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An analytic solution for a uniaxial spherical resonator is presented using the method of Debye potentials. This
serves as a starting point for the calculation of whispering gallery modes (WGMs) in such a resonator. Suitable
approximations for the radial functions are discussed in order to best characterize WGMs. The characteristic
equation and its asymptotic expansion for the anisotropic case is also discussed, and an analytic formula with a
precision of the order O[ν−1] is also given. Our careful treatment of both boundary conditions and asymptotic
expansions makes the present work a particularly suitable platform for a quantum theory of whispering gallery
resonators.
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I. INTRODUCTION

London’s St. Paul’s Cathedral is famous for its rich history
and architecture; one of the most unique aspects of this building
is the whispering gallery that runs along the interior wall of
its dome [1]. When sounds are uttered in low voice against the
wall, sound waves generated circulate around the wall many
times before fading away. As these waves propagate, they bring
with them sounds that are audible on the opposite side of the
dome. On the contrary, if the same sounds are uttered at higher
volume, the frequencies of these sound waves will not match
and a lot of noise is created, making the message difficult to
be heard at any part of the wall.

The physical explanation of this effect was first given
more than a century ago in terms of reflection of acoustic
rays from a surface near the dome apex. It was initially
assumed that the rays that propagate along different large arcs
of the dome in the form of a hemisphere should concentrate
only at the point diametrically opposite to the source of the
sound. Afterwards lord Rayleigh, in his theory of sound [2],
provided a different explanation of the effect that he named
whispering gallery waves: sound clutches to the wall surface
and creeps along it without diverging as fast as during the
free space propagation—these sound waves then propagate
within a narrow layer adjacent to the wall surface. It was
then discovered, at the beginning of the last century, that
optical whispering gallery waves can exist even in dielectric
spheres [3,4]. An optical resonator that shows this particular
wave structure was then called a whispering gallery resonator
(WGR). In recent times whispering gallery waves have found
new fame with the development of nano-optics, in particular
with the ability to manufacture spherical and toroidal WGRs
with very high quality factors that range from 107 to 1010 [5–7].
This motivated a large theoretical and experimental work
around these devices (see, for example, Refs. [8–11], and
references therein). The ability to store light in microscopic
spatial volumes for long periods of time (due to the high
Q factor) resulted in a significant enhancement of nonlinear
interactions of various kinds like four-wave mixing [12,13],
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Raman [14], parametric and Brillouin scattering [11,15],
microwave up-conversion [16], and second- and third-order
harmonic generation [17–19]. Besides the field of nonlinear
optics, WGRs were recently used even for cavity QED exper-
iments [20,21]. For an exhaustive review on the applications
of WGRs, see Ref. [22].

Since many of the applications of these resonators involve
nonlinear optics, WGRs are commonly fabricated using
nonlinear materials or anisotropic crystals [11]. Despite the
wide scientific production in the theory of anisotropic spherical
resonators that ranges from generalization of scattering meth-
ods [23–26], potential method [27], dyadic Green-function
approach [28], and Fourier-based analysis [29], and even
though an extensive study of isotropic WGRs was done in the
past [30], detailed studies on anisotropic WGRs are still very
few. To the knowledge of the authors, anisotropic WGRs are
mainly reported in literature as studied with finite-difference
time-domain (FDTD) models [31,32], cavity loading [33], and
direct solution of Maxwell’s equation with a surface nonlinear
polarization as a forcing term [10].

In this work, we intend to develop a suitable analytic theory
for WGRs, starting from a review of the solutions of Maxwell’s
equations in a uniaxial spherical resonator, then presenting and
discussing its mode structure in the limit of small anisotropy,
and finally obtaining the spectrum of whispering gallery modes
sustained by the resonator and their structure, discussing how
anisotropy influences those modes. A detailed discussion on
the application of boundary conditions to this resonator is
also presented, pointing out how to apply correctly these
conditions and discussing some of their basic features that, to
the knowledge of the authors, is not present in earlier works.
It is the opinion of the authors that this discussion is important
in order to better understand the physics behind this problem.
This is the first main result of this work. Finally, we introduce a
more accurate approximation for the field outside the resonator
when the index of the Hankel function tends to infinity, as
we noticed that the commonly used power expansion (as, for
example, the one presented in Ref. [30]) does not match the
exact function completely, i.e., it has an additional phase factor
with respect to the real function. Such a phase factor becomes
relevant when field amplitude, as opposed to field intensity,
turns out to be fundamental. This happens, for example, when
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one wants to quantize the electromagnetic field inside the
resonator, as required for a proper treatment of spontaneous
emissions processes. Thus the present work may serve as a
basis for a quantum theory of WGRs. This is the second main
result of this work.

This paper is organized as follows: in Sec. II the Debye
method of potentials for solving Maxwell’s equations is briefly
presented and then used in Sec. III to develop the theory of an
anisotropic spherical resonator for a dielectric uniaxial sphere.
In Sec. IV, whispering gallery modes (WGMs) are obtained
as a limiting case of the normal modes of the dielectric sphere
with high quantum numbers, and their spectrum is discussed.

II. ISOTROPIC SOLUTIONS

A. Solution to Maxwell’s equations in spherical coordinates

Let us consider a monochromatic field with a harmonic
time dependence [i.e., �E(�x,t) = �E(�x)e−iωt ] in an isotropic
sourceless spherical dielectric medium characterized by a
dielectric constant ε, a radius R, and surrounded by air. The set
of Maxwell’s equations in spherical coordinates can be written
in the following compact form:

∂

∂ζn

(LmEm) − ∂

∂ζm

(LnEn) = −ikεlnmLnLmHl, (1a)

∂

∂ζn

(LmHm) − ∂

∂ζm

(LnHn) = ikεlnmLnLmEl, (1b)

where {l,n,m} ∈ {1,2,3}, ζm are the spherical coordinates
(ζ1 = ϕ, ζ2 = θ and ζ3 = r), Lm are the metric coefficients of
the spherical reference frame (L1 = r sin θ , L2 = r , L3 = 1),
and εlnm is the Levi-Civita symbol. For the sake of simplicity,
let us fix our attention on TM waves (i.e., those having
Hr = 0); the calculations for TE waves can be straightforward
obtained by analogy.

