either (5)
and (8) or (6) and (9) is given by

E(z,τ ) = i
2πω0

c

∫ z

0
dz′

∫ τ

0
dτ ′e−γba (τ−τ ′)

× [−iz2
baE(z′,τ ′)�N (τ ′) + 	(Nb(τ ′),τ ′)

]
, (10)

where the subscripts L and R are suppressed. The form of the
solution (10) let us conclude that the complex amplitude of
output radiation is a weighted sum of the contributions from
the net stimulated emission (E�N ) and SE (	) which have
occurred at previous position (z′) and at prior moment (τ ′),
with the weighting factor e−γba(τ−τ ′).

At the beginning of the medium (z = 0 mm), SE acts as a
random seed since the medium has no pre-existing radiation,
and as a result the pulse shape is very spiky, as shown
in Fig. 3(a). As the seed is amplified, the amplified signal
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FIG. 3. (Color online) Temporal pulse profile at various positions in the amplifying medium: (a) z = 0.1 mm, (b) z = 2 mm, (c) z = 3.1 mm,
and (d) z = 5 mm. The insets show the corresponding population inversions. IL (IR) refers to the intensity of the LHC (RHC), and �NL (�NR)
refers to the population inversion relevant to the amplification of the LHC (RHC); that is, �NL = Nb − Na,−1 (�NR = Nb − Na1). Note that
the intensity scale varies from figure to figure while the population scale remains the same.

surpasses quickly the level of the random SE seed and forms
a well-defined pulse, as shown in Fig. 3(b). The shape of the
pulse becomes smooth due to the spatiotemporal integration
described by (10) as the pulse propagates through the medium.
The LHC and the RHC intensities are independent of each
other because they have started from the uncorrelated seeds.
At this stage, the radiation is too weak to affect the medium
properties, and the population inversion, or equivalently gain,
shown in the insets of Figs. 3(a) and 3(b) differs hardly
from the gain in Fig. 1(b). The amplification is exponential
with propagation length, and the peak intensity grows from
2.0 × 102W/cm2 at z = 0.1 mm to 6.5 × 106W/cm2 at z =
2 mm.

As the radiation becomes strong enough to initiate satura-
tion, it starts to affect the level populations, and consequently
the gain of the medium becomes significantly modified as
shown in the inset of Fig. 3(c). The pulse shape is very smooth,
and both LHC and RHC wave components form single-peak
pulses with the maxima around the time τ = 10 ps because the
gain is the strongest in the vicinity of this time point. Although
the pulse components have started from the uncorrelated seeds,
the time-dependent gain and smoothening effect have brought

a shape similarity between them. The peak intensity at the
saturation onset point is 3.0 × 109W/cm2.

In a strongly saturated regime, the radiation noticeably
influences the medium state, and this gives a feedback to the
radiation. As a result, the Rabi oscillations of the population
inversions and the corresponding oscillations of the radiation
intensities are observed, as seen in Fig. 3(d). For each transition
connected with a specific polarization component of radiation,
the oscillations of population inversion and radiation intensity
are anticorrelated; that is, the maximum of one corresponds
to the minimum of the other. Moreover, the oscillations
of both contributing intensities are anticorrelated as well.
In both cases, anticorrelation occurs in space and time.
This effect is a signature of the repeated energy exchange
between radiation and medium. One can speak about the
competition between two polarization components (modes)
sharing a common upper laser level. To be more specific,
let us consider the situation where LHC intensity is stronger
than that of RHC at a given moment, but the population
inversions, �NL and �NR, are almost equal. In such a case,
�NL, related to the stronger radiation component, decreases
and begins to oscillate at the Rabi frequency corresponding
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to the instantaneous level of LHC intensity. Reduction in gain
of LHC is followed by reduction in the LHC intensity due
to absorption accompanying Rabi oscillations in saturation.
At the same time the weaker RHC sees stronger gain. This
promotes RHC intensity to the stronger component and the
procedure starts to be repeated but this time with �NR. The
population inversions on both transitions start to oscillate out
of phase. As a result, the LHC and RHC intensities also start
to oscillate out of phase. At z = 5 mm, the peak intensity is
3.0 × 1010W/cm2, and the pulse width (FWHM) is 5.2 ps,
close to a measured average value of 5 ps [3].

