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Models of the delayed nonlinear Raman response in diatomic gases
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We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining
computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for
broadband pulses, heavy molecules such as O2 and N2, and typical atmospheric temperatures, the initial delayed
response requires only classical physics. The linear kinetic Green’s function is derived from the Boltzmann
equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward
perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic
theory a reduced fluid model of the diatomic gas’ orientation is derived. Transport coefficients are introduced to
model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model
provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions
predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted
as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.
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I. INTRODUCTION

In the presence of a laser electric field the electron clouds
of atoms comprising a molecule become deformed. The
deformation provides an induced electrical dipole moment,
through which the laser pulse acts to provide a net force
and/or torque on the molecule with associated potential
V = − 1

2p
⇀ · E

⇀
, where p is the induced dipole moment and

E
⇀

the laser electric field. The molecule undergoes both an
instantaneous and delayed response in the electric field of the
laser pulse. The instantaneous response results from the laser-
induced separation between the electron cloud and nucleus of
the atoms within the molecule. The delayed response involves
the rotation of the molecular axes and occurs over a longer
time scale due to the molecular inertia. The cross attraction
between the electron clouds and nuclei on opposite sides of the
molecule results in a torque which aligns the molecules along
the laser polarization axis. In the case of a linear molecule (such
as a diatomic molecule) the applied potential takes the form

VL(θ,t) = − 1
4 [α⊥ + �α cos2 θ ]| ⇀

E(t)|2, (1)

where
⇀

E is now the electric field amplitude of the laser,
polarized along the vertical axis in Fig. 1, �α = α‖ − α⊥,
α‖ and α⊥ are the parallel and perpendicular molecular
polarizabilities respectively defined with respect to the
symmetry axis of the molecule, which makes an angle θ with
respect to the electric field, and V (θ,t) has been cycle averaged.

The delayed molecular alignment induced by the
laser electric field results in a polarization current [1],
⇀
P = ρ[α⊥ + �α〈cos2 θ〉] �E, where ρ is the number den-
sity of molecules and the pointy brackets represent an
ensemble average over all molecules (or in a quantum
mechanical description an average over the angle dependent
wave function). The polarization current feeds back onto the
laser pulse affecting propagation. Defining χ ≡ 4πρα⊥ and
	(

⇀

x,t :
⇀

E) = ρ�α〈cos2 θ〉, the propagation of the laser obeys
the wave equation[

∇2 ⇀

E − 1

c2

∂2

∂t2
(1 + χ )

⇀

E

]
= 4π

c2

∂2

∂t2
	(

⇀

x,t :
⇀

E)
⇀

E. (2)

As seen from Eq. (1), 	 is a function of
⇀

E, which can
result in self-focusing of the laser pulse [2–5] and potentially
filamentation. Filamentation occurs when a defect on the phase
front of the laser pulse causes different transverse locations
of the laser pulse to focus at different positions due to the
differential polarization current. The higher intensity regions
of the pulse (the filaments) have an extended focal length, while
the low-intensity regions diffract. As a result, the high-intensity
regions can propagate over distances much longer than a
Rayleigh range. However, if the high-intensity regions focus
too strongly, the intensity can reach the ionization threshold
of the air, causing enhanced diffraction. This potential for
propagating laser pulses over long distances in atmosphere has
led to several investigations into filamentation, both theoretical
and experimental [5–10].

For accurate simulations of laser propagation over long
distances, accurate models of the delayed molecular response
are critical. First-principle models of the molecular response
involve quantum-mechanical density-matrix theory in which
the diatomic molecule is treated as quantum rotor with discrete
rotational frequencies. In fact, the density-matrix theories
were successful in predicting the rotational revivals associated
with diatomic molecules, a strictly quantum-mechanical effect
[1,11–16]. However, the computational requirements of a
full density-matrix theory make iterated density-matrix, laser-
propagation simulations impractical with current computing
capabilities. This is exacerbated by the interest in propagation
over distances of meters to kilometers in atmosphere [17,18].
In particular, at every point in space, a ∼�4

max calculation
must be done, where �max is the maximum rotational quantum
number excited. For broadband or high-intensity pulses, �max

can be quite large. As we will see, however, broadband pulses
are where classical treatments are the most accurate.

Several authors have considered the classical response
of a diatomic gas and comparisons to quantum-mechanical
theory [19–24]. Khodorkovsky and Gershnabel and Averbukh
present a classical and quantum comparison of molecules
in strong laser fields and weak laser fields, respectively
[23,24], but stop short of full analytic calculations of the
time-dependent classical response function, both linearly
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FIG. 1. (Color online) Coordinate system for molecular align-
ment. The vertical axis represents the polarization axis of the
polarizing laser pulse.

and nonlinearly. Khodorkovsky does present full nonlinear
Monte Carlo calculations. Monte Carlo methods, however,
are not computationally ideal, as they would require separate
calculations for each point in space and time along a laser
pulse’s propagation path. M. S. Child presents a semiclassical
rotational model utilizing Sommerfeld quantization but does
not examine thermal effects or the correspondence with
a full classical theory [20]. Finally, Iñarrea et al. present
a single molecule analysis of the classical rovibrational
trajectories in a laser field, but do not consider ensemble
effects [22].

Here we present full kinetic calculations of the time-
dependent response of a diatomic gas and derive an an-
alytic expression for the linear Green’s function from the
Boltzmann equation. A simplified method for determining the
full nonlinear impulse response is also presented from which
we find an analytic expression for the second-order polarizabil-
ity. With the kinetic equations we derive a set of fluid equations
which include phase mixing through transport coefficients,
following the procedure popularized in plasma physics by
Hammet et al. [25,26]. For calculating the molecular response,
the fluid equations offer a computational savings of ∼�3

max/N ,
where N is a numerical factor on the order of ten, over the
full density-matrix calculation. The fluid model also provides
intuition by casting the problem in terms of the familiar macro-
scopic quantities of density, momentum flow, temperature, and
heat.

An estimate of the circumstances under which the quantum
and classical descriptions of the molecules’ rotation should
correspond is given as follows. First it is required that the
typical quantum state involved be high order. Specifically,
we require �th 
 1, where �th is the total angular momentum
quantum number for a thermal molecule, defined by T = E� =
h̄�� = h̄�0�th(�th + 1), where E0 = h̄�0 are the ground state
energy and �0 the ground state frequency. Second, the corre-
spondence will apply only for times shorter than the Heisen-
berg time: tH ≡ 2π/(��th+1 − ��th ) � 2π/(2�th�0). For times
longer than tH the discreteness of the energy spectrum cannot
be ignored and the recurrences in the response of the molecules
occur. For nitrogen at room temperature we find �th ∼ 10 and
tH ∼ 0.84 ps.