By introducing the TM potential U , the solution to Eqs. (1)
can be easily found with the standard method of Debye
potentials [34] and reads

Uint/ext
nm (r,θ,ϕ) = Cint/ext

√
krZν(kr)Ynm(θ,ϕ), (2)

where ν = n + 1/2, n,m are the angular quantum numbers
that address the single mode of the resonator, Zν(kr) is the
radial Bessel-type function that is equal to the Bessel function
Jν(kr) inside the dielectric sphere (where the solution has to
be finite at the origin), and is equal to the Hankel function of
the first kind H (1)

ν (k0r) outside the dielectric sphere, where the
solution has the general form of a traveling wave in order to
fulfill the Sommerfeld radiation condition.

The constants Cint/ext are to be determined by applying
suitable boundary conditions. Note that the argument of the
Bessel function inside the sphere contains the sphere dielectric
constant ε via the wave vector k = ω

√
ε/c while the argument

of the Hankel function outside the sphere contains only the
vacuum wave vector k0 = ω/c because εair = 1.

The components of the electric and magnetic fields for TM
waves can then be written as a function of U as follows:

Er =
(

∂2

∂r2
+ k2

)
U, Hr = 0, (3a)

Eθ = 1

r

∂2U

∂r∂θ
, Hθ = −ik

1

r

∂U

∂ϕ
, (3b)

Eϕ = 1

r sin θ

∂2U

∂r∂ϕ
, Hϕ = ik

1

r

∂U

∂θ
. (3c)

Similar expressions can be found for TE waves [34].

B. Boundary conditions

Prior to investigating the structure of the modes for the
anisotropic resonator, it is important to discuss the boundary
conditions that have to be applied to this problem. At the
resonator surface r = R, the wave vector k inside the dielectric
sphere has to match the wave vector k0 = ω/c outside the
sphere and the constants Cint and Cext should be chosen
properly.

There is not a unique way to fulfill boundary conditions:
in fact, one could apply “pure” or “mixed” conditions: the
former consists in applying the boundary conditions to all the
components of only electric or magnetic field, while the latter
applies the boundary to certain components of one field and
certain other components of the other field. Obviously, these
two different paths bring us to the same physical solutions [34].
Among these possibilities, in this work we chose to apply
“pure” boundary condition, i.e., we impose that the tangential
electric (magnetic) -field components for TM (TE) waves
have to be continuous at the resonator surface r = R, while
the radial component of the displacement vector �D = ε �E is
continuous across the resonator surface. For TE fields, the
radial condition is automatically fulfilled, since the resonator
is nonmagnetic (i.e., μ = 1).

The condition for the radial component of the displacement
vector (εintE

int
r = εextE

ext
r ) across the resonator surface gives

the ratio between the inner and outer coefficients, while the
continuity of the tangential component Eint

θ,ϕ = Eext
θ,ϕ of the

field gives rise to the so-called characteristic equation, that
allows us to determine the allowed values for the wave vector
k (i.e., to find the spectrum of the allowed modes) inside the
resonator, and it turns out to be

[jν(kR)]′

jν(kR)
= √

ε

[
h(1)

ν (k0R)
]′

h
(1)
ν (k0R)

, (4)

for TM waves. The TE-characteristic equation is simply
obtained by replacing

√
ε with 1/

√
ε. In these equations

jν(x) = √
xJν(x) and h(1)

ν (x) = √
xH (1)

ν (x) are the Riccati-
Bessel functions, and the prime indicates the total derivative
with respect to their arguments. Although formally corrected,
as they are these boundary conditions do not provide a unique
solution to the determination of the mode patterns in the
resonator.

In order to better understand this nonuniqueness of the
solution, let us consider the general structure of Eq. (4). Let
T (x) be a piecewise function defined across an interface,
placed at x = 1, between two regions of space, such that
T (x) = C(i)f (x) for x < 1 and T (x) = C(e)g(x) for x > 1,
with f (x) and g(x) two arbitrary real valued and regular
functions. The constants C(i,e) are to be determined by the
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boundary conditions and they must be chosen in such a way
that the following characteristic equation is satisfied:

f ′(x)

f (x)
= α

g′(x)

g(x)
, (5)

where the apex stands for the derivative of the two functions
with respect to their arguments. Since this is a generalization
of the characteristic equations (4), it must hold at the interface
between the two region of space considered, i.e., its validity is
limited to x = 1. From Eq. (5) it is clear that if we admit that
the derivatives f ′(x) and g′(x) of the functions are equal at the
separation interface x = 1, then the functions themselves will
be discontinuous with a jump that has the value of 1/α. On
the other hand, if we now admit that the the functions f (x)
and g(x) are equal at the separation interface x = 1, then their
derivatives must be discontinuous, and the magnitude of the
discontinuity is precisely α.

The first situation corresponds to require that the derivative
of the function T (x) is continuous at the separation interface
[i.e., T ′(1)+ = T ′(1)−, where the plus or minus superscript
stands for the expression of T (x) for x > 1 and x < 1,
respectively]. This implies that C(e)/C(i) = f ′(1)/g′(1) and
the function T (x) can be written as

T (x) =
{

f (x), x < 1,[
f ′(1)
g′(1)

]
g(x), x � 1.

It is then clear that taking T ′(x) to be continuous at the interface
results in a discontinuity in the behavior of T (x) while passing
through x = 1, whose magnitude is f ′(1)/g′(1), as is depicted
in Fig. 1.

Conversely, the second condition on the functions f (x)
and g(x) implies that the function T (x) to be continuous
at the separation interface [i.e., T (1)+ = T (1)−], we have

FIG. 1. (Color online) The figure shows the behavior of the
function T (x) (red solid line) and its derivative T ′(x) (blue dashed
line) when the condition of continuous derivative at the separation
interface x = 1 is considered. As can be noted, in this case the
function shows a discontinuity while its derivative is (obviously)
continuous. For this example we have used f (x) = Ai(x) and g(x) =
e−x , and the magnitude of the discontinuity in the function T (x) at
the separation interface is f ′(1)/g′(1) � 0.5457.

