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We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional
frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both
fermionic and bosonic atomic clocks. Numerical results for a finite-temperature 8Sr ' S, (F = 9/2) atomic clock

in a magic wavelength optical lattice are presented.
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I. INTRODUCTION

The recent progress in atomic clocks is largely due to
improved methods for cooling, trapping, and manipulating
cold atoms. Improvements in the accuracy of atomic clocks
continues unabated, and reports of progress in fountain clocks
[1,2] and optical lattice clocks [3,4] are published monthly.
An atomic clock with one part in 10'® accuracy was recently
reported [5—7]; this is orders of magnitude better accuracy than
the Cs standard atomic clocks. But collisional frequency shifts
can significantly impact both the stability and accuracy of
atomic clocks. These effects have been systematically studied,
e.g., for hydrogen [8], for Cs [9] and Rb microwave clocks
[10-12], as well as for Sr optical clocks [5-7,13]. It was
demonstrated conclusively in the experiments reported in
Refs. [6,7] on a fermionic 37Sr atomic clock that quantum
statistics can play a critical role in shaping interactions between
atoms, and therefore in determining collisional clock shifts.
When the temperature of the fermionic atomic cloud is so
low that the gas is degenerate, the Pauli exclusion principle
forces atoms in the gas that are in the same internal state to
occupy different vibrational levels, since their spatial wave
function must be antisymmetric. These atoms cannot s-wave
scatter, and therefore at low temperatures, where higher
partial waves are frozen out, no collisional shift is possible.
References [6,7] showed that a small component of the probe
beam along the weak confining direction leads to different
Rabi frequencies for the weak confining direction modes. The
optically induced inhomogeneity transfers some of the atoms
into an antisymmetric internal state, and this antisymmetric
state can s-wave scatter. This gives rise to a small collisional
shift.

The analysis of the experimental results in Refs. [6,7] was
carried out assuming that the internal states of two colliding
atoms in the gas are in a pure state [Jii(|w1)|w2) — [¥2) 1Y),
as in Eq. (13), where |v|) and |y;) can be superposition states
of the ground and excited clock states, as in Eq. (10)]. More-
over, Ref. [14], which introduces a microscopic many-body
approach to treat collisional shifts, Ref. [15], which reports
exact calculations of collisional frequency shifts for several
fermions or bosons, and Ref. [16], which also calculates
collisional shifts due to interatomic interactions, all assume
a pure internal state for colliding atoms in their analysis of
collisional shifts. Here, we generalize the theoretical treatment
of exchange symmetry considerations in collisional clock
shifts to include mixed (density-matrix) internal states for two
colliding atoms, pap.int [see Eq. (2)]. That is, our treatment
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does not assume that the colliding atoms are in a pure internal
state, but allows for mixed states to be treated. We shall
also apply our analysis to bosonic-atom atomic clocks. We
assume that the atomic gas is sufficiently cold that only s-wave
collisions can occur, with higher partial waves frozen out
because of the angular momentum barrier, but we do not
assume that the gas is fully degenerate. If the atoms in the gas
are fermionic, but not in the quantum-degenerate regime (i.e.,
not described by a degenerate Fermi sea of fermionic atoms), a
mixed-state description is generally required. Similarly,
bosonic atoms that are not in the quantum-degenerate regime
require a mixed-state description. We use the mixed-state
(density-matrix) description of Refs. [17,18] to develop a
formalism to treat the correlation and exchange symmetry
considerations necessary to properly describe clock shifts due
to collisions of atoms in a mixed internal state. We are therefore
able to determine how the fact that the gas in Refs. [6,7] is not
quantum-degenerate affects the calculation of the clock shifts.
As we shall show, having a mixed state, rather than a pure state
for the internal state of the colliding atoms, does not strongly
affect the calculated results for the experimental conditions
described in Refs. [6,7].

The density-matrix formalism we develop here could also
allow for calculation of blackbody radiation effects for atomic
clock transitions. With the experimental demonstration of the
suppression of collisional clock shifts due to strong-interaction
many-body effects [19] (which we do not attempt to model
here, since this requires determining the correlated many-body
state of the atoms in a strongly interacting gas, and is beyond
the scope of this work), calculation of blackbody radiation
shifts becomes even more important, since this can be the
largest remaining contribution to the error budget of the atomic
clock.