This paper is organized as follows. In Sec. II we describe the
single-molecule trajectories in field-free conditions and the full
nonlinear trajectory in an impulsive laser field. After the single
molecule analysis, we derive the fully kinetic linear response
function and Green’s function for the molecular ensemble,
and a simplified nonlinear approach for obtaining the impulse
response to all orders. In Sec. III, we derive the fluid moments
and determine which closures are required to accurately model
the kinetic phase mixing of the diatomic gas and nonlinear
effects. At the end of Sec. III, we examine the time asymptotic
behavior of fluid response. In Sec. IV we present our
conclusions.

II. KINETIC RESPONSE MODEL

A. Classical diatomic molecule

We begin by considering the motion of a classical rigid
body. The body consists of two masses connected by a rigid
rod. Each mass represents an atom in the diatomic molecule.
Our classical molecule has three translational degrees of
freedom and two rotational degrees of freedom. The moment of
inertia around the molecular axis, the axis parallel to the rigid
rod, is much smaller than the moment of inertia around the
perpendicular axis and is neglected. The field free Hamiltonian
can then be written as

H =
⇀

pK · ⇀

pK

2m
+ p2

θ

2I
+ p2

φ

2I sin2 θ
, (3)

where I is the moment of inertia,
⇀

pK is the translational
momentum (configuration space momentum), and pθ = Iωθ

and pφ = Iωφ sin2 θ are the rotational momenta in the plane
of the vertical axis and around the vertical axis, respectively.
Here ωθ = θ̇ and ωφ = φ̇ are the rotational frequencies
associated with the momenta. The Hamiltonian has no explicit
dependence on time or φ and thus both H and pφ are constants
of motion. The geometry of the rotor is depicted in Fig. 1.

We assume the laser intensity is uniform in space so that
the applied potential does not couple the translational degrees
of freedom, and we only need consider the rotational Hamil-
tonian. We define K as the kinetic energy in configuration
space, K ≡ ⇀

pK · ⇀

pK/2m, and R as the rotational Hamiltonian,
R ≡ H − K:

p2
θ + p2

φ

sin2 θ
= 2IR. (4)

The field free orbits can be solved for exactly. After
integrating Hamilton’s equations that follow from Eq. (4), we
find

cos θ = 1
2 (1 − �θ,0) cos[θ0 − ωRt]

+ 1
2 (1 + �θ,0) cos[θ0 + ωRt], (5)

where θ0 = θ (t0), �θ,0 = ωθ,0/ωR , and ωR ≡ (2R/I )1/2. We
note that |�θ,0| � 1. Equation (5) demonstrates that the motion
is completely characterized by the constants of motion and the
initial conditions.
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B. Classical molecular trajectory in an impulsive laser pulse

If the duration of the laser pulse is much shorter than the
response time of the molecules the torque may be treated
as an impulse. In this case, the full nonlinear molecular
trajectory can be determined. The impulsive torque imparted
by the polarizing field will result in a jump discontinuity
in the momentum, pθ , of the molecule while keeping the
angular precession continuous in time. We write the rotational
Hamiltonian as follows:

p2
θ + p2

φ

sin2 θ
− 1

2Iσ [α⊥ + �α cos2 θ ]E2
0δ(t − tI ) = 2IR,

(6)

where σ is the time constant associated with the impulse
and tI is the time at which the impulse occurs. From
the equations of motion we obtain the relation ωθ,>(tI ) =
ωθ,<(tI ) − 1

4σ�αE2
0 sin[2θI ], where the subscripts < and >

distinguish the trajectory before and after the impulse, re-
spectively, and θI = θ<(tI ) = θ>(tI ). Both before and after
the impulse the molecule follows its field-free trajectory. For
t < tI the trajectory evolves as described by Eq. (5). For t � tI
we have

cos θ> = 1
2 (1 − �θ,I ) cos[θI − ωR(t − tI )]

+ 1
2 (1 + �θ,I ) cos[θI + ωR(t − tI )], (7)

where �θ,I = ωθ,>(tI )/ωR . The polarizing impulse modifies
the rotational frequency of the molecules based on their
angular orientation at the moment of the impulse. In particular,
molecules get pushed toward the pole to which they are closest
providing an overall aligning of the diatomic gas.

C. Ensemble of classical diatomic molecules

We now consider the phase space evolution of a distribution
of classical molecules. The four-dimensional phase space is
defined by the variables θ , pθ , φ, and pφ . The evolution
of the distribution function is governed by the collisionless
Boltzmann equation[

∂

∂t
+

⇀

p

I
· −→∇ − −→∇ V (θ,t) · −→∇ p

]
f (θ,φ,pθ ,pφ,t) = 0, (8)

where
⇀

p · −→∇ ≡ pθ∂θ + (sin−2 θ )pφ∂φ and ∇p ≡ θ̂ (∂/∂pθ ) +
φ̂(∂/∂pφ). If there is no external potential, the only condition
on the distribution function is (

⇀

p · ∇ − ∇IVeff · ∇p)f = 0,
where θ̂ · ∇Veff = −p2

φ cos θ/I sin3 θ is the effective torque
due to the explicit θ dependence of the Hamiltonian. The
thermal distribution in the absence of an external potential
is then

f (θ,pθ ,pφ) = 1

8π2IT
exp

[
− p2

θ

2IT
− p2

φ

2IT sin2 θ

]
, (9)

where the equilibrium density, n0, is defined to be (sin θ )−1∫
f (θ,pθ ,pφ)dpθdpφ = 1/4π and

∫
f (θ,pθ ,pφ)dθdφ

dpθdpφ = 1.

D. Classical, kinetic linear polarizability

We first consider the linear response of the diatomic gas to
the applied potential. The distribution function is written as
the sum of an equilibrium and response contribution

f (θ,φ,pθ ,pφ,t) = f0(θ,pθ ,pφ) + δf (θ,φ,pθ ,pφ,t). (10)

Inserting Eq. (10) into Eq. (8) and linearizing we find

d

dt
δf = −→∇ VL(θ,t) · −→∇ pf0. (11)

From Eq. (11), we see that the component of potential pro-
portional to the perpendicular polarizability will not contribute

to the evolution of the perturbed potential:
−→∇ α⊥| ⇀

E|2 = 0. As
a result we do not consider this component of the distribution
function when evaluating the linear response.