FIG. 2. (Color online) The figure shows the behavior of the
function T (x) (red solid line) and its derivative T ′(x) (blue dashed
line) when the condition of continuous function at the separation
interface x = 1 is considered. As can be noted, in this case the
function itself is (obviously) continuous while its derivative shows a
jump discontinuity. For this example we have used f (x) = Ai(x) and
g(x) = e−x and the magnitude of the discontinuity in the derivative
T ′(x) at the separation interface is f (1)/g(1) � 0.5457.

C(e)/C(i) = f (1)/g(1) and the function T (x) has the following
form:

T (x) =
{

f (x), x < 1,

[ f (1)
g(1) ]g(x), x � 1.

In this case, taking T (x) to be continuous at the interface
results in a discontinuity in its derivative, whose magnitude is
f (1)/g(1), as Fig. 2 underlines.

In both cases, however, it is not possible to make the
functions and the derivatives both continuous at the same time.
This fact makes it only possible to obtain the ratio between
the two constants Cint ,Cext and not their explicit value: in
order to do that, another condition must be applied to the
problem. This condition depends on the particular problem
we are dealing with; in scattering problems, for example, the
incoming field is known, and determines the field pattern on the
resonator surface. In this case Cext is known and the ambiguity
is removed. Another situation in which the ambiguity is
overcome is by embedding the whole system (resonator plus
surrounding medium) in an ideal perfectly reflective sphere
of big, but finite radius R0, in such a way that the boundary
conditions at the metallic surface will completely determine
the fields: this second approach is very useful if we are dealing
with the quantization of the field in such a system.

We want to end this discussion by pointing out that the first
situation (derivative continuous at the interface) corresponds to
the boundary condition for the electric field across a dielectric
surface: the normal component with respect to the separation
surface is discontinuous by a factor equal to the ratio of
the two dielectric constants of the two regions, while the
tangential components (i.e., the derivative of the radial field
in our spherical case) are continuous at the interface. The
second situation, instead, corresponds to making continuous
the normal component of the displacement vector across the
separation surface, resulting in a discontinuity of the tangential
component of the displacement vector at the interface. While
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the former situation corresponds to the usual way of imposing
boundary conditions in an electromagnetic problem, the latter
is never used, but still valid.

In this work, however, we are neither interested in scattering
problems nor in field quantization, and so in the rest of the
paper this ambiguity will not be removed. This does not create
too many problems because we are only interested on the
mode structure of the resonator. We leave this problem of
nonuniqueness to future works.

III. NORMAL MODES OF A UNIAXIAL SPHERICAL
RESONATOR

Let us consider the same dielectric spherical resonator of
radius R of the previous section, but with a uniaxial anisotropy
along the z axis described by the following dielectric tensor:

ε̂ =

⎛
⎜⎝

εxx 0 0

0 εxx 0

0 0 εzz

⎞
⎟⎠

= εxx(x̂x̂ + ŷŷ) + εzzẑẑ. (6)

In order to use this dielectric tensor in Eqs. (1), it should
be converted in spherical coordinates; this operation is simply
done by converting the Cartesian dyadics x̂x̂,ŷŷ, and ẑẑ into the
spherical dyadics r̂r̂,θ̂ θ̂ , and ϕ̂ϕ̂ using the standard Cartesian-
to-spherical transformation relations [34]. By performing this
transformation, the dielectric tensor in spherical coordinates
reads

ε̂ =

⎛
⎜⎝

εrr −εrθ 0

−εrθ εθθ 0

0 0 ε⊥

⎞
⎟⎠ , (7)

with ε± = (εzz ± εxx)/2 and ε⊥ = εxx . We have then
defined εrr = ε+ + ε− cos(2θ ), εθθ = ε+ − ε− cos(2θ ) and
εrθ = ε− sin(2θ ). The fact that the tensor components depend
on the polar coordinate θ makes the problem to find the
eigenmodes of the spherical resonator much more difficult.
Moreover, in an anisotropic system it is in general no longer
possible to divide the electric and magnetic fields in their
TM and TE components. In order to overcome the latter
problem, we will focus our attention on the case of small
anisotropy, i.e., λ = ε−/ε+ � 1 (this approximation is very
good if we consider, for example, a dielectric sphere made
of lithium niobate (LiNbO3) for which we have εxx = 5.3,
εzz = 6.47, and therefore λ � 0.01). In such a way the fields
can be decomposed in quasi-TE and quasi-TM oscillations,
allowing us to solve the problem using the method of Debye
potentials. To this aim, and for the sake of clarity, let
us rewrite the set of Eqs. (1) for the anisotropic case as
follows:

∂

∂r
(r sin θEϕ) − ∂

∂ϕ
(Er ) = ik0 sin θ (rHθ ), (8a)

∂

∂θ
(Er ) − ∂

∂r
(rEθ ) = ik0(rHϕ), (8b)

∂

∂ϕ
(rEθ ) − ∂

∂θ
(r sin θEϕ) = ik0r sin θ (rHr ), (8c)

and

∂

∂r
(r sin θHϕ) − ∂

∂ϕ
(Hr )

= ik0 sin θ [εrθ (rEr ) − εθθ (rEθ )], (9a)
∂

∂θ
(Hr ) − ∂

∂r
(rHθ ) = −ik0ε⊥(rEϕ), (9b)

∂

∂ϕ
(rHθ ) − ∂

∂θ
(sin θrHϕ)

= −ik0r sin θ [εrr (rEr ) + εrθ (rEθ )]. (9c)

As in the previous section, we solve the problem for the
quasi-TM component of the field (i.e., Hr = 0); the quasi-TE
solution is again obtained using similar arguments.

