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Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers
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We report the existence of a kind of squeezing in photonic crystal fibers which is conceptually intermediate
between four-wave-mixing-induced squeezing in which all the participant waves are monochromatic waves, and
self-phase-modulation-induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when
an arbitrary short soliton emits quasimonochromatic resonant radiation near a zero-group-velocity-dispersion
point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the
classical soliton, and a reduction of the quantum noise below the shot-noise level is predicted.
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I. INTRODUCTION

In quantum mechanics the variance of two conjugate ob-
servables must respect a minimum value set by the Heisenberg
uncertainty principle, which is known as the standard quantum
limit or shot-noise level. Squeezing is the result of strong
correlations, generally induced by nonlinear optical processes,
such that the variance of a given observable is smaller than the
shot noise [1]. Squeezed light constitutes an important tool for
high-precision measurements [2], as well as for applications in
quantum cryptography and quantum information processing
(see Ref. [3] and references therein). Two qualitatively
different kinds of squeezing are currently known to take place
in optical fibers. The first is due to the process of four-wave
mixing (FWM) [4], in which an intense continuous wave (CW)
pump field generates signal and idler waves at symmetric
frequencies around the pump. Energy conservation leads to
a strict photon number correlation between the signal and
idler twin modes, resulting in squeezing. The second kind
of squeezing is due to self-phase modulation (SPM) [5], in
which the spectral components of an intense short pulse (e.g.,
a soliton [6]) in a coherent state become correlated. This is
different from the FWM-induced squeezing, in that the input
field is pulsed and is itself squeezed, as opposed to squeezing
a vacuum state [7,8]. Strictly related to the SPM-induced
squeezing, we can also mention another well-known squeezing
method (i.e., spectral filtering), in which the removal of some
soliton spectral components breaks the orthogonality between
the soliton and the continuum, leading to their coupling and
thus to squeezing [9,10].

In this paper we demonstrate theoretically that a different
kind of squeezing is possible in optical fibers. We investigate
the quasimonochromatic dispersive radiation emitted by op-
tical solitons subjected to perturbations due to higher-order
dispersion effects. Evidence of photon correlation is observed,
manifesting itself in a noise spectrum of the emitted radiation
that is lower than the standard quantum limit.

II. RESONANT RADIATION AMPLITUDE WITH GREEN’S
FUNCTION METHOD

Resonant radiation amplitude with Green’s function
method. Our starting point is the generalized nonlinear

Schrödinger equation (GNLSE) in the absence of the Raman
effect: i∂zA + D(i∂t )A + |A|2A = 0. Here z and t are the
dimensionless time and space coordinates scaled with the input
pulse duration t0 and the second-order dispersion length LD2 ≡
t2
0 /|β2(ω0)|, respectively. A(z,t) is the dimensionless electric

field envelope in units of
√

P0, with P0 ≡ |β2(ω0)|/(γ t2
0 ),

β2 is the group-velocity-dispersion (GVD) coefficient at the
central frequency ω0 of the input pulse, and γ is the nonlinear
coefficient of the fiber [11]. The linear dispersion operator
in the GNLSE is given by D(i∂t ) ≡ 1

2 s∂2
t + ∑

m�3 αm[i∂t ]m,
where s = +1 (s = −1) for anomalous (normal) GVD, αm ≡
βm/[m!|β2|tm−2

0 ], where βm is the mth order GVD coefficient.
When no higher-order dispersion (HOD) coefficients are
taken into account (αm = 0 ∀ m � 3), the GNLSE takes the
standard form of the conventional NLSE with the following
fundamental soliton solution: A(z,t) = F (t) exp(iqz), with
F (t) ≡ √

2qsech(
√

2qt), where q is the soliton wave
number [11]. In the absence of HOD, the fundamental soliton
is stable and invariant along propagation. When the NLSE
is perturbed by HOD terms, solitons propagating according
to the GNLSE emit a special kind of quasimonochromatic
dispersive radiation, called resonant (or Cherenkov) radiation
(RR), provided that phase matching between soliton wave
number and fiber dispersion is met [12,13].