Noting that
−→∇ IVL · −→∇ p = (

⇀

p · −→∇ VL)∂R and (dt −
∂t )IVL = ⇀

p · −→∇ VL, Eq. (11) can be integrated to provide

δf (θ,t) = VL(θ,t)
∂f0

∂R
−

∫ t

−∞
dt ′

[
∂

∂t ′
VL(θ,t ′)

]
∂f0

∂R
, (12)

where we have used δf (θ,t → −∞) = 0. The first term
represents the adiabatic response of the diatomic gas to the
applied potential, which we denote δfA ≡ VL∂Rf0. This is the
only contribution to the perturbed distribution function for
time-independent applied potentials. The second term, which
we denote δfNA, represents the nonlocal time response of
the distribution function to the applied potential and includes
the contributions of the individual orbits for the diatomic
molecules.

Evaluating fNA requires integrating the equilibrium orbits
through the first-order potential. In other words, we perform
an ensemble average of all initial conditions that end at the
angle θ at time t . Upon expressing | ⇀

E(t)|2 in the frequency
domain, which we denote with a “hat,” and inserting Eq. (5)
for cos2 θ , we write δfNA(θ,t) as follows:

δfNA = −i
�α

8

∫ 0

−∞

∫ [
cos θ cos(ωRζ ) −

(
pθ

IωR

)
× sin θ sin(ωRζ )

]2

|̂ ⇀

E|
2

e−iω(ζ+t) ∂f0

∂R
dω2dζ, (13)

where ζ is now a dummy integration variable and the inner
integration is over all frequencies. Performing the integral over
ζ , we have

δfNA = −�α cos2 θ

4T
f0

×
∫ [

ω2 + A(θ )ω − B(θ )

ω2 − 4ω2
R

]
|̂ ⇀

E|
2

e−iωtdω, (14)

where A(θ )=2i(pθ/I ) tan θ , B(θ )=2[ω2
R + (pθ/I )2 tan2 θ ],

and we have used the fact that ∂Rf0= − f0/T .
To find the perturbation on the dielectric response of the

gas, we need to multiply Eq. (14) by cos2 θ and integrate
over phase space. Before integrating we transform variables
from pθ to ωR . In particular pθ = I (ω2

R − p2
φ/I 2 sin2 θ )1/2sR ,

sR ≡ sgn(ωR), dpθ = (I 2ωR/pθ )dωR , and we define ωT =
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FIG. 2. (Color online) Comparison of the classical theory in red
(dashed) with a full quantum-mechanical density-matrix calculation
in black (solid). In (a) nitrogen is considered while in (b) oxygen is
considered.

(2T/I )1/2. Upon integrating over pφ , φ, and θ , we find the
nonadiabatic, nonlinear polarizability as follows:

	NA = −4π2Iρ(�α)2

5ω2
T

∫ ∫
sRωR

[
1 + 4

3

(
ω2

R

ω2 − 4ω2
R

)]
× |̂ ⇀

E|
2

e−iωtf0(ωR)dωdωR, (15a)

wheref0(ωR) = (8π2IT )−1 exp[−ω2
R/ω2

T ]. Similarly, one can
show that the adiabatic response is

	A = 2

5

πρ(�α)2

Iω2
T

| ⇀

E(t)|2, (15b)

which cancels the first term within square brackets Eq. (15a).
From here on, we consider the total polarizability 	T = 	A +
	NA.

Equation (15) is in the form of a product of Fourier
transforms, thus by considering an impulse for | ⇀

E(t)|2, we
can obtain the linear time domain Green’s function, G, for
the molecular response: 	T (t) = ∫G(t − t ′)| ⇀

E(t ′)|2dt ′. From
Eq. (15a) we find the Green’s function in the frequency domain
to be

G(�) = −g0

∫
sR

(
�3

R

�2 − 4�2
R

)
e−�2

Rd�R, (16a)

while in the time domain

G(τ ) = g0

2

∫
sR�2

R sin(�Rτ )e−�2
Rd�R, (16b)

where we have defined � = ω/ωT , �R = ωR/ωT , τ = 2ωT t ,
and g0 = 8πρ(�α)2/15Iω2

T . Equations (16) demonstrate that
the shape of classical linear response depends on only one
parameter: ωT . Performing the integration over �R we find

G(τ ) = g0

4

[
τ + π1/2

(
1 − τ 2

2

)
e−τ 2/4erfi

(τ

2

)]
, (17)

where erfi is the imaginary error function. In Appendix A, we
examine limits of Eq. (16a).

Figures 2(a) and 2(b) show a comparison of 	1 =
ωT σE2

0G(τ ) with the full quantum mechanical result obtained
by solving for the evolution of the density matrix (details of
the quantum mechanical calculation can be found in Ref. [15])
for N2 and O2 respectively. Here we use a laser pulse intensity
of I = 1 × 1012 W/cm2, duration σ = 20 fs, and T = 294 K.

FIG. 3. (Color online) Comparison of the classical theory in red
(dashed) with a full quantum-mechanical density-matrix calculation
in black (solid) for nitrogen at T = 20 K and T = 100 K.

The results are almost exactly identical, implying that the
dominant quantum effect is that of rotational recurrences. For
lower temperatures we may expect the classical and quantum
response functions to diverge. In particular, when the thermal
energy approaches the fundamental rotational eigenfrequen-
cies, T ∼ 4πch̄B, where B is the rotation constant, only a few
states are populated in equilibrium and the discrete nature of
the rotational eigenstates become important. As an example,
we consider nitrogen at T = 20 K and T = 100 K. Figure 3
shows a comparison of the classical response function with
the density-matrix calculation. From Fig. 3 it is clear that
the accuracy of the classical model relies on the number of
states populated. The condition T ∼ 4πch̄B also depends
on the rotational constant, which is inversely proportional
to the moment of inertia: For nitrogen B � 1.99 cm−1, for
oxygen B � 1.44 cm−1, while for hydrogen B � 59.3 cm−1.
The response of diatomic gases such as hydrogen, which have
less inertia, exhibit quantum properties at higher temperatures.
Figure 4 shows a comparison of 	1 = ωT σE2

0G(τ ) with
the density-matrix calculation for hydrogen at T = 294 K.
Clearly, our classical model is insufficient for modeling the
initial response of hydrogen gas at atmospheric temperatures.
Furthermore, for times approaching a quarter of the recurrence
period T ∼ 1/8cB, the presence of quantum recurrences can
affect the polarizability, and the classical model is no longer
applicable.