The question arises as to how the length of our pulse is
related to the reference given by a transform-limited pulse.
Having transformed the radiation spectrum, we obtained
the transform-limited pulse width of 1.3 ps (FWHM). In-
terestingly, if root-mean-square (rms) values were used to
characterize the lengths of the modeled and bandwidth-limited
pulses we obtained 2 and 1.7 ps, respectively. This differs
significantly from 5.2 ps, the FWHM value of the modeled
pulse. The deviation originates in the specific pulse shape. We
are quoting both values as a rms value is always consistent
with the uncertainty principle and constitutes the lower-bound
value independent of a specific pulse shape. FWHM is more
intuitive and practice-oriented value. The detailed analysis is
beyond the scope of this paper.

As saturation strongly modifies and determines the final
bandwith of the amplified radiation, we modeled the bandwith
or gain narrowing in the amplification process as a function
of the amplifier length. The plot is shown in Fig. 4. The most
striking feature is clearly visible slower bandwidth decreasing
in the very initial phase of the amplification. This is, we
believe, caused by a very weak and random spontaneous
signal. Such a behavior could contribute to explanation of the
major discrepancy between measured and modeled linewidths
in an XRL reported by Koch [34]. He obtained a significant
misfit over the first 18% of the length while the theory
and the experiment agreed perfectly within the medium
remainder. For the given parameter set and using the formula

FIG. 4. (Color online) Gain narrowing during the amplification
process shown as reduction in the bandwidth of the emitted radiation
vs the medium length. Note the lower reduction rate for the first
0.5 mm of the medium length.

FIG. 5. (Color online) Pulse width (rms value) of the output pulse
as a function of the gain lifetime (FWHM value) for two cases:
modeled output pulse (upper trace) and the transform-limited pulse
(lower trace). The medium length was assumed to be equal to 5 mm.

�ωa = �ω0
√

3/(G[dB] − 3) [35] we should expect narrowing
by about one order of magnitude as it was confirmed by
modeling.

To extend the applicable parameter set we modeled the
output pulse shape for different lifetimes of the gain, keeping
its peak value constant. It is expected for this type of laser that
the pulse length is dominantly determined by the gain lifetime
and is roughly proportional to this parameter (Fig. 5). This
results from the fact that the gain lifetime determines the area of
the gain medium from which radiation is effectively amplified.
The plot in Fig. 5, drawn for rms values, indicates that also
the bandwidth is strongly influenced by the gain dynamics
and the transform-limited pulse length increases with the gain
lengthening.

C. Polarization of radiation

As XRL pulses have their origin in SE that has a random
polarization, no significant degree of polarization is commonly
anticipated for XRL pulses. However, the modeling of the
amplification process conducted here implies that substantial
degree of polarization can be observed. Figure 4 shows varia-
tion of the degree of polarization (DOP) with the amplification
length. DOP is essentially the normalized correlation between
LHC and RHC [36]. For the propagation distance lower
than 2.8 mm, which is close to the saturation onset point at
z = 3.1 mm, DOP rises up to a high value of 0.85. Then it falls
monotonically down to a value of 0.66 at z = 5 mm.

The increase of DOP before z = 2 mm is a result of
time-dependent gain and spatiotemporal integration. As it was
shown earlier, the intensities of both LHC and RHC grow
mostly in the temporal region around τ = 10 ps, where the
gain is high, and their phase variations become moderate as the
pulses are amplified. Two such spatiotemporally overlapped
signals with moderate phase variation will have a high value of
correlation. It should be stressed that this correlation between
LHC and RHC appears not due to the atomic coherence
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FIG. 6. (Color online) Degree of polarization (solid line) and
degree of atomic coherence (dashed line) vs propagation length.
We define degree of atomic coherence as the maximum value of
ρ1,−1(z,τ )| at a fixed position. The plotted values were obtained
by averaging the results from the 24 simulation runs with different
random sequences.