We now proceed to calculate the amplitude of RR emitted
by a soliton in the presence of HOD by using a Green’s
function method. This will provide an analytical expression
for the spatiotemporal evolution of creation and annihilation
operators of the RR around the resonant frequency. These
will be used to calculate explicitly the quadrature variance in
order to investigate quantitatively the squeezing effect along
the fiber. We make the following ansatz in the GNLSE:
A = [F (t) + ĝ(z,t)] exp(iqz), where ĝ (ĝ†) is the quantum
annihilation (creation) operator associated with the radiation
amplitude, which is much smaller than the soliton amplitude.
By keeping only the linear terms in �g ≡ (ĝ,ĝ†)T we obtain

[
iσ̂ ∂z − q + 1

2∂2
t − P̂ (i∂t )

]�g = �U ( �F ) − M̂ �g, (1)

where σ̂ = diag(1, − 1) is the third Pauli matrix. The soliton
potential matrix M̂(t) and the HOD perturbation operator
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P̂ (i∂t ) are defined by (from now on an overbar indicates
complex conjugation)

M̂(t) =
[

2|F (t)|2 F 2(t)

F̄ 2(t) 2|F (t)|2
]

,

P̂ (i∂t ) =
[

P (i∂t ) 0

0 P (−i∂t )

]
, (2)

where P (i∂t ) ≡ [D2(i∂t ) − D(i∂t )], D2 ≡ 1
2 s∂2

t , �U ( �F ) ≡
(P (i∂t )F,P (−i∂t )F̄ )T = P̂ (i∂t ) �F , with �F = (F,F̄ )T. The
Hermitian matrix M̂ is the potential felt by radiation �g due
to the soliton, while vector �U ( �F ) is the radiation’s source
term due to HOD perturbations. Note that, because M̂ is
nondiagonal, field ĝ will be coupled to field ĝ† for z �= 0,
even if there is no initial coupling at z = 0. This feature will
eventually be responsible for the squeezing of the RR, which
is thus indirectly induced by the soliton itself.

We now solve Eq. (1) by first solving the following equation
for the Green’s function G:

[i∂z − q + D(i∂t )]G(z,t − t ′) = �(t − t ′), (3)

where �(t) is the Dirac delta function. Once G is known, the
convolution theorem allows one to find the general solution of
Eq. (1):

�g(z,t) = �g0(t) +
∫ +∞

−∞
Ĝ(z,t − t ′)

× [ �U ( �F (t ′)) − M̂(t ′)�g(z,t ′)]dt ′, (4)

where �g0 is the quantum radiation field at z = 0 (corresponding
to vacuum fluctuations) and we have defined the 2 × 2 matrix
Ĝ = diag(G,Ḡ). Note that Eq. (4) is an integral equation: the
unknown radiation field �g(z,t) appears on both sides. To solve
Eq. (4), one needs first to find the Green’s functionG by solving
Eq. (3) and then, by using an iterative perturbative procedure,
it will be possible to find �g(z,t) with an arbitrary accuracy.

It is possible to rigorously show by using the residue
theorem of complex analysis that the z-dependent Green’s
function G is given by

G(z,t − t ′) = 1

2π
P

∫ +∞

−∞

e−iω[t−t ′]{1 − ei[−q+D(ω)]z}
−q + D(ω)

dω, (5)

where P indicates the Cauchy principal value of the integral,
and the integrand is an analytic function. An analysis of the
pole structure indicates that, if the soliton emits RR due
to perturbations, the resonant frequencies will be solutions
of the equation −q + D(ω) = 0, where D(ω) is the Fourier
transform of the dispersion operator D(i∂t ). We assume in the
following (without loss of generality) that there will be only
one real root of this polynomial equation; namely, ω = δ0.
This occurs easily in the context of the third-order-dispersion
induced RR emitted by photonic crystal fibers (PCFs) [13].
Moreover, one should note that the integrand in Eq. (5) contains
an exponential with argument i[−q + D(ω)]z, which can be,
generally speaking, a complicated function of the complex
frequency ω. It is therefore not possible to solve the integral of
Eq. (5) explicitly, unless a specific integration path satisfying
Jordan’s lemma [14] is found. However, such a path can
be found once an additional (but not excessively restrictive)

assumption is made; namely, that the function [−q + D(ω)]
can be expanded in a Taylor series around the only resonance
δ0:

[−q + D(ω)] 	
[
∂[−q + D(ω)]

∂ω

]
ω=δ0

[ω − δ0]

≡ v−1
g [ω − δ0], (6)

where vg(δ0) is related to the group velocity at the RR
frequency. The explicit form of Ĝ = diag(G,Ḡ) deduced from
Eqs. (5) and (6) is given by