The outline of the paper is as follows. In Sec. II, we
discuss the effects of exchange symmetry on the collisional
frequency shift in atomic clocks. Section III applies the
concepts developed in Sec. II to a fermionic atomic clock.
In Sec. IV, we calculate the collisional shift for a 87Sr atomic
clock with parameters similar to those used in Refs. [6,7].
Section V develops expressions for the clock shift of a bosonic
atomic clock. A summary and conclusion are presented in
Sec. VL.

II. EXCHANGE SYMMETRY CONSIDERATIONS

The density matrix characterizing systems of identical
bosonic or fermionic atoms must be properly symmetrized.
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This can be accomplished by applying symmetrization or
antisymmetrization operators. For a degenerate gas of N
bosonic atoms, the state can be symmetrized by applying the
symmetrization operator S, whereas for fermionic atoms it
must be antisymmetrized by applying the antisymmetrization
operator A. The symmetrization operator for an N-particle
stateis S = ), P/N! and the antisymmetrization operator is
A=>",68p P/N!, where P is a permutation operator, P =

( 12N ) the sum is over all the N'! permutations of the atoms,
niny---ny

and §p = (—1)? [20]. For example, for two atoms (say, two
atoms undergoing a collision in a gas), S = %(1 + P4p) and
A= %(1 — Psp). Thus, properly symmetrized two-particle
boson and fermion density matrices are of the form

p;y;n — %(1+PAB),0AB%(1+PAB)’ (la)
p;nlglsym — %(1 _ PAB),OAB%(I — PAB). (lb)

The density matrix psp for two colliding atoms has both
an internal part, psp in (for atoms in an atomic clock, the
internal part can be restricted to involve only two atomic
levels, the ground and excited levels participating in the optical
transition of the clock), and an external part, p4 g ext, involving
the motional degrees of freedom of the atoms:

PAB = PAB,ext ® PAB,int- ()

If the atoms are free, or if they are confined by a harmonic
potential, the external part can be separated into a center of
mass and a relative motion part,

PABext = PAB,cm @ PAB rel- 3)

A symmetric density matrix for the internal degrees of
freedom, pap.in = P, 5, Must be multiplied by a symmetric
(antisymmetric) spatial density matrix pap e in the spatial
degree of freedom ryp =r4 —rp for bosons (fermions),
whereas an antisymmetric internal density matrix, pap int =
p%“lgi, must be multiplied by an antisymmetric (Symmetric)
spatial density matrix pap e for bosons (fermions), so that
the full density matrix has the right exchange symmetry.
For cold gas temperatures, all but / = 0 partial waves are
frozen out due to the angular momentum barrier potential
Vi(r) = B2 + 1)/(2ur2), where r = |rap| is the relative
distance between the colliding atoms and w is their reduced
mass. Since s-wave scattering wave functions are symmetric
in the exchange of the colliding particles, we conclude that
at cold temperatures, the internal density matrix must be
antisymmetric for colliding fermionic atoms and symmetric
for bosonic atoms.

For the internal degrees of freedom of the colliding atoms,
the symmetrization operator is S = %(1 + Pup) = % + 411‘7 A
o p and the antisymmetrization operator is A = %(1 — Pyp) =

%(1 — 04 -0p), hence the density matrix for the internal
degrees of freedom is

pig =G +30a-08)pap(3+304-05), (4a)

PiE = i(l—UA O B)PAB %(1 —04-0p). (4b)

Quite generally, the density matrix for the internal degrees

of freedom of two two-level systems can be written in terms
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of the Pauli matrices, o, for each of the two-level systems as
follows [17,18]:

pap =31 +n4s-6)(1+np-0p) +04-Cap-0opl.

®)

Heren; = (0;) = Tr po; is the expectation value of the “spin”
(recall that this is the spin analogy used to describe our two-
level system), as can be verified by multiplying (5) by o;
and tracing over the internal states of atoms A and B, and
the correlation matrix is Cj ap = (0i,40}.8) — (0i.4)(0i B), as
can be verified by multiplying (5) by 0; 40 p and tracing. If
the two colliding two-level atoms are in an uncorrelated (and
therefore unentangled) state, C 45 = 0, and the density matrix
pap reduces to a tensor product of the density matrices for
each of the internal states of the atoms, psp = pa ® 0p.