These equations can be rewritten using the quasi-TM and
quasi-TE potentials (U and V respectively), as follows (see
Appendix A for detailed calculations):

L̂HV = 2iε−k0ϒ̂
∂U

∂ϕ
, (10a)

L̂EU = 2iε−k0ϒ̂
∂V

∂ϕ
, (10b)

where we have defined

L̂H = (∇2
⊥ + r2 l̂x)l̂θ − 2ε−k2

0
∂2

∂ϕ2
,

L̂E = ̂0 + λ̂l̂x,

∇2
⊥ = 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
,

ϒ̂ =
(

r l̂x − 2
∂

∂r

)
cos θ − sin θ

∂2

∂θ∂r
,

̂0 =
[
∇2

⊥ + r2 ∂2

∂r2
+ ε+(1 − λ2)k2

0r
2

]
l̂x

+ 2ε−(1 − λ)k2
0

∂2

∂ϕ2
,

̂ = cos(2θ )

[
r2 ∂2

∂r2
− ∇2

⊥ + 3

(
1 − r

∂

∂r

)]

+
(

3 − 2r
∂

∂r

)
sin(2θ )

∂

∂θ

+
(

1 − r
∂

∂r

)
− 2

∂2

∂ϕ2
, (11)

and λ = ε−/ε+ is the anisotropy parameter.
From Eqs. (10) it is evident that the anisotropy gives rise to

a coupling between the two quasipotentials U and V ; this
coupling is absent in the isotropic case in which the two
potentials are independent of each other. These equations,
in fact, contain the isotropic solution in the limit of λ = 0.
Making this substitution in Eq. (10b) and using the definition
of the operator L̂H , we obtain

(∇2
⊥ + r2 l̂x)l̂θU = 0. (12)

Because we set λ = 0, the two differential operators l̂x and
l̂θ (whose explicit form is given in Appendix A) are equal,
since εθθ = ε+ − ε− cos 2θ = ε+ = ε and ε⊥ = ε, i.e., no
anisotropy is present anymore. We now define l̂θU = A as
the isotropic potential, and we assume that this potential can
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be written in a separable way, i.e., A(r,θ,ϕ) = �(r)Ynm(θ,ϕ),
where Ynm(θ,ϕ) are the eigensolutions of the angular mo-
mentum operator, whose eigenvalues are −n(n + 1) [i.e.,
∇2

⊥Ynm = −n(n + 1)Ynm]. Substitution of this ansatz into the
previous equation and consequent simplification of the angular
part then gives the following radial equation:

[n(n + 1) − r2 l̂x]�(r) = 0, (13)

that is precisely the radial equation for the isotropic potential.
The same procedure applied to the quasipotential V gives its
isotropic counterpart.

Since we stated that the anisotropy is small (i.e., λ � 1),
then we can use the method of separations of variable to solve
the coupled equations (10). We then write the quasipotentials
as follows:

U (r,θ,ϕ) =
∑
n,m,q

uq,n(r)Ynm(θ,ϕ), (14a)

V (r,θ,ϕ) =
∑
n,m,q

vq,n(r)Ynm(θ,ϕ), (14b)

where we note that, in general, the radial component of the
eigenmode can depend both on the radial (q) and polar (n)
indexes. This is very easy to justify in the isotropic case, where
the index of the radial Bessel function is a function of the polar
index, i.e., ν = n + 1/2, as can be seen in any textbook [34].
It is then straightforward to generalize this behavior even to
the anisotropic case.

The polar index n determines the number of field nodes
along the polar coordinate θ , the azimuthal number m

characterizes the nodes in the ϕ direction, and, finally, the
radial index q gives the number of field oscillations along
the radial direction r that is related with the solution of the
characteristic equation. Substituting Eq. (14) into Eq. (10),
using relationships (4) and (5) of Ref. [35], and equating the
terms with equal angular part Ynm(θ,ϕ) we obtain the following
set of differential equations for the radial components up(r)
and vp(r) of the quasipotentials [36]:

aT M
1,n un − aT M

2,n−2un−2 − aT M
3,n+2un+2

= −2ε−mk0[b1,n−1vn−1 − b2,n+1vn+1], (15a)

aT E
1,n vn − λ

(
aT E

2,n−2vn−2 + aT E
3,n+2vn+2

)
= −2λmk0[b1,n−1un−1 − b2,n+1un+1]. (15b)

For the sake of clarity, the expressions of the operators a
T M/T E

i

and bi are reported in Appendix B.
These equations require, in general, a numerical approach

to be solved. However, in the limit of small anisotropy, i.e.,
λ � 1, a solution to Eqs. (15) can be searched in terms of
power series in the factor λ. The zeroth-order solution gives
the solution of the isotropic spherical resonator in terms of
the Riccati-Bessel functions [see Eq. (13)]. The first-order
solution, i.e., the anisotropic correction we are searching for,
is obtained by neglecting the terms that are proportional to λ2

in Eqs. (15): however, the resulting equations contain in the
right-hand side a term that is not zero (like in the zeroth-order
solution) but depends on the quasipotentials un±1 and vn±1.
This coupling among neighbor radial modes is a signature
of the anisotropy, that on one hand breaks the azimuthal
degeneracy [the azimuthal quantum number appears in the

definition of the coefficients of Eqs. (15)] and on the other
hand results in a coupling between radial modes. Although this
coupling results in an impossibility of an analytic solution, it
can be demonstrated [35] that these terms are of the order λ2

and at the first order they can be neglected. With this argument,
Eqs. (15) at the leading order λ read[

r2

(
d2

dr2
+ γ 2

1

r2

)
− n(n + 1)

]
l+un(r) = 0, (16a)[

r2

(
d2

dr2
+ γ 2

2

r2

)
− n(n + 1)

]
l+vn(r) = 0, (16b)

where γ1 and γ2 are the TM and TE (respectively) anisotropic
factor given by

γ 2
1 = k2

0ε+

{
1 − λ

[
1 − 2m2

n(n + 1)

]}
, (17a)