Ĝ(z,t − t ′) = ivgσ̂ eiσ̂ δ0[t ′−t]η̂z(vg,t
′ − t), (7)

where η̂z(vg,t
′ − t) = diag(ηz(vg,t

′ − t),ηz(vg,t
′ − t)), and

ηz(vg,t
′ − t) ≡ [sgn(t ′ − t) − sgn(t ′ − t + v−1

g z)]/2 is a use-
ful “truncation” function that appears often in the calculations
and physically provides the position of the RR emitted by the
soliton in the time domain. We are now in position to use
the convolution theorem Eq. (4) and evaluate the radiation
field �g(z,t) perturbatively. Let us define a new matrix kernel
K̂(z; t,t ′) ≡ −Ĝ(z,t)M̂(t ′), and a “constant” vector �G0(z,t) ≡∫ +∞
−∞ Ĝ(z,t − t ′) �U ( �F (t ′))dt ′, which physically represents the

classical background field associated with the soliton tail,
which is the source of the RR classical parametric growth.
With these new definitions we can write Eq. (4) in the following
symbolic way:

�g = �g0 + �G0 + K̂ ⊗ �g, (8)

where the symbol ⊗ denotes the operation of convolution with
respect to the time variable. Using this symbolic notation, one
can rearrange the terms of Eq. (8) to obtain a formal solution
for the amplitude field in terms of a Lippmann-Schwinger
equation [15]:

�g = 1

1 − K̂⊗ (�g0 + �G0). (9)

We can expand the operator [1 − K̂⊗]−1 in a series: [1 −
K̂⊗]−1 = 1 + K̂ ⊗ +K̂ ⊗ K̂ ⊗ + · · · . The zeroth order in the
perturbation theory is given by �g(0)(z,t) = �g0(t) + �G0(z,t). At
this level the interaction between the solitonic potential M̂ and
the radiation is totally neglected, the coupling between fields ĝ

and ĝ† in Eqs. (12) and (13) is not present and squeezing is not
possible. Note that, however, the zeroth order gives reasonable
approximate results if one is only interested in the calculation
of the classical RR amplitude [12,13]. To the next order in the
Born series, one obtains

�g(1) = [1 + K̂⊗](�g0 + �G0) = �g0 + K̂ ⊗ �g0

+ [ �G0 + K̂ ⊗ �G0], (10)

which already takes into account the potential matrix M̂ hidden
in the kernel operator K̂ . The term in square brackets in
Eq. (10) represents the influence of HOD acting on the soliton
and is a purely “classical” quantity. In this paper the main
focus is on the quantum-noise properties of the RR. Thus
we decouple the classical background soliton tail �G0 from
the equations, since this does not affect the evolution of the
quantum fluctuations around the resonant frequency.

Now we can specify the initial quantum vacuum field at
the resonant frequency δ0 (the frequency detuning from the
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soliton carrier frequency): �g0(t) ≡ (â0(t),â†
0(t))T, where â

†
0 and

â0 are, respectively, the t-dependent creation and destruction
operators at the input of the fiber (z = 0), which satisfy the
shot-noise commutation relation [â0(t),â†

0(t ′)] = �(t − t ′). In
quantum optics this vacuum fluctuation field is everywhere
and always exists even in the absence of classical signals.
Due to Eq. (10), vacuum noise fluctuations interact with the
spectrally separated soliton, and acquire a z evolution given
by �g(1)(z,t) ≡ (â(z,t),â†(z,t))T.

From the above definition of the kernel operator K̂ we have

K̂ ⊗ �g0 ≡ −
∫ +∞

−∞
Ĝ(z,t − t ′)M̂(t ′)�g0(t ′)dt ′. (11)

By using Eqs. (2) and (7) the above convolution
can be expressed as follows: K̂ ⊗ �g0 = −vg(H,H̄ )T,
where H ≡ i

∫ +∞
−∞eiδ0(t ′−t)ηz(vg, t

′ − t)[2|F (t ′)|2â0(t ′) +
F 2(t ′) â

†
0(t ′) ]dt ′. It can be shown that, for an arbitrary function

ϕ, one has
∫ +∞
−∞ ηz(vg,t

′ − t)ϕ(t ′)dt ′ = ∫ t−v−1
g z

t
ϕ(t ′)dt ′.