III. FERMIONIC ATOM CLOCK

The trap potential holding the atoms is taken to be a
harmonic-oscillator potential (see Sec. IV), but at short range,
the potential is the molecular potential of the atoms. Hence,
the potential between two atoms in the trap is the molecular
potential at short range (nm scale), and at large distance (um
or mm scale) it becomes the asymmetric harmonic potential
confining the atoms. The external (trap) states of the atoms
in the atomic clock will be taken to be thermally populated
harmonic-oscillator states at large relative internuclear dis-
tances (see Sec. IV), but in this section we concentrate on the
internal state of the atoms. The internal state for fermionic
atoms must be antisymmetrized at low temperatures; hence,
that part of an arbitrary initial density matrix o for two
atoms that s-wave scatters is given by Apap.A = 2#Psinglet,
where Osinglet = }1(1 — 04 - 0p) is the density matrix of the
singlet state and the correlation coefficient sc = Tr ApapA =
= ma ng+3, Clie,

1
X Psinglet = {Z |:1 - <nA -np + Zczz>]}

1
X{Z(I—O'A-O'B)}. (6)

The quantity s = %[1 — (n4 -ng + ) ; C;;)]is the fraction of
the density matrix that is in the singlet state. Only this part
of the initial density matrix is able to s-wave scatter when
the atoms are fermions. The expression in Eq. (6) plainly
involves the correlation of the spins, both because of the spin-
correlation term involving the C matrix and the n,4 - ng term.
The clock shift for fermionic atoms is given by the expression
[6,8,10,12,21,22]

A—I/Ttht—zh 1/Tdt Hn,@) — n.(1)]
V_T A V( )—Zas,ge? 0 J{()ng() n@()s

(7

where a; .. is the s-wave scattering length for collisions of
atoms in states g and e, and the correlation coefficient s¢(z)
is the instantaneous collisional shift parameter for fermions,
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equal to the pair correlation function G®(0) for collisions of
pure internal states, but more generally is given by

1
#(f) = 1 |:1 - (ﬂA(f) -ng(t) + ZCH(I)>:| . (8

ng(t) and n,(t) are the densities of atoms in the ground and
excited state, respectively [ng = 00gg, Ne = QPec], and @ =
N/V is the density of atoms in the gas. Note that the instan-
taneous collisional shift Av(t) = (2h/m)as g0 ¢(t)[ng(t) —
n.(t)l, i.e., it is proportional to »¢(¢)[n,(¢) — n.(t)].

If the two colliding atoms are in a pure internal state with the
atoms in the same superposition state, |Y1)4 = |11) 5, then the
two-particle internal state is a product state with ny - ng = 1
and C4p = 0, so x#(¢) = 0, and no collisional shift is present.
Since, as explained in Refs. [6,7], atoms in different trap states
Rabi flop at different rates, collisional shifts in pure-internal
states are nonvanishing. It is instructive to consider the case of
a two-atom density matrix that corresponds to a product state,

W) = [¥n)alvn)s, )

with ¥} # Y. This is an uncorrelated (unentangled) pure
internal state with

[V1)a = alg) + Ble) = (5)
(10)

8
[V2)p = vIg) + dle) = ( )
v
whose density matrix in (5) is also a product density

matrix, pasp = pa ® pg, and Cyp = 0. Hence, Eq. (8)
becomes

s(t) = {1 —na(t) - np()], (11)

where the unit vector n; for particle j (= A,B) is n; =
(sinfj cos ¢;, sinb; sing;, cos ;) = (x;,y;,z;). Up to a mul-

tiplicative phase factor,
—i¢ Xa—iy
= (0) = (gl =2 ()
o sin(f4/2) V1 —2z4
(12)

and similarly for |y)p = (?/ ). A simple example may be

helpful. Suppose particle A is in state |g) = || ) and particle
B is in state |e) = |1), and the particles are uncorrelated so
0AB = pa ® pp; then ng = —Z and ng = Z, and using (11),
» = 1/2. This result can be easily understood by noting that
the state can be written as a 50-50 incoherent superposition of
a singlet and triplet density matrix, hence » = 1/2.