γ 2
2 = k2

0ε+

{
1 − λ

[
1 − 4m2

4n(n + 1) − 3
+ 2m2

n(n + 1)

]}
. (17b)

Equations (16) have the same structure of the radial
equation for the isotropic case [34]. The only difference is
the presence of the γi terms that modify the arguments of the
Riccati-Bessel functions and the quasipotentials can be written
as

Unm(r,θ,ϕ) = Cint/ext zν(x)Ynm(θ,ϕ), (18a)

Vnm(r,θ,ϕ) = Cint/ext zν(x)Ynm(θ,ϕ), (18b)

where zν(x) corresponds to jν(x) inside the sphere and to
h(1)

ν (x) outside the sphere. Note also that inside the sphere,
where the anisotropy exists, x = γir , while outside the
sphere x = k0r (the surrounding medium is still isotropic).
Substituting these expressions in Eqs. (A4) in Appendix A,
we obtain all the components of the electric and magnetic
fields in a uniaxial anisotropic spherical resonator,

Er = n(n + 1)

r2

[√
π

2
zν(γ1x)Yn,m(θ,ϕ)

]
, (19a)

rEθ = − ∂2

∂r∂θ

[√
π

2
zν(γ1x)Yn,m(θ,ϕ)

]
, (19b)

rEϕ = 1

sin θ

∂2

∂r∂ϕ

[√
π

2
zν(γ1x)Yn,m(θ,ϕ)

]
, (19c)

Hr = 0 (19d)

rHθ = − ik0ε⊥
sin θ

∂

∂ϕ

[√
π

2
zν(γ1x)Yn,m(θ,ϕ)

]
, (19e)

rHϕ = ik0ε⊥
∂

∂θ

[√
π

2
zν(γ1x)Yn,m(θ,ϕ)

]
, (19f)

for quasi-TM fields. Similar expressions can be written for the
quasi-TE fields by replacing γ1 with γ2, exchanging the role
of the electric and magnetic field and setting ε⊥ = 1.

The characteristic equation can be found by applying the
boundary conditions and it turns out to be (γ̃i = γi/k0

√
ε+)

γ̃1
[jν(γ1kR)]′

jν(γ1kR)
= ε⊥√

ε+

[
h(1)

ν (k0R)
]′

h
(1)
ν (k0R)

(20)

for the quasi-TM waves. The characteristic equation for quasi-
TE waves is obtained by replacing γ̃1 with γ̃2, γ1 with γ2, and
ε⊥ with 1.
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As can be seen from the previous equations, in the small
anisotropy regime, the only effect of the anisotropy is a
rescaling of the radial coordinate; this is in accordance with
the fact that a uniaxial crystal shows two different refractive
indexes: one in plane (

√
εxx) and the other out of plane (

√
εzz).

Different refractive indexes correspond to different optical
paths, and this is exactly reflected in the rescaling effect of the
anisotropy onto the radial part of the modes of the resonator.
Note also that at this level of analysis, the anisotropy does not
affect the angular structure (θ and ϕ) of the modes. Another
difference with respect to the isotropic case is the value of
the coefficients on the right-hand side of the characteristic
equations: while the coefficient for the quasi-TE wave is
analogous to its isotropic counterpart (if we substitute the
isotropic dielectric constant ε with the anisotropy-averaged
dielectric constant ε+), the coefficient for the quasi-TM wave
reveals the presence of the anisotropy, since it is a ratio between
the in-plane dielectric constant and the anisotropy-averaged
one. This is not so surprising because for a dielectric uniaxial
crystal, only the TM component suffers direct anisotropy,
while the TE component does not, because the crystal is
magnetically isotropic.

IV. WHISPERING GALLERY MODES

A. Radial functions with large indices

The term whispering gallery mode (WGM) commonly
addresses the set of modes with a large index n; strictly
speaking, the real WGMs are only those for which it results
that n = m and the radial wave function shows no roots inside
the resonator. However, modes with indices n 
= m and with
q > 1, but close to unity, have properties that are close to those
of WGMs: this means that there is no great difference between
a “pure” WGM and other modes with nearest indices.

To study such modes, the first thing we have to do is
to find a suitable approximation of Riccati-Bessel functions
for large index. This approximation is useful either from
the numerical (where computing Bessel functions of a large
index is highly time consuming) or analytical (where the
approximation gives the possibility to work with easier
functions that better suit the problem) point of view. The
appropriate approximation, however, should be searched
bearing in mind that the argument of the Bessel function
for a WGM near the sphere surface is of the order of its
index, i.e., ν/x � 1. By introducing the following change of
variables:

ζ =
(

2

ν

)1/3

(ν − x),

the Bessel function inside the dielectric resonator can be very
well approximated by the Airy function of the first kind Ai as
follows [37]:

jν(x) �
√

2
(ν

2

)1/6
Ai(ζ ), (21a)

d

dx
[jν(x)] � −

√
2

(
2

ν

)1/6
d

dζ
[Ai(ζ )]. (21b)

The accuracy of this approximation is of the order ν−1;
if ν exceeds 1000, this accuracy is very satisfactory for many

FIG. 3. (Color online) Comparison between jν(x) (solid black
line) and its Airy approximation from Eq. (21a) (dashed red line) for
ν = 1000.5. The approximation holds very well up to x � ν, while
for x larger than ν (say for x > 1020) it starts to fail.

calculations. This can be seen in Fig. 3, where Bessel functions
of high order are compared with their Airy approximation and
in Fig. 4, where it is shown that as ν grows, the accuracy of
the approximation became more satisfactory.