Squeezing of resonant radiation. By substituting Eq. (11)
into Eq. (10) we have

â(z,t) = â0(t) − ivge
−iδ0t

[ ∫ t−z/vg

t

eiδ0t
′

× {2|F (t ′)|2â0(t ′) + F 2(t ′)â†
0(t ′)}dt ′

]
, (12)

â†(z,t) = â
†
0(t) + ivge

iδ0t

[ ∫ t−z/vg

t

e−iδ0t
′

× {F̄ 2(t ′)â0(t ′) + 2|F (t ′)|2â†
0(t ′)}dt ′

]
, (13)

Equations (12) and (13) are the main results of this paper.
They show that creation and annihilation operators associated
with the RR photons become correlated via the classical
soliton F (t), even if photons are uncorrelated at z = 0.
This correlation leads to a squeezing (which we call hybrid
squeezing) that is conceptually an intermediate case between
the SPM-induced squeezing of pulses [8] and the FWM-
induced squeezing of CWs [4]. As in the case of spectral
filtering, the orthogonality between the continuum and the
soliton is broken by the HOD terms, leading to correlations
between them (see Refs. [9,10]).

In order to investigate the properties of the hybrid squeezing
we construct the two-time radiation noise function V (z,t,t ′)
of the quadrature operator X̂(z,t) = â(z,t)e−i
 + â†(z,t)ei
,
where 
 is a local oscillator phase [1,8]: V (z,t,t ′) ≡
〈0|X̂(z,t)X̂(z,t ′)|0〉 − 〈0|X̂(z,t)|0〉〈0|X̂(z,t ′)|0〉, where |0〉
denotes the vacuum state. The full temporal dependence of
V must be retained, since the temporal profile of the soliton
breaks the translational invariance of V along t ; analogous to
what happens in SPM-induced squeezing [8] but unlike the
case of FWM-induced squeezing [4]. Function V (z,t,t ′) can
be written in a semianalytical (but somewhat cumbersome)
form, which we do not show here.

The radiation noise spectrum S(z,ω) is a real function and
can be calculated by using the standard formula

S(z,ω) ≡ 1

T

∫ +T/2

−T/2
dt

∫ +T/2

−T/2
dt ′ V (z,t,t ′)eiω(t−t ′), (14)
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FIG. 1. (Color online) Squeezing spectrum in various conditions
and parameters. (a) Noise spectrum S(δ0) versus propagation distance
z for fixed value of the local oscillator phase 
 = 1.8. (b) Noise
spectrum S(δ0) versus 
 for fixed value of propagation distance z =
0.28. The green dotted and red solid curves in panels (a) and (b)
correspond, respectively, to the soliton wave numbers q = 0.5 and
q = 0.25. The black straight lines in panels (a) and (b) represent the
shot-noise level. (c) Contour plot of (S − 1) showing the z evolution
of the noise spectrum at various noise frequencies ω. Parameters used
in (c): 
 = 1.8, q = 0.25. Other parameters used in panels (a), (b)
and (c): α3 = −0.2; all other HOD coefficients vanish; integration
time T = 10; with these parameters the resonant radiation frequency
δ0 	 −2.7. (d) GVD of the PCF used in this work. At the soliton
wavelength (λS = 1.2 μm), α3 	 −0.2.

where T is the integration time of the spectrum analyzer [8].
Condition S = 1 corresponds to the shot-noise level, and
S(z = 0) = 1 at the beginning of propagation. For sufficiently
long integration times (T 
 t0), expression (14) turns out to
be independent of T , since V (z,t,t ′) is a localized function in
both t and t ′ due to the soliton localization itself. Squeezing
of quantum noise is achieved in those spectral regions for
which S(ω) < 1. We now restrict our attention to the resonant
frequency ω = δ0.

In Fig. 1(a), S(ω = δ0) as a function of z is plotted with fixed
values of 
 and α3 and for two different values of the soliton
amplitude q. This demonstrates the existence of an optimal
value of the fiber length for which maximum squeezing of RR
is achieved. For large values of z, squeezing is lost, so that
one would need relatively short pieces of fiber to observe the
described phenomenon. This is also advantageous in practice
since, in this case, the Raman effect, which manifests itself
through the Raman self-frequency shift of solitons [16], does
not have time to take place and can be neglected, as we also do
here in the equations. Of course, in a more precise treatment,
the effect of the Raman nonlinearity on the correlations must
be considered. This analysis will be reported elsewhere.