between a−1 and a1 of the emitting medium but due to a
general character of amplification in the weak-field limit.
The atomic coherence, determining correlation between the
quantum states of interest, is induced by strong-field coherent
resonant interaction [10,23] and can be quantified by the
maximum value of |ρ1,−1(z,τ )|, which we termed the degree
of atomic coherence (DAC) between the states. When the
electric fields are weak, the medium polarization components
are proportional to the first order of the electric fields as
implied by (5) and (6). Then, the cross-coupling term in (7)
(P ∗

REL − PLE∗
R), which determines DAC, is proportional to

the second order of the electric fields and thus negligible.
Consequently, DAC keeps its initial value of zero. In Fig. 4,
DAC remains close to zero up to the position of z = 2 mm,
showing that the atomic coherence is negligible in the
region.

Saturation of DOP is achieved between z = 2 mm and
z = 3 mm, and after that DOP decreases monotonically. This
effect is counterintuitive because DAC increases exactly in this
region. The described situation suggests that the presence of
two coupled strong optical transitions increases correlation
between the states of the emitting medium and decreases
correlation between the states of the emitted radiation. This
situation is a consequence of anticorrelated oscillations of
LHC and RHC in the saturation regime. Generally, the
complex amplitudes (or phasors) EL and ER oscillate out
of phase (are anticorrelated). As a result, the ratio of both
components changes continuously with time and the condition
EL/ER = constant, necessary to get DOP = 1 (well-defined
polarization) [36], cannot be satisfied over the pulse duration.
As the radiation becomes more intense in further propagation,
more frequent variations of both components are developed
within the pulse duration, which leads to further decrease
in DOP.

The results presented above are obtained with a one-
dimensional propagation model, and, strictly speaking, they
describe the behavior of only a threadlike ray. The real

three-dimensional beam can be approximated as a bunch
of rays limited by the boundary conditions of the plasma
column. In the beginning, these rays are not correlated
because they are initiated by SE that has no spatial cor-
relation. However, they diverge in the transverse direction
and are coupled by overlapping; the transverse component
of Laplacian, ∂2/∂x2 + ∂2/∂y2, of the wave equation is the
coupling term. As a result, a beam of finite but relatively
small cross-section can behave as a single ray. According to
the results given above, such a narrow XRL beam can be
distinctly polarized. The diameter of the part with well-defined
polarization should be comparable to the spatial coherence
length of the source because the coupling by divergence
also induces spatial coherence. The specific polarization
state would vary randomly from pulse to pulse, and further
complication can be induced by the inhomogeneity of the
medium, e.g., spatiotemporal dependence of the gain and
refractive index.

The experimental observation of polarized XRL could be
facilitated in the double-target setup [37], where the XRL
pulse generated from the first target is injected as a seed into
the second target. If the distance between the two targets is
sufficiently long, the XRL pulse from the first target is spatially
filtered by the limited cross-section of the second target and a
beam consisting of the correlated rays can be obtained. Once
the seed pulse is substantially polarized and sufficiently strong,
the output pulse from the second target becomes polarized
more strongly.

IV. CONCLUSION

We have analyzed the dynamics of XRLs in the wave-optics
perspective by solving modified nonadiabatic MB equations.
Three clearly distinguished phases of the process were iden-
tified: initiation from random SE, exponential amplification,
and finally saturation. The underlying physics of the processes
occurring in all these phases was explained in terms of
the semicalssical model of radiation interaction with matter.
Good agreement between the modeled output pulse shape
and that recorded in experiment confirms correctness of
the model. Furthermore, polarization of XRL radiation, a
typical wave feature, was investigated, and the possibility
of a reasonable DOP was numerically demonstrated along
with a proposal for the experimental verification of the
result. These results provide a fundamental understanding
of x-ray lasing processes, which have become important
as sources of strong coherent ultrashort x rays for various
applications.
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