For the solution outside the resonator (the Hankel function
of the first kind) various approximations are available. Here
we use the following [38]:

h(1)
ν (x) ≡ f (η) =� ei[ν(tan η−η)−π/4]√

π
2 tan η

×
{

1 − i

ν

(
1

8 tan η
+ 5

24

1

tan3 η

)
+ O[ν−2]

}
(22)

where cos η = ν/x; if ν is large enough (heuristically ν >

1000) the imaginary term inside the curly braces can be
neglected. The choice of this approximation rather than the
one presented in Ref. [30] resides in the fact that while the

FIG. 4. (Color online) The figure shows the accuracy σ as a func-
tion of the Bessel index ν; the accuracy is defined as the ratio between
the difference of the true function jν(ν) and its Airy approximation
Ai(ζ ) and their sum, i.e., σ = [jν(ν) − Ai(ζ ∗)]/[jν(ν) + Ai(ζ ∗)],
where ζ ∗ is ζ evaluated for x = ν. As can be seen, as ν grows,
the approximation becomes more precise.
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FIG. 5. (Color online) Comparison between the real part of h(1)
ν (x)

(black solid line), Eq. (22) (red dashed line) and Eq. (31) of Ref. [30]
(blue dot-dashed line) for ν = 1000.5. Our approximation works very
well in the region in which the argument is greater than the index (i.e.,
x > 1010), while the approximation presented in Ref. [30] is out of
phase with respect to the Hankel function.

former is very good when the argument of the Hankel function
is greater than the index (that is precisely the case of the outer
functions), the latter is not suitable in this region, either for
being out of phase with respect to the Hankel function (as
shown in Figs. 5 and 6) or to not approximate in the correct
way the original function (Fig. 7). Moreover, Fig. 7 shows that
the field outside the resonator has all the characteristics of an
evanescent wave, i.e., it decays exponentially as the distance
from the resonator surface grows.

In order to justify this evanescent behavior outside the
resonator, one can directly solve the equation for the radial part
of the field in the limit r > R (but still close to the resonator
surface), where the terms x = k0r outside the derivation
symbol can be substituted with k0R, leading to the following
equation:

d2Z

dx2
+ 1

k0R

dZ

dx
+

[
1 − ν2

(k0R)2

]
Z = 0, (23)

whose solution is

Zν(x) = C0e
−δx, (24)

FIG. 6. (Color online) Same as Fig. 5 but the comparison is made
for the imaginary part.

FIG. 7. (Color online) Same as Fig. 5 but the comparison is made
for the absolute value; note in this case how the approximation
presented in Ref. [30] completely fails to approximate the Hankel
function.

where

δ =
[√(

ν

k0R

)2

− 1 + 1

4(k0R)2
− 1

2k0R

]
.

This is, as expected, the expression of an exponentially
decreasing field that is in perfect agreement with the hypothesis
that the field outside the resonator is evanescent due to total
internal reflection.

It can be, moreover, noted that the oscillatory behavior of
the field components outside the resonator (as depicted in Figs.
5 and 6 for the radial component of the electric field) is not
in contrast with this hypothesis, since it only represents the
behavior of the Hankel function as r → ∞, i.e., it behaves
like a runaway wave whose intensity is decreasing as 1/r2. In
the case of WGMs, however, no radiation will run away toward
infinity since the external field is evanescent, i.e., the radiation
is trapped inside the WGM and rapidly decreases toward zero
when the field goes outside the resonator.

B. Angular functions with large indices

For large indices n, the WGM field is concentrated in
a narrow interval of angles θ near θ0 = π/2; this makes it
possible to approximate the associated Legendre functions
(i.e., the θ part of the scalar spherical harmonics) with large
indices, with Hermite polynomials with small indices, as
follows:

Ynm(θ,ϕ) �
√

m

2w
√

πw!
Hw(

√
mα)e−(m/2)α2

eimϕ. (25)

Detailed calculations for obtaining this result are shown in
Appendix C.

C. Roots of characteristic equations

The approximations exploited in the previous section are
very useful in finding an analytical solution to the characteristic
equation for the eigenfrequencies of the resonator; however,
due to the anisotropy, some changes in the definition of the
variables used above must be done. First of all, the x appearing
in Eqs. (21) and (22) has to be different for the inner and outer
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functions, due to the fact that the anisotropy is confined only
inside the resonator; we can then define x = k0R as the outer
variable and by consequence the inner variable results to be
y = γ̃i

√
ε+x. Then, the definition of ζ must be changed into

ζ = (2/ν)1/3(ν − y). After that, by substituting Eqs. (21) and
(22) into Eq. (20), the characteristic equation for the quasi-TM
field gives [39]

γ̃1
1

Ai(ζ )

dAi(ζ )

dζ
= ε⊥√

ε+

(
ν

2

)1/3

×
[

1

4

(
2x

x2 − ν2

)
− i

√
1 − ν2

x2

]
, (26)

the equation for the quasi-TE field can be deduced by this one
upon changing γ̃1 with γ̃2 and putting ε⊥ = 1.

In order to find an approximate formula for the solutions
of this equation, let us first analyze the limiting case in which
ν → ∞; in this case the right-hand side of the equation goes to
infinity and the only possible solution is that Ai(ζ ) = 0, whose
solutions are the zeros of the Airy function ζq . Let us denote
with �ζq the first-order correction to these roots; expanding
both the left-hand and right-hand sides of Eq. (26) in power
series with a first-order accuracy to terms �ζq we can obtain
the first-order correction to the roots ζq , whose expression is

�ζq = γ̃1
√

ε+
ε⊥α

(
2

ν

)1/3

, (27)

where

α = xq

2
(
x2

q − ν2
) − i

√
1 − ν2

x2
q

, (28)

and xq is obtained by substituting the value of the first zero
of the Airy function (ζq = −2.338 11) into the definition of ζ

and inverting that relation with respect to x.
Taking into account the definition of ζ , the eigenvalues

of the wave numbers for the anisotropic resonator can be
represented in the following explicit form:

k0q = ν − (
2
ν

)1/3
(ζq + �ζq)

γ̃1
√

ε+R
. (29)

Note that because the quantity �ζq is complex, the wave
number is also complex. The real part of the wave number
then determines the eigenfrequencies of the mode. Complex
eigenfrequencies are fully compatible with the open cavity. As
can be seen from Eq. (27), this approximation has an accuracy
of ν−1/3. More accurate asymptotic expressions that allow the
calculation of the positions of resonances of the modes in
an isotropic dielectric spherical resonator have been largely
studied in literature (see, for example, Refs. [40–45] and
references therein) and they were given with various accuracy
with respect to the index ν; in Ref. [45] analytic calculations are
carried out to the order ν−1/3, in Ref. [41] the eigenfrequencies
are calculated with an accuracy of O[ν−2/3], while in Ref. [44]
the authors give an expression up to the order O[ν−8/3]. Here
we report the anisotropic correction of the formula found in

FIG. 8. (Color online) Radial part of the fundamental (black solid
line) and first excited (red dashed line) WGM for the anisotropic
resonator; the vertical dashed line indicates the position of the
resonator surface. The fundamental mode has indices n = m = 1000
and q = 1, while the first excited mode has the same n and m indices,
but q = 2.