FIG. 4. (Color online) Comparison of the classical theory in red
(dashed) with a full quantum-mechanical density-matrix calculation
in black (solid) for hydrogen at T = 294 K.
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E. Classical, kinetic nonlinear polarizability

As demonstrated in Sec. II B above, the nonlinear molecular
trajectories can be determined when the polarizing field takes
the form of an impulse. This allows us to write an expression
for the full nonlinear response to the impulsive field for which
a simple Taylor expansion provides the response at each order
in |E|2. Right after the impulse the distribution can be written
as

f (θI ,pθI ,pφ)

= 1

8π2IT
exp

[
− (pθI − A sin 2θI )2

2IT
− p2

φ

2IT sin2 θI

]
,

(18)

where the subscript I denotes quantities just after the impulse
and A = 1

4Iσ�αE2
0 . Because the Hamiltonian phase space

volume is conserved f (θI ,pθI ,pφI )dPI = f (θ,pθ ,pφ)dP,
where dP = dθdφdpθdpφ , and 〈cos2 θ〉 can be written as
an integral over phase space quantities immediately after the
impulse as follows:

〈cos2 θ〉 =
∫ [

cos θI cos(ωRt) −
(

pθI

IωR

)
sin θI sin(ωRt)

]2

× f (θI ,pθI ,pφI )dPI . (19)

Upon transforming from pφ to ωR using pφ = sRI (ω2
R −

p2
θ /I

2)1/2 sin θ and dpφ = (I 2ωR sin2 θ/pφ)dωR the integral
over pθI and φ can be performed. The resulting expression can
then be Taylor expanded to any order desired in the parameter
A ∝ E2

0 . Writing 	 = ∑
i 	i , we find, as expected, to lowest

order 	0 = 4π
3 ρ�α and 	1 = ωT σE2

0G(τ ), where G(τ ) is
given in Eq. (17). To next order in E2

0 we find the following:

	2 = 1

210
π3/2ρ�α

(
σ�αE2

0

IωT

)2

τe−τ 2/4erfi
(τ

2

)
. (20)

Equation (20) has the interesting property that it does
not phase mix to zero as τ → ∞. Thus, at second order,
the laser pulse leaves behind a steady-state alignment in
the diatomic gas with a time asymptotic polarizability of
	2 = πρ�α(σ�αE2

0/IωT )2/105.
Figure 5 shows a comparison of the fully nonlinear

quantum-mechanical treatment with the classical analytic
expressions for the first- and second-order polarizability of
nitrogen derived above: 	1 + 	2. The first-order classical re-
sponse is also plotted for reference. For these calculations, we
considered a laser pulse intensity of I = 1 × 1014 W/cm2, du-
ration σ = 20 fs, and T = 294 K. The inset shows a zoomed-in
region of the response detailing the steady-state alignment left
behind by the pulse before the quarter recurrence. Again the
results are almost identical. The second-order polarizability
is clearly sufficient for capturing the full response up to
intensities of 1 × 1014 W/cm2. This is particularly remarkable:
Beyond these intensities, we reach the ionization threshold
for nitrogen, ∼2 × 1014 W/cm2 [27] and thus higher order
treatments may be unnecessary for propagation simulations in
which both molecular alignment and ionization play a role.

FIG. 5. (Color online) Comparison of the fully nonlinear quantum
theory in black (solid) and the first- and second-order classical theory
in red (dashed) for nitrogen at T = 294 K. The fist-order classical
theory is plotted for reference in gray (thin line). The inset shows
a zoomed-in region detailing the constant offset in the molecular
alignment.

III. FLUID RESPONSE MODEL

While evaluation of the linear Green’s function in ki-
netic theory is tractable, full nonlinear treatments can
become cumbersome due to the four-dimensional phase
space. Here we derive a set of fluid equations for describ-
ing the evolution of the macroscopic rotation frequency
by taking moments of Eq. (8), which simplifies nonlin-
ear calculations of the response. In particular, we define

the following: n = (sin θ )−1 ∫ d
⇀

pf , n
⇀

P = (sin θ )−1 ∫ ⇀

pd
⇀

pf ,
�θθ = ∫(pθ − Pθ )2d

⇀

pf , �φφ = (sin θ )−2 ∫(pφ − Pφ)2d
⇀

pf,

and �θφ = (sin θ )−1 ∫(pθ − Pθ )(pφ − Pφ)d
⇀

pf , which repre-
sent the density, momentum density, and three elements of the
pressure tensor (�θφ = �φθ ) in molecular orientation space.
We note that, in general, the pressure can be anisotropic,
corresponding to a distribution function that is not separable in
momentum, which provides the off-diagonal elements, �θφ .
The potential due to the laser pulse is independent of φ, and
any derivative with respect to φ can be ignored. The resulting
fluid equations are then

∂n

∂t
+ −→∇ ·

(
θ̂n

Pθ

I

)
= 0, (21a)

d

dt
Pθ = 1

In sin θ

[
cot θ�φφ − ∂�θθ

∂θ

]
+ cot θ

I sin2 θ
P 2

φ − ∂

∂θ
V, (21b)

d

dt
Pφ = − 1

In

−→∇ · �θφ, (21c)

where dt = ∂t + (Pθ/I )∂θ and
−→∇ · θ̂ = (sin θ )−1∂θ sin θ . The

absence of convection in φ and the conservation of Pφ up
to the anisotropic pressure are results of the potential being
independent of φ. If Pφ and �θφ start as zero, they will remain
so for all time.

When the applied potential is independent of time, corre-
sponding to an infinitely long laser pulse, and the tempera-
ture is uniform, Bernoulli-like steady-state equations can be
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derived using the ideal gas law, �θθ = �φφ = nT sin θ ,
namely,

α = nPθ sin θ, (22a)

β = 1

2

[
P 2

θ

I
+ Iω2

T loge(n)

]
+ V, (22b)

where α and β are independent of θ and we have taken
Pφ = �θφ = 0. Any isothermal equilibrium of the system
must satisfy Eqs. (22a) and (22b). The most straightforward
equilibrium is that for which V = 0, n = (4π )−1, and Pθ = 0.
In the presence of a potential and with Pθ = 0 the equilibrium
density is n = n0 exp[−2V/Iω2

T ], where n0 is the density
where the potential is zero.