Let us compare with the case in which the gas is fully
coherent and the internal state of two fermions that interact via
s-wave scattering is in an antisymmetric pure entangled state,
S5 1va) = gl
This is the form of the internal state taken in the collisional shift
calculation of Ref. [6]; the internal state of the two colliding
particles is a fully coherent antisymmetric state (13), and
therefore the internal state density matrix (5) corresponding

|Was) = 13)
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to this state has only one nonzero eigenvalue, which is unity.
The collisional clock shift Av is then proportional to

52(1) = GH0) = (Was|Was) = 1 — la(r)y*(1) + B8 (1)
(14)

7(t) for the pure-state fermion case reduces to the general
result »«(¢) in Eq. (8), i.e., for a pure state, »» = & = Gf;(ﬂ),
where G(Azg(O) is the pair correlation function for fermions
at zero relative distance. For the specific simple example
suggested above,« =1, =0,y =0,and 6 = 1,50 x =1,
whereas s = 1/2. Hence, the collisional clock shift for the
mixed state is half that obtained for the antisymmetric state.
Reference [6] assumes the internal states of the atoms in the gas
is fully coherent, as in a fully degenerate gas, and therefore
the internal quantum state of the two particles colliding in
an s-wave collision must be antisymmetrized as in Eq. (13).
We do not necessarily assume that the gas is degenerate,
hence we use a density-matrix description. In our simple
example, the two colliding particles in the gas are either (with
probability 50%) in an internal antisymmetric state (in which
case the motional state must be symmetric) or in an internal
symmetric state (in which case the motional state must be
antisymmetric so only odd partial waves occur, but since the
gas is cold, these collisions are frozen out, i.e., only s-wave
collisions occur). Hence, in the simple example considered
here, both possibilities occur with equal probability, and the
factor s« = 1/2. Note that if the gas really is fully degenerate,
only the antisymmetric internal state (i.e., the singlet) is
populated, and s« is unity, as obtained in Ref. [6].

The collisional shift parameter s for the state in the
specific simple example given above is the largest possible for
any product state, and it has s = 1/2. The largest possible
collisional shift parameter for an antisymmetric pure state
is 5z = 1. The smallest collisional shift is for the product
state with ny -ng =1, ie., [¢¥) = |¢¥»), for which s =
0. The smallest possible collisional shift parameter for an
antisymmetric pure state is 5 = 0. For any given |¢) and
[2), s for the product state is always smaller than 5 for the
antisymmetric state (13), s < . This suggests that it may not
be worth going to the degenerate gas limit for a fermionic gas,
i.e., it would suggest that the collisional shift is smaller if the
gas is not fully quantum degenerate.

Note that the uncorrelated case, pag = pa ® pp in (9),
and the pure entangled state case corresponding to |W4g) in
Eq. (13), are the two extreme cases of states that are possible;
mixed correlated and mixed entangled states fall in between
these two limits [17]. Note also that our formulation allows us
to specify any many-body state of the gas and thereby calculate
the clock shift for arbitrary many-body gas states by tracing out
all but two particles, thereby obtaining a two-particle density
matrix.

1IV. MODELING THE ¥Sr OPTICAL CLOCK

In the experiments reported in Refs. [6,7], a gas of 8/Sr ' S,
(F = 9/2) atoms in a magic wavelength optical lattice [4] with
wavelength A = 813.43 nm, which to a good approximation
forms a harmonic trap with frequencies w, = w, =27 x
450 Hz and w, =~ 27 x 80 KHz, is optically pumped to the
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mp = 9/2 (or the mp = —9/2) state. The excited clock state,
le) (= |1)), is the 3P, state and the clock transition has a
wavelength of ~698 nm. The gas is at a sufficiently high
temperature (e.g., T = 1 or 3 uK) that the harmonic-oscillator
motional states (n,, n,, n;) of the atoms in the gas can
be considered populated according to a Maxwell-Boltzmann
distribution (at T = 1 uK, ny = n, = 46). The laser probing
the clock transition propagates along the one-dimensional
(1D) lattice axis, and the atoms in the gas have a slightly
different Rabi frequency €2, ,, .. depending on which trap
state they populate. With perfect alignment of the probe
laser along the strong confinement axis, a residual angular
spread AfO between the probe laser beam and the optical
lattice k remains due to the finite size of the lattice beam.
Moreover, if the symmetry is broken due to either aberrations
in the beam profile or angular misalignment A6 between
the lattice and the probe beam, an even larger effective
misalignment results. As explained in Ref. [7], since the
transverse trap is isotropic, a small net misalignment angle
A along X results in a wave vector of the probe laser that is
given by k &~ k(z + A0 X). Hence, there are slightly different
Rabi frequencies for the different trap states, 2, , .. =