Ref. [40] that gives the eigenfrequencies with a precision of
the order of O[ν−1],

γ̃ix
(q)
ν =

{
ν −

(
ν

2

)1/3

ζq −
√

ε+
ε+ − 1

P

+ 3

10

(
1

4ν

)1/3

ζ 2
q −

(
1

2ν2

)1/3(
ε+

ε+ − 1

)3/2

× P

(
2

3
P 2 − 1

)
ζq + O[ν−1]

}
, (30)

where P = 1/(γ̃1ε+) for quasi-TM modes and P = ε⊥/(γ̃2ε+)
for quasi-TE modes.

D. Whispering gallery modes

We now have all the elements for writing the explicit ex-
pressions for the radial, polar, and azimuthal components of the
quasi-TM and quasi-TE WGMs. Taking approximations (21),
(22), and (25) and substituting them in Eqs. (19) give us the
explicit expressions of the quasi-TM whispering gallery modes
of a spherical anisotropic resonator. Similar expressions can
be written even for the quasi-TE WGMs.

We now concentrate our attention on the behavior of
these modes. Figures 8 and 9 show the behavior of the
fundamental quasi-TM radial (no nodes in radial direction,
i.e., q = 1) and polar (i.e., n = m) WGM component r2Er

and the “first excited” radial (q = 2) and polar (m = n + 1)
mode for the same component of the quasi-TM field; the
physical parameters have been set to be εxx = 5.30, εzz = 6.47
(LiNbO3), and λ = 1064 nm. Note that the radial component
has its maximum very close to the sphere surface (dashed
vertical line in Fig. 8), and its position shifts on the left,
i.e., on the inner part of the resonator as the radial number q

increases. The polar part, instead, is localized around θ = π/2
in its fundamental state and, as m becomes smaller than n, the
maxima of the polar component tent to repel each other from
θ = π/2.
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FIG. 9. (Color online) Polar part of the fundamental (black solid
line) and first polar-excited (red dashed line) WGM for the anisotropic
resonator. The fundamental mode has indices n = m = 1000 and
q = 1, while the first polar-excited mode has n = 1000, m = n − 1,
and q = 1.

In Figs. 10–13 the intensity distribution of the total electric
field of a quasi-TM (i.e., ET M = Er r̂ + Eθ θ̂ + Eϕϕ̂) is shown;
r̂ ,θ̂ and ϕ̂ represent the unit vectors of the spherical basis
(r ,θ ,ϕ). In order to obtain the intensity distribution of such a
field, one has to sum the square modulus of each component
of the electric field; however, in this particular case, the
contribution of Eθ and Eϕ is very small and localized at the
resonator surface, and the total field is, with a good level of
approximation, fully determined by its radial component. The
intensity distribution for the magnetic-field components of a
quasi-TM mode can be straightforwardly obtained by noting
that the Hθ component of the magnetic field has the same
intensity distribution as the radial electric-field component
Er and the Hϕ component, because of the presence of the

FIG. 10. (Color online) Intensity distribution of the electric field
of the fundamental quasi-TM WGM. The WGM quantum numbers
are n = m = 1000, q = 1.

FIG. 11. (Color online) Same as Fig. 10 but for q = 2; this mode
represents the first radially excited WGM.

derivative with respect to θ , has the same intensity distribution
as the one depicted in Fig. 12.

As the reader can see from these figures, the field is nonzero
even after the resonator surface (x = 1); this is not surprising
because in this region the total field is evanescent due to the
fact that it has been total internal reflected by the resonator,
i.e., the field is confined in the resonator WGM.

V. CONCLUSIONS

In this work, we have developed a classical-optics theory
for a uniaxial spherical whispering gallery resonator. We
have presented and discussed the mode structure in the limit
of small anisotropy for such a resonator, and obtained its
spectrum. Moreover, we have furnished a thorough discussion

FIG. 12. (Color online) Same as Fig. 10 but for n − m = 1; this
mode represents the first polar excited WGM.
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FIG. 13. (Color online) Same as Fig. 10 but for n − m = 1 and
q = 2; this mode represents the first radially and polar excited WGM.

on the boundary conditions and asymptotic expressions for
the electromagnetic field in WGRs. Our results may be easily
generalized to achieve a quantum theory of WGRs.
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APPENDIX A: DERIVATION OF EQS. (10)

In order to obtain from the set of Maxwell’s equations
in the anisotropic case (8) and (9), we follow the solving
procedure described in Ref. [35]. Let us combine Eq. (9b) and
the derivative with respect to r of Eq. (8a) and introduce the
W setting Hr = 0 and letting W be the function that realized
the equality between the ϕ and θ components of the electric
field in Eq. (8c). We will obtain

{
∂
∂r

(rHθ ) = 1
sin θ

ik0ε⊥ ∂W
∂ϕ

,

∂3

∂r2∂ϕ
(W ) − ∂2

∂r∂ϕ
(Er ) = ik0 sin θ ∂

∂r
(rHθ ).