A. Fluid linear polarizability

To obtain the polarizability from the fluid theory we must
evaluate the quantity 〈cos2 θ〉 = ∫ n(θ ) sin θ cos2 θdθdφ. The
diatomic gas starts in the equilibrium with V = 0, n = (4π )−1,
and Pθ = 0 and is perturbed by the presence of the laser
pulse. We denote the first-order perturbations as n1 and Pθ,1.
Using the equation of state (EOS) closures �φφ = cφ sin θnα

and �θθ = cθ sin θnγ , where the cφ and cθ are constants, the
linearized versions of Eqs. (15a) and (15b) can be expressed
as the following second-order differential equation:[

∂2

∂θ2
+ A cot θ

∂

∂θ
− (2 − A)

1

sin2 θ
− 2

γω2
T

∂2

∂t2
+ (1 − A)

]
×Pθ,1 = I�α

2γω2
T

sin 2θ
∂

∂t
| ⇀

E(t)|2, (23a)

where A = γ + (1 − α)/γ . For the special case of A =
1, Eq. (23a) simplifies to the driven, modified Legendre
differential equation[

L2 − 2

ω2
T

∂2

∂t2

]
Pθ,1 = I�α

2ω2
T

sin 2θ
∂

∂t
| ⇀

E(t)|2, (23b)

where we have defined L2 = ∂2
θ + cot θ∂θ − sin−2 θ . The

situation of A = 1 corresponds to the condition that γ =
1
2 [1 + (5 − 4α)1/2], and thus the only integer solution is
α = γ = 1 corresponding to an isothermal EOS, T = const.
The general solution to Eq. (23b) can be expressed as
Pθ,1(θ,t) = ∑

� P�(t)M1
� (cos θ ), where M1

� is the modified
Legendre polynomial (we use M for the Legendre polynomials
as opposed to the traditional P to distinguish the momentum).
The exact solutions for the momentum and density are then

Pθ,1(θ,t) = −i
I�α

4
sin 2θ

∫
ω

ω2 − 3ω2
T

|̂ ⇀

E|
2

e−iωtdω, (24a)

n1(θ,t) = − �α

16π
[1 + 3 cos 2θ ]

∫
1

ω2 − 3ω2
T

|̂ ⇀

E|
2

e−iωtdω.

(24b)

As in the previous section, we look for the impulse response
to determine the Green’s function for which we find

G(�) = −g0

[
1

�2 − 3

]
, (25a)

G(τ ) = g0√
3

sin

[√
3

2
τ

]
. (25b)

We note that for large � and small τ the fluid and
kinetic Green’s functions are identical. However, for large
τ the fluid Green’s function does not damp away due to
phase mixing like the kinetic Green’s function. This is not
surprising as momentum space phase mixing is a strictly
kinetic phenomenon.

B. Phase mixing in fluid response

Because the lack of phase mixing can diminish the utility
of a pure fluid treatment, we follow the technique outlined
by Hammett et al. for including phase mixing [25,26]. The
general procedure involves choosing a closure to the fluid
equations that damps away any initial perturbation. The
transport coefficients associated with the closure are found by
fitting the damping to the kinetic result to ensure similar time
behavior. The type of closure introduced determines which
conservation laws apply. For instance, including a diffusion
closure

↔
� = n

↔
T − (ν/I )

−→∇ ⇀

P to the angular momentum equa-
tion would conserve momentum but not energy.

Previous work using the two-pole approximation for the re-
sponse function [10,28] can be expressed within the formalism
of fluid closures. In particular, the two-pole approximation is
equivalent to adding a viscosity, ν, to Eq. (21b) and allowing
for variation in the “natural” frequency

√
3ωT . In the original

method described by Hammett et al. ν is an integral operator
representing a convolution with respect to the spatial variable.
However, for the polarizing field of the laser pulse, the spatial
form of the potential is known and thus only one spatial mode
need be considered. As a result, ν is simply an algebraic
coefficient. Specifically, Eqs. (21b), (25a), and (25b) take the
form

d

dt
Pθ = ν

12πn
L2Pθ + 1

In sin θ

×
[

cot θ�φφ − ∂�θθ

∂θ

]
− ∂

∂θ
V, (26a)

G(�) = −g0

[
1

�2 + 2i�ν̂ − 3

]
, (26b)

G(τ ) = g0
sin

(
1
2 ω̂T ντ

)
ω̂T ν

e
− 1

2 ν̂τ
, (26c)

where ν is the rate of momentum loss associated with
viscosity, ν̂ = ν/ωT , and ω̂T ν = (3 − ν̂2)1/2. We note that the
kinematic viscosity is given by ν/12πn. The value of ν is
typically determined by fitting Eq. (26c) to experimental data
or a full quantum-mechanical density-matrix calculation. It
is clear that Eq. (26b) does not preserve the zero-frequency
limit of the kinetic Green’s function. However, matching the
low-frequency limits of Eq. (26b) to Eq. (A3) is not required
to ensure similarity of the fluid and kinetic response functions
in the time domain. Because the response is damped for large
times, matching the zero-frequency behavior is not critical. On
the other hand, the small time (large frequency limit) limit of
Eq. (26c) is independent of ν but still has the same functional
behavior as Eq. (16a). A clear difference of the fluid response
function is that the imaginary component drops as �−3 for
large frequencies, whereas the kinetic response drops much
more rapidly.
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FIG. 6. (Color online) Comparison of the fully nonlinear quantum
theory in black (solid) and the two-moment fluid response with
viscosity in green (dashed) for nitrogen at T = 294 K.

The value of ν can be chosen in a variety of ways to
match features of the kinetic response in either the time
or frequency domain. In general, choice of the transport
coefficient ν depends on the problem being solved. For short
laser pulses, matching the initial behavior of the response
is critical, while for long pulses matching the total integral
of the response function may be important. Here we focus
on capturing time domain features of the response function
by finding the minimum with respect to ν of the integral
I (ν) = ∫[Gk(t) − Gf (ν,t)]2dt , where the subscripts k and f

refer to the kinetic and fluid responses, respectively. In other
words, we look for the least-squares fit with the parameter
ν̂. With the least-squares fit we find that ν̂ = 0.95; thus, the
viscosity is similar to the thermal time scale. The results for
a laser pulse with an intensity of I = 1 × 1012 W/cm2 and
duration σ = 20 fs in nitrogen at T = 294 K are shown in
Fig. 6. While the fit is reasonable, it is not as accurate as
desired and we next examine how to improve upon the fluid
model by introducing additional fluid moments and transport
coefficients.