Qo e TR L, (02) Ly, (12) L, (n2), where Qg is the bare
Rabi frequency, L, are Laguerre polynomials, and ; are the
Lamb-Dicke parameters for the transverse and longitudinal

o in(Ag i I 7
directions, n, = n, = % o 1o = 37\ Zmar 0231

We now calculate the clock shift for such a cold but
nondegenerate gas with a thermal population of trap states
and an internal state so that two colliding atoms are in a
noncorrelated product internal state. The internal state density
matrix is given at any time ¢ by a general two-qubit classically
correlated state that takes the form [17]

1
pC(t) = i ; Pll4n4 (1) 04] Z Pi[1+ng,(1) - o5l
(15)

where k = ny,ny,n,, and Py = e B/T /3" e~ E/T s the
Boltzmann distribution probability for state k (and similarly
for P;). Presumably {P;} are constant in time. We used a
Boltzmann distribution to calculate the probabilities for finding
atoms in the various trap states in the calculations for the 37Sr
clock in Sec. IV A, since the experimental temperatures used
were sufficiently high for this to be an excellent approximation.
At lower temperatures we would use the correct Fermi (or, in
the case of bosons, Bose) distribution. The evolution of the
unit vectors ny () and np x(¢), and the population densities
ng(t),n.(t) (which are also functions of the trap state k), are
given by the evolution operator for the two-level system in the
presence of the probe laser, 2(¢,0) = e~/ (where Hyy is
the light-matter Hamiltonian), which is given by

U(t,0)
cos (%) + éz—i sin (%) % sin (%)
N %sm (%) cos (%) - % sin (%)
- ae)
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We defined frequency, Q, =
|2, .n,.n.1* + A2, and the laser detuning A = w — (E, —

Eg)/h. For an atom that at ¢ = 0 is in the ground electronic
state and in trap state ny, n,, n;, the amplitudes «(t) and B(¢)
of (12) are

" Qr\ A ([
wonon()=cos| —=— ) — —sin|{ —= ),
oy 2 Q, 2

b =12 (R
Ny My Ny =-—SsSm\— 1.
e Q, 2

The density matrix for the classically correlated state can be
written in the form of Eq. (5) with Bloch vectors

na(t) =) Pema(0), mp(t)=) Pmgi(r), (18)
k 1

the generalized Rabi

A7)

and the correlation matrix vanishes, C;; = 0. The average
clock-shift coefficient 7(¢), where the average is over the trap
states, is given by

—ny (1) -np (1)
4

1
(1) = Z PP,
k.l

1

=3 [1 — ; P, P, cos @k,,(t)} ,

where ®y ;(f) =mngu x(¢) - np;(¢). Note that >¢(¢) cannot be
written as a product of averages over the first and second
particles separately since ©y ;(¢) generally does not factorize
into a product of terms depending separately on the first and
second particle. In the clock shift calculation, we need to
average over motional states as follows:

19)

A_—l Tth t—2h ! Tdt Nn, () — n.()]
V—?/O V()—Zax,ge?/o %()ng() ne(t)],
(20)

where

1
Ol (0) = 1o = 7 3 Pelng t) = ne ()]
k

x {Z P[1—ng () nB,m]} - @
1

Note that the quantity »«(¢)[ng(t) — n.(t)] is proportional
to the average instantancous frequency shift Av(r), i.e.,
#(O)ng(t) = n()] = za—

Av(t).

We also calculate the collisional clock shift for a gas with
a thermal population of trap states and an internal state so
that two colliding atoms are in an entangled internal state with
collisional shift parameter (1),

) =) PP Y PP — a0y () + B@)S* (1)1,
k,l k,l
(22)

The instantaneous collisional clock shift in this case is
proportional to 3(t)[ng(t) — n.(t)]. We are therefore able to
compare and contrast this with 7¢(¢). Note that the average
(1) can be written as an average of (t) over ny, ny, n;
for each of the two particles A and B, but this average also
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time (ms)

FIG. 1. (Color online) Average population inversion,
[ng(t) — n.(t)], vs time for three different detunings for 7 =1 uK.
The fact that the Rabi frequency depends on the motional state
causes the amplitude of the Rabi oscillations to decay with time.

cannot be expressed by taking averages over «, 8, and y and
& separately because 3(¢) does not factorize into a product of
terms depending separately on the first and second particle.