If we substitute the expression of ∂
∂r

(rHθ ) obtained from
the first equation into the second one and if we define the
differential operator l̂x = ∂2/∂r2 + k2

0ε⊥ we obtain

∂Er

∂r
= l̂xW. (A1)

Combining now Eq. (9a), and the derivative with respect to r

of Eq. (8b) gives

{
∂
∂r

(r sin θHϕ) = ik0r sin θ
(
εrθEr − 1

r
εθθ

∂W
∂θ

)
,

∂2

∂r∂θ
(Er ) − ∂2

∂r2 (rEθ ) = ik0
∂
∂r

(
rHϕ

)
.

Again, by substituting the expression for ∂
∂r

(rHϕ) obtained
from the first equation into the second one, and by defining the
differential operator l̂θ = ∂2/∂r2 + k2

0εθθ we obtain[
k2

0εrθ r + ∂2

∂r∂θ

]
Er = l̂θ

∂W

∂θ
. (A2)

By now defining W as a function of the quasi-TM potential
U , let us compare Eqs. (A1) and (A2). By noting that the
differential operator l̂θ commutes with the operator (k2

0εrθ r +
∂2/∂r∂θ ) that appears in Eq. (A2), is it possible to define,
after some simple algebra, the function W as a function of the
quasi-TM potential U as follows:

W = ∂

∂r
(l̂θU ). (A3)

This allow us to write the components of the TM electric
and magnetic field in terms of the quasi-TM potential U as
follows:

ET M
r = l̂x l̂θU, (A4a)

rET M
ϕ = 1

sin θ

∂2

∂r∂ϕ
(l̂θU ), (A4b)

rET M
θ =

(
εrθ k

2
or + ∂2

∂r∂θ

)
l̂xU, (A4c)

HT M
r = 0, (A4d)

rHT M
θ = ik0ε⊥

sin θ

∂

∂ϕ
(l̂θU ), (A4e)

rHT M
ϕ = ik0

[
εθθ

∂

∂θ
+ εrθ

(
1 − r

∂

∂r

)]
l̂xU. (A4f)

Again, similar expressions can be found for the quasi-TE
fields and the quasi-TE potential V . Their explicit expressions
can be found in Ref. [46].

By now considering a generic electric and magnetic field,
whose components can be written as the superposition of the
quasi-TE and quasi-TM oscillations, i.e., Ei = ET M

i + ET E
i

and Hi = HT M
i + HT E

i , by substituting these field expressions
in Eqs. (8) and (9), after some algebra we arrive at a set of two
coupled equations (10).

APPENDIX B: COEFFICIENTS OF EQS. (15)

Here are reported the explicit expressions of the coefficients
that appear on Eqs. (15). In order to express them in a compact
form, let us introduce the following quantities:

g± = k2
oε±,

fn = 1

2n + 2
,

Tn = r2 l̂x − n(n + 1),

l+ = ∂2

∂r2
+ k2

0ε+.

With these parameters defined, the a and bs coefficients of
Eq. (15) become

aT M
1,n = Tn

[
l+ − 1 − 4m2

4n(n + 1) − 3
g−

]
+ 2g−m2,

aT M
2,n = 2g−(n − m + 1)(n − m + 2)fnfn+1Tn,

aT M
3,n = 2g−(n + m)(n + m − 1)fnfn−1Tn,

013828-10



THEORY OF ANISOTROPIC WHISPERING-GALLERY-MODE . . . PHYSICAL REVIEW A 84, 013828 (2011)

b1,n = fn(n − m + 1)

[
r l̂x − (n + 2)

d

dr

]
,

b2,n = fn(n + m)

[
r l̂x + (n − 1)

d

dr

]
,

aT E
1,n =

{ [
r2 d2

dr2
− n(n + 1)

] [
1 + λ

(
1 − 4m2

4n(n + 1) − 3

)]

+ (1 − λ)g+r2

}
l̂x − 2m2g−(1 − λ),

aT E
n,2 = 2fnfn+1(n − m + 1)(n − m + 2)

×
[
r2 d2

dr2
− (2n + 3)r

d

dr
+ n(n + 1)

]
,

aT E
n,3 = 2fnfn−1(n + m)(n + m − 1)

×
[
r2 d2

dr2
− (2n − 1)r

d

dr
+ (n + 1)(n − 3)

]
.

APPENDIX C: APPROXIMATION OF SCALAR SPHERICAL
HARMONICS FOR LARGE INDICES

The equation for the θ part of spherical harmonics is the
following:

1

sin θ

d

dθ

(
sin θ

df

dθ

)
+

[
n(n + 1) − m2

sin2 θ

]
f = 0,

whose solutions are the associated Legendre functions f (θ ) =
P m

n (cos θ ). Since WGMs are located near the equator of the
resonator, the correspondent functions f (θ ) will be peaked

near the angle θ0 = π/2; in order to find an approximate
expression for the polar part of the spherical harmonics, let
us introduce the new variable α = π/2 − θ : substituting into
the equation above gives

d2

dα2
− tan α

df

dα
+

[
n(n + 1) − m2

cos2 α

]
f = 0.

We note that, since the modes are localized near the equator,
α � 1 and this allows us to expand in power series the
trigonometric functions that appear in the previous equation,
i.e., tan α � α and 1/ cos2 α � 1 + α2. Substituting in the pre-
vious equation, writing f (α) = G(α)eα2/4, and performing the
change of variables α = x/[(m2 + 1/4)1/4] = ξx we obtain

d2G

dx2
+ {ξ 2[n(n + 1) − m2] − x2}G = 0.

Introducing the quantity w = n − m and remembering that
WGMs are characterized by high values of the indices, i.e.,
n,m � 1, the first term that appears inside the curly braces can
be simplified as 2w + 1. With this substitution the last equation
is precisely the Hermite-Gauss equation, whose solutions
have the form G(x) � Hw(x)e−x2/2. Function f (α) then
becomes

f (α) = P m
n (cos θ ) � NHw(

√
mα)e−(m/2)α2

,

where N is a normalization factor whose expression could be
found by requiring that the norm of f (α) integrated over the
real axis is 1. This equation gives the approximated form of the
associated Legendre functions for WGMs; substituting it into
the definition of the scalar spherical harmonics gives exactly
Eq. (25).
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