Figure 1(b) shows the evolution of S(δ0) versus the local
phase oscillator 
, for fixed values of z and α3, plotted for
two different values of q. In this case, due to the structure
of function V (z,t,t ′), there is a periodic dependency of S on

, and maximum squeezing occurs periodically in 
 with a
period equal to π . In most cases, in our numerical simulations
we managed to obtain states with squeezing parameters S(δ0)
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FIG. 2. (Color online) Schematic of the proposed experimental
verification. A pump laser provides optical pulses that propagate
through the PCF as solitons. The generated resonant radiation (RR)
is isolated with a spectral filter (SF) and coupled into an optical
cavity. A photodiode at one cavity output in combination with a
spectrum analyzer can be used to measure the noise spectrum around
the RR frequency δ0. Tuning the cavity provides access to the quantum
fluctuations at any field quadrature.

down to around 0.9, which should be easily detectable in
possible future experiments.

It is also interesting to explore what happens to the radiation
spectrum around ω = δ0. In Fig. 1(c) the contour plot of
S(ω) − 1 versus the propagation distance z is shown. For
α3 = −0.2, the solitonic source of the radiation is located
at ω − δ0 = 2.7, exactly at the right edge of the spectral
window. In the plot, the blue color indicates those regions for
which squeezing is possible [S(ω) < 1], while red indicates
antisqueezing [S(ω) > 1]. Such a figure also shows that, for
each given value of ω, there is an optimal value of z that shows
maximal squeezing, consistent with Fig. 1(a). Moreover, it
is evident from Fig. 1(c) that one has a more pronounced
squeezing effect in close proximity to the spectral body of the
soliton.

III. PROPOSED EXPERIMENTAL VERIFICATION

Here we propose an experimental way to investigate the
squeezing of RR in PCFs. As a source, a solid-core PCF is
advantageous, since its GVD can be engineered almost at will
by choosing an appropriate hole spacing (pitch) � and hole
size d in the fabrication process. This offers great flexibility
in where the RR can be generated and the fiber structure
proposed here is merely one of many possible examples.
In Fig. 1(d) we show the GVD of a solid-core PCF of a
solid-core PCF with � = 1.1 μm and d = 0.8 μm. This fiber
exhibits a third-order-dispersion coefficient α3 = −0.2 at the
input soliton wavelength λs = 1.2 μm, values that we have
used throughout this paper. The resulting RR is generated in

the normal dispersion regime at λ0 	 1.38 μm. To measure
the generated squeezed vacuum at frequencies around λ0 one
can employ the usual homodyne techniques, in which the
RR is mixed with a strong local oscillator (LO) field that
shares the same mode characteristics as the RR. Alternatively,
this mode-matching condition can also be met by employing
a self-homodyne method based on the dispersive action of
optical cavities near resonance [17,18]. In this approach, the
carrier of the RR essentially acts as the LO and is interfered
with its sideband frequencies via an empty optical cavity. The
signal reflected by the cavity is sent to a photodiode whose
photocurrent can be studied by using a standard spectrum
analyzer (Fig. 2). Note that the analysis frequency corresponds
to the “frequency detuning” shown in Fig. 1(c). Quantum
fluctuations at any quadrature are simply accessed by scanning
the cavity’s detuning with respect to δ0. This causes the noise
ellipse to rotate relative to the mean field and thus corresponds
to changing the LO phase in a traditional homodyne setup. The
use of a properly designed PCF could also help to suppress
the guided acoustic wave Brillouin scattering (GAWBS, see
Ref. [19]), which affects the squeezing performance and is
neglected here for simplicity. A more precise analysis will
include the effect of Raman and Brillouin scattering in the
formalism.

IV. CONCLUSIONS

By using a method based on Green’s function, we have
demonstrated the existence of a different kind of squeez-
ing, which occurs in correspondence to the resonant quasi-
monochromatic radiation emitted by a soliton near the zero-
GVD point of a PCF. Correlation between photons occurs at
the resonant frequencies and is induced by the presence of
the effective potential generated by the soliton. An experi-
mental configuration for observing this phenomenon has been
proposed. Important applications include quantum-enhanced
measurements, quantum-information processing, and quantum
cryptography.
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