C. Pressure equations

The traditional two-pole approximation presented above
provides a reasonable fit to the kinetic response, but inclusion
of more fluid moments can provide better approximations to
the kinetic response function. Hammett et al. achieved a close
representation of the kinetic response function of a plasma
with four fluid moments. Here we follow a similar procedure
and examine how our approximation of the kinetic response
improves as we include additional moments. The inclusion
of additional moment equations increases the maximum order
of the pole approximation. For instance, adding the pressure
equations allows a three-pole approximation, adding the heat
flux equation allows for a four-pole approximation, etc. In
addition, using a closure relation at higher moments can
ensure conservation of the intuitive macroscopic quantities
of momentum and energy. As we will see, inclusion of
the pressure equation is necessary to capture the nonlinear
behavior of the kinetic response as it involves conservation of
energy.

We first define the heat flux moments as follows:
Qθθθ = ∫(pθ − Pθ )3d

⇀

pf , Qφφθ = (sin θ )−2 ∫(pφ − Pφ)2

(pθ − Pθ )d
⇀

pf , Qφφφ = (sin θ )−3 ∫(pφ − Pφ)3d
⇀

pf , and
Qφθθ = (sin θ )−1 ∫(pφ − Pφ)(pθ − Pθ )2d

⇀

pf . We then
rewrite the elements of the pressure tensor in terms
of temperature, �ab = nTab sin θ, and the heat flux as
Qabc = Inqabc sin θ . While the general equations for
the temperature elements can be quite complicated (as
shown in Appendix B), here we consider the situation of
Tθφ = Pφ = qφθθ = qφφφ = 0. This situation is equivalent
to disallowing off-diagonal elements of the pressure tensor
to develop and is consistent with the conservation of Pφ .
The equations for the temperature take the form

d

dt
Tθ = −2

I
Tθ

∂Pθ

∂θ
− ν

6πIn
PθL

2Pθ

− 1

n

−→∇ · (θ̂nqθθθ ) + 2 cot θqφφθ , (27a)

d

dt
Tφ = −2

I
TφPθ cot θ − 1

n sin2 θ

−→∇ · (θ̂nqφφθ sin2 θ ).

(27b)

From here on we use the shorthand qφ = qφφθ and qθ =
qθθθ since we are only interested in these two elements of the
heat flux tensor. If the heat flux is identically zero, one can show
that the linear temperature perturbations can be expressed as
Tθ,1 = T̂θ,1(t) cos 2θ and Tφ,1 = T̂θ,1(t) cos2 θ , implying that
both temperatures have the same time dependence but different
spatial dependence.

There are several choices for the heat flux closure, each
of which will result in a different relationship between Tθ

and Tφ . Here we focus on one closure and note that the
response functions resulting from other closures are only
trivially different. We consider another closure in Appendix C
and show that the resulting response functions are only trivially
different. We choose closures on qθ and qφ of the form

1

n

−→∇ · (θ̂nqθ ) − 2 cot θqφ

= −μ

4

∂2Tθ

∂θ2
− �

2I
Tθ

∂Pθ

∂θ
+ ς

12n

∂2n

∂θ2
, (28a)

1

n sin2 θ

−→∇ · (θ̂nqφ sin2 θ )

= 1

4
cot θ

∂

∂θ

[
μ

4

∂2Tθ

∂θ2
+ �

2I
Tθ

∂Pθ

∂θ
− ς

12n

∂2n

∂θ2

]
.

(28b)

The terms on the right-hand side of Eq. (28a) can be inter-
preted as thermal conduction, modifications to the adiabaticity,
and modifications to the compressibility of the diatomic fluid.
The utility of these closures is demonstrated below. For now
we note that μ, � , and ς need not be independent.

We write the first-order quantities as n1 = n̂1(t)(1 +
3 cos 2θ ), Pθ,1 = P̂θ,1(t) sin 2θ , Tθ,1 = T̂θ,1(t) cos 2θ, and
Tφ,1 = T̂θ,1(t) cos2 θ . Upon linearing Eqs. (27a) we have the
following:

∂

∂t
T̂θ,1 = −(4 − � )

T0

I
P̂θ,1 − μT̂θ,1 + 4πςn̂1,θ . (29)
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The resulting response function is

G(�) = −g0

[
� + iμ̂

�3 + i�2(2ν̂ + μ̂) − �
(
2μ̂ν̂ − 5

4� + 8
) − i

(
3μ̂ + 5

2 ς̂
)]

, (30)

where μ̂ = μ/ωT and ς̂ = ς/ω3
T . For μ̂,ς̂ = 0 and � = 4

[which eliminates the first term in Eq. (29)] we recover
Eq. (26b). From Eq. (30) it is clear that the parameter �

provides the freedom to choose the “natural” frequency of the
mode. There are, however, constraints on how the transport
coefficients can be chosen. The response function in the time
domain must be damped as a function of time; thus, all the
roots of the denominator in the Eq. (30) must be complex with
negative imaginary components. Given this condition, one can
show that the denominator in Eq. (30) has two possibilities
for the set of three roots: � = [ω1−iν1,−ω1−iν1,−iν2] or
� = [−iν1,−iν2,−iν3]. Furthermore, the physical argument
that thermal conduction and compressibility must be diffusive:
μ,ς > 0, precludes the second set of roots above. Fortuitously,
the first choice of roots has more correspondence with the
response function found in Sec. III B. We see in the next section
that a nonzero value of the coefficient ς can lead to unphysical
equilibria and time asymptotic behavior; thus, we choose to
set it to zero.

We can rewrite Eq. (30) using our choice of root set as

G(�) = −g0

[
−iν̂2

(
1 − 1

3 ω̂2
1

)
ν̂2

2 + ω̂2
1 − 2ν̂1ν̂2

]

×
[

� + i�

�2 + 2iν̂1� − ω̂2
1

− 1

� + iν̂2

]
, (31a)

where � = ω̂2
1(1 + 1

3 ν̂2
2 − 2

3 ν̂1ν̂2)/ν̂2(1 − 1
3 ω̂2

1), and ω̂1, ν̂1,
and ν̂2 are related to the transport coefficients via the equa-
tions: μ̂ = 1

3 ω̂2
1ν̂2, 2ν̂ + μ̂ = 2ν̂1 + ν̂2, and 2ν̂μ̂ + 8 − 5

4� =
2ν̂1ν̂2 + ω̂2

1. The variables ω̂1, ν̂1, and ν̂2 will be chosen
to match the kinetic response function in the time domain.
Rewriting Eq. (31a) in the time domain we have the following:

G(τ ) = −g0

[
ν̂2

(
1 − 1

3 ω̂2
1

)
ν̂2

2 + ω̂2
1 − 2ν̂1ν̂2

] [ (
� − ν̂1

ω̂1

)
sin

(
1
2 ω̂1τ

)
× e

− 1
2 ν̂1τ + cos

(
1
2 ω̂1τ

)
e
− 1

2 ν̂1τ − e
− 1

2 ν̂2τ

]
. (31b)