A. Results of ¥’Sr atomic clock calculations

We now present numerical results that highlight the dif-
ference between using the two extreme limits for describing
the internal states of two colliding atoms in the gas: a product
state given by pap = pa ® pp and a pure antisymmetric state
as given in Eq. (13).

In our calculations, we use parameters for the system based
upon those in Refs. [6,7]. In all of our calculations, we use a
Rabi frequency 29 = 2w x 59 Hz. Figure 1 shows the average
population inversion [ny(t) — n.(t)] versus time for detunings
A =21 x 0,25, and 50 Hz for a gas at temperature 7 = 1 uK
and for a laser misalignment of A = 10 mrad. The atoms
start off at = 0 in the ground electronic state and Rabi flop
with time. For zero detuning, the oscillation of the average
population inversion with time is about zero population
inversion, but for finite A the time-averaged population is
different from zero, and grows with detuning since fewer atoms
are put into the excited state for higher detuning. The decay of
the Rabi oscillations with time results because of the thermal
distribution of the atoms and the fact that the Rabi frequencies
€2, n,.n. depend on the trap state populated in the thermal
distribution.

time (ms)

FIG. 2. (Color online) 72(¢) (heavy curves) and the pure state ()
(light curves) vs time for three different detunings and for 7 = 1 uK.
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FIG. 3. (Color online) s(t)[n,(t) — n.(¢)], which is proportional
to the clock shift Av(z), vs time for three different detunings and for
T=1 /j.K.

Figure 2 compares the average correlation coefficient
7(t) (heavy curves) and the pure state 5(¢) (dashed curves)
versus time for A =27 x 0, 25, and 50 Hz and for a gas
temperature 7 = 1 K. The largest difference between 7(¢)
and 32(¢) occurs for A = 0, and the difference diminishes with
increasing A. The average correlation impacts the average
collisional frequency shift [see Eqgs. (19), (20), and (21)].
We see from the figure that these quantities increase with
the clock run-time. For small detunings, the average pair
correlation function at zero particle separation for pure states,
Z(t) = G@(0), is substantially larger than () for the product
states, and the difference between these quantities diminishes
with increasing A. This, of course, affects the collisional clock
shift, as we shall see in the next figure.

Figure 3 shows the quantity »«(¢)[n,(¢) — n.(t)] versus
time calculated for three detunings, A =27z x 0, 25, and
50 Hz, and for T = 1 pK. This quantity is proportional to the
instantaneous clock shift Av(z) [but since the s-wave scattering
length ay ¢, is not well known, the factor (2% /m)a, . in Eq. (7)
is removed from the quantity plotted]. It is clear from Fig. 3,
and from Eq. (7), that the temporal average of the clock shift
for A = 0 will be close to zero if the temporal average is taken
overatime ¢y = T, which corresponds to a full Rabi cycle, but
for finite detuning, the temporally averaged clock shift grows
with detuning.

Figure 4 compares the product state »(t)[n,(t) — n.(t)]
(solid red curves) and the pure state (f)[ng(t) — n.(¢)]
(dashed black curves) for A = 0 and A = 27 x 50 Hz. The
~25% difference between (¢) and 3(r) evident in Fig. 2
for A =0 at large times shows up mostly at the extrema
of »(t)[ng(t) — n.(t)] and >(t)[n,(t) — n.(t)] in Fig. 4; else-
where the population-difference [n,(f) — n.(¢)] becomes small
and the difference between the averaged quantities plotted
in Fig. 4 become small and hard to see. As the detuning
increases, the magnitude of the collisional phase shiftis greater
for 3(t)[ng(t) — n.(t)] than for s(t)[n,(t) — n.(¢)], but the
differences in »(r) and 5(r) decrease with increased detuning,
as is evident from Fig. 2. Thus, the nondegenerate gas has a
lower clock shift (in magnitude) than the degenerate gas with
an antisymmetric internal state. The effect appears to be very
small, but in fact we shall see in Fig. 8 that, partly due to the
strong cancellation of the positive and negative clock shifts
[particularly for A = 0—see Fig. 4(a)], the time-averaged
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FIG. 4. (Color online) (a) »(t)[n,(t) — n.(t)] (solid red curves),

which is proportional to the clock shift Av(z), and the pure state

3(t)[ng(t) — n.(t)] (dashed black curves) vs time for detuning A =

0, and (b) A =27 x 50 Hz. The gas temperature is taken to be
T =1 uk.

clock shifts »(tf)[ng(ty) —
are not inconsequential.