As with the two-moment model, we use the method of
nonlinear least squares to find the values of ω̂1, ν̂1, and ν̂2. The

process involves minimizing the integral I (
⇀

R) = ∫[Gk(t) −
Gf (

⇀

X,t)]2dt , where the elements of the vector
⇀

X are ω̂1,
ν̂1, and ν̂2. From the values of ω̂1 = 2.37, ν̂1 = 1.27, and

ν̂2 = 3.28 that minimize I (
⇀

R), we find μ̂ = 6.16, � = −6.45,
and ν̂ = −0.17. While a negative value of viscosity may seem
strange, it provides a linearly stable solution. The stability of
the response is determined by the roots of the denominator of
Eq. (30), not the value of the transport coefficients. Figure 7
shows the results for the same laser parameters and temperature
used in Fig. 6. The fluid response function matches the
quantum response function quite well. By including the heat

flux equations we could improve upon this result, but this will
be considered in subsequent publications.

D. Nonlinear time asymptotic behavior

In the previous section we found that adding the pressure
moment with additional transport coefficients provided a
simple way to model kinetic phase mixing. In addition to
providing an accurate response function, the pressure moment
also provides energy conservation. A result of this is a
steady-state alignment, as found in the quantum and classical
kinetic calculations. Here we consider the time asymptotic
behavior of the second-order quantities after the presence of
the polarizing impulse. The second-order equations are driven
by terms involving products of the first-order quantities, which
damp away due to phase mixing. Furthermore, the effect
of phase mixing should eliminate any macroscopic flow in
the system: Directed energy imparted by the polarizing field
is converted to thermal energy. In particular, we can write
the conservation of energy after passage of the laser pulse
as ∫ n(Tθθ + Tφφ + P 2

θ /I )dV = const. At first order one can
show that ∫[n0(Tθ,1 + Tφ,1)dV = 0; thus, there is no global
gain in thermal energy at first order, and a second-order
treatment is necessary for energy conservation.

For long times, the equations for the second-order quantities
reduce to the following:

ς
∂2n2

∂θ2
− 3μ

4π

∂2Tθ,2

∂θ2
= 0, (32a)

∂Tθ,2

∂θ
+ (Tθ,2 − Tφ,2) cot θ + 4πT0

∂n2

∂θ
= 0. (32b)

Equation (32a) guarantees the heat flux is eliminated in
equilibrium while Eq. (32b) is the steady-state equation for
momentum density. The transport coefficient ς allows a
gradient in Tθ,2 in equilibrium. As shown in Appendix D,
this is an unconventional equilibrium; thus, we continue
considering the situation of ς = 0. Multiplying Eq. (32b)

FIG. 7. (Color online) Comparison of the fully nonlinear quantum
theory in black (solid) and the three-moment fluid response in green
(dashed) for nitrogen at T = 294 K.
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by 1
3 cot θ cos2 θ and integrating by parts the asymptotic

second-order polarizability is

	2 = 2πρ�α

3T0

∫
(Tθ,2 − Tφ,2) cos2 θ sin θdθ, (33)

where we have used that n is symmetric about θ = π/2
and 4πn2(θ = 0) = − 1

2T0
∫(Tθ,2 − Tφ,2) cos θ cot θdθ [found

by multiplying Eq. (30b) by cos θ ]. Equation (33) demonstrates
that a modified steady-state polarizability requires Tθ,2 �= Tφ,2.
In terms of kinetic theory, this implies the distribution function
is not just a function of the Hamiltonian, but also has
dependence on the constant of motion pφ (see Appendix D).

Upon using the condition of energy conservation,
∫ I (Tθ,2 + Tφ,2)t→∞dV � ∫(P 2

θ,1)t=0dV , and writing Tφ,2 =
Tθ,2 − Tθ,2 sin2 θ we find

Tθ,2(t → ∞) = T0

20

(
σ�αE2

0

IωT

)2

. (34)

With Eqs. (33) and (34) the time asymptotic second-order
polarizability can be calculated, for which we find

	2(t → ∞) = πρ�α

(
2

225

) (
σ�αE2

0

IωT

)2

, (35)

nearly the same value found from the kinetic theory.

IV. SUMMARY AND CONCLUSIONS

We have considered the delayed response of a diatomic gas
to an ultrashort laser pulse using both classical kinetic and
fluid theory. A classical kinetic model was developed for the
evolution of the molecular distribution function in the presence
of a polarizing laser pulse. An analytic expression was derived
for the linear response function. For heavy molecules such as
nitrogen and oxygen at atmospheric temperatures, the analytic
expression was shown to be in excellent agreement with full
quantum-mechanical density calculations of the molecular
response before the quarter recurrence time.

For impulse laser pulses we formulated a fully nonlinear
approach for determining the response function to any desired
order in the electric field strength. Using this approach,
we derived an analytic expression for the second-order
polarizability. The classical expression for the polarizability
including the second-order correction was again in excellent
agreement with the full quantum-mechanical calculations.
An interesting effect of the second-order polarizability was
a modified steady-state alignment after passage of the laser
pulse. We concluded that the second-order polarizability was
sufficient as the differences between the nonlinear quantum
calculation and the classical kinetic theory were negligible up
to the intensity threshold for ionization.

From the Boltzmann equation used for the classical kinetic
theory, we derived fluid moment equations. In doing so, we
lost the ability to capture the phase mixing of the molecular
gas. To model phase mixing with fluid equations, we used
the approach of Hammett et al. [25,26] previously considered
in plasma physics. The method involves defining a closure
for the fluid equations with transport coefficients that provide
linear damping. The linear damping provides the same physical
result as phase mixing. We considered this approach for both a

two-moment model (continuity and momentum) and a three-
moment model (continuity, momentum, and energy). The
transport coefficients were found using nonlinear least squares
on the linear fluid time domain response and the quantum-
mechanical response. The results for the three-moment model
were in good agreement.

Aside from providing an accurate response function, the
three-moment model also provides energy conservation. In
the absence of net equilibrium momentum, the kinetic energy
is proportional to the square of the first-order momentum.
Thus, to consider energy conservation, we had to consider
the fluid equations at second order in the laser intensity.
While energy conservation was necessary to capture the
modified steady-state alignment at second order, it was not
sufficient. The steady-state alignment required an anisotropic
temperature. We showed that not only was the temperature
anisotropic but the φ component of the temperature was a
function of θ in the modified equilibrium.

The main result of the paper was to derive a computationally
expedient model for determining the molecular response. In
the linear kinetic case this was done by determining the Green’s
function of the gas: For any pulse shape the response of
the gas can be determined through a convolution in time.
The convolution, however, is an expensive operation ∼N2

t ,
where Nt is the number of numerical time steps and cannot
capture nonlinear effects. The fluid equations provide an
efficient method for determining the response. The linear time
domain response is completely separable with respect to time,
and thus a convolution only requires ∼Nt operations. For the
nonlinear response, a system of four coupled first-order partial
differential equations must be solved.
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APPENDIX A: LIMITS OF THE KINETIC
RESPONSE FUNCTION

In Sec. II C, we derived the kinetic response function of the
molecular gas to the perturbing potential. Here we examine
properties of this function. We begin by considering the small
argument limit, for zero frequency we have

G(0) = 1
4g0. (A1)

One can show that G(�) satisfies the differential equation[
�

d2

d�2
+ (�2 − 1)

d

d�
+ 1

4
�3

]
G = −1

8
g0�; (A2)

however, d2
�G has a logarithmic divergence as � → 0;

thus, the Frobenius method is not an option for determin-
ing the low-frequency behavior. One can write an alterna-
tive low-frequency expansion of the form G(�) = ∑

[αn +
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βn loge(�)]�n, for which we find the first few coefficients to
be

G(�) = 1

4
g0

[
1 + iπs�

(
�

2

)2

e−�2/4 − 1

4
�2 loge |�|

+ 1

16
�4 loge |�| − 3

64
�4 · · ·

]
. (A3)

In the large argument limit we can simply Taylor expand
the denominator of Eq. (16a) to find

G(�) = 1

4
g0

[
iπs�

(
�

2

)2

e−�2/4−
∑
n=1

	(n+1)

(
2

�

)2n
]

,

(A4)

where 	 is the 	 function and s� represents the sign of �.

APPENDIX B: GENERAL TEMPERATURE EQUATIONS

In Sec. III, we introduce simplified versions of the temper-
ature equations. The general equations before simplification
are shown below:

d

dt
Tθ = −2

Tθ

I

∂Pθ

∂θ
+ 4

I

cot θ

sin θ
PφTθφ − ν

6πIn
PθL

2Pθ

+ 2 cot θqφφθ − 1

n

−→∇ · (θ̂nqθθθ ), (B1)

d

dt
Tφ = −2TφPθ cot θ − 2Tθφ

I sin θ

∂Pφ

∂θ

− 1

n sin2 θ

−→∇ · (θ̂nqφφθ sin2 θ ), (B2)

d

dt
Tθφ = −Tθφ

I

∂Pθ

∂θ
− TθφPθ

I
cot θ + 2

I

cot θ

sin θ
TφPφ

− ν

6πIn
PφL2Pθ − Tθ

I sin θ

∂Pφ

∂θ
− 1

n sin θ

×−→∇ · (θ̂nqφθθ sin θ ) + cot θqφφφ. (B3)

APPENDIX C: ANOTHER CLOSURE CHOICE
FOR THE HEAT FLUX

In Sec. III we considered a closure that resulted in Tθ,1

and Tφ,1 having the same temporal dependence but different
spatial dependence. Here we consider an additional closure on
qφ that allows for different time dependence of Tθ,1 and Tφ,1

as follows:
1

n sin2 θ

−→∇ · (θ̂nqφ sin2 θ )

= −μ

4

∂2Tθ

∂θ2
− �

2I
Tθ

∂Pθ

∂θ
+ ς

12n

∂2n

∂θ2
. (C1)

We write the first-order temperatures as Tθ,1 =
T̂θ,1(t) cos 2θ and Tφ,1 = T̂θ,1(t) cos2 θ + δT̂ (t) sin2 θ , where
δT̂ represents the difference in time dependence between
Tφ,1 and Tθ,1. From the linearized equations for continuity,
momentum density, and temperature we have

∂

∂t
δT̂ = −�

T0

I
P̂θ,1 + μT̂θ,1 − 4πςn̂1,θ , (C2)

where the equation for T̂θ,1 is Eq. (29). Equations (C2) and (29)
are different due to the first term in Eq. (27b) not contributing
to the evolution of δT̂ , implying that T̂θ,1 and T̂φ,1 do not
have identical time dependence. Although Eqs. (C1) and (30)
are different, the resulting response function is surprisingly
similar:

G(�) = −g0

[
� + iμ̂

�3 + i�2(2ν̂ + μ̂) − �(2μ̂ν̂ − � + 9) + i(5μ̂ + 2ς̂ )

]
. (C3)

The similarity between Eqs. (C1) and (30) indicates that the
linear response function is insensitive to the closure chosen.

APPENDIX D: KINETIC EQUILIBRIA

Here we discuss kinetic equilibrium and show that Tθ has no
gradient for conventional equilibria. This is the primary justifi-
cation for setting the transport coefficient ς = 0 in Sec. III. As
discussed in Sec. II the equilibrium distribution function must
satisfy the equation (

⇀

p · −→∇ − −→∇ IVeff · −→∇ p)f = 0, where
θ̂ · ∇Veff = −p2

φ cos θ/I sin3 θ . The most general solution to
this equation is f = f (R,pφ), which is a function only
of the constants of motion. Equation (9) is one such solution.
Taking the pressure moments of Eq. (9), one can show that
Tθ = Tφ , where both are independent of angle. In Sec. III, we
also showed that in order for a laser pulse to leave behind

a modified equilibrium polarizability Tθ �= Tφ . The simplest
equilibrium distribution function allowing this is

f ∝ exp

[
− 1

2IT

(
p2

θ + p2
φ

sin2 θ

)
− δ

p2
φ

2IT

]
, (D1)

for which Tθ = T is independent of θ , and δ parametrizes the
difference between Tθ and Tφ . Because there is no first-order
correction to the equilibrium (all first-order quantities phase
mix away) δ must be a quartic function of the laser pulse’s
electric field: δ ∼ (�α)2σ 2E4

0 . Upon taking the moment
�φφ = sin−2 θ ∫p2

φf d
⇀

p/ ∫ f d
⇀

p we have

Tφ − Tθ = −δTθ

sin2 θ

1 + δ sin2 θ
; (D2)

thus, equilibrium differences between the temperatures are a
result of even orders in the perturbation expansion. Noting that
the modifications to the temperature are also proportional to
δ, we can write Tθ,2 ∼ δT0; thus, Tφ,2 − Tθ,2 = −δT0 sin2 θ .
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