Figure 5 compares »(t)[ny(t) — n.(t)] (solid red curves)
and (tf)[ng(t) —n.(t)] as a function of time for three
different detunings at a relatively high temperature of 7 =
10 uK. The magnitude of the collisional phase shift is a
little larger for 3«(t)[n,(t) — n.(t)] than for s¢(¢)[ng(t) — n.(2)].
The difference increases with increasing detuning, but then
saturates. The behavior here for T = 10 uK is actually quite
a bit different from that shown in Fig. 4 for T = 1 uK. For
example, the decay of the clock shift oscillations as a function
of time at A =0 in Fig. 5 is not evident in Fig. 4, and the
oscillations with time at A = 27 x50 Hz in Fig. 4 are largely
damped in Fig. 5. Here (and in Fig. 4), for zero detuning, the
instantaneous clock shift oscillates around zero with time, but
this changes with increased detuning. Note that the ordinate
scales of the three frames in Fig. 5 are different.

Figure 6(a) plots the average excited-state population n.(ty)
and Fig. 6(b) the average clock shift Z(¢)[ng(tf) — n.(tr)]
versus detuning A for #; = 80 ms (note that for Figs. 6-8,
the bar indicating average also means the average over the
clock time 7). The population for A =0 and 7, = 80 ms
is about 60% in the excited state, so ne(tf) > ng(tf) This is
why the quantity 5(t )[ng(ty) — n.(ty)] is negative for A = 0.
At the detuning A ~ 27 x 0.15 Hz for which n.(tf) = 0.5,
clearly, 3(t7)[ng(tf) — ne(tr)] = 0. At higher detunings, the
oscillations in 3(t s)[n,(tf) — n.(t7)] as a function of detuning
are due to the oscillations in the population n.(f ;) versus A.

Figure 7 plots n.(ty) and Ze(tf)[ng(tr) — ne(ty)] versus
detuning A for 7 =1 and 3 uK at a pulse duration of
t; = 1.7 ms, which is near the start of the first Rabi cycle—see

ne(tp)l and Z(tp)[ng(ty) — ne(ts)]
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FIG. 5. (Color online) »(t)[n,(t) — n.(t)] (solid red curves) and
2(t)[ng(t) — n.(¢)] (dashed black curves) vs time for three detunings,
A=0, A=2r x25 and A =27 x 50 Hz, and for T = 10 uK.
Note the different ordinate scales.

Fig. 1. Both the average excited-state fraction in Fig. 7(a)
and the collisional shift in Fig. 7(b) are smaller for the
larger temperature. The collisional shift is seen to be very
substantially smaller at 7 =1 uK than for 7 =3 uK in
Fig. 7(b). The temperature effect is dramatic for all detunings,

e., #(ty)lng(ty) — ne(ty)] is significantly reduced as the
temperature is decreased from 7 =3 to 1 uK for virtually
all detunings. At A = 0, »(t5)[ng(ty) — n.(ty)] is positive [in
contrast with Fig. 6 for , = 80 ms], since this is at the start of
the first Rabi cycle (see Fig. 1) and n.(tf) < n,(ts). Moreover,
very little remains of the oscillations with detuning that were
so prominent in Fig. 7. It is interesting to note that if one
plots 3¢(t7)[ng(ty) — n.(ty)] versus n(ty) [i.e., if one plots
the ordinate of Fig. 7(b) versus the ordinate of Fig. 7(a)], the
collisional shift is nearly linear with n.(¢) for both T = 1 and
3 uK, but the slope is strongly temperature-dependent and
increases with increasing temperature. Holding n. () (or the
excitation fraction) constant, and lowering the temperature of
the gas, serves to significantly lower clock shifts in this regime
of low excitation fraction.

Figure 8 plots the clock shift Av for 7y =80 ms as a
function of temperature for four different detunings. For A = 0
and A = 27 x 15 Hz, the collisional shift first decreases with
temperature from zero to around a value of —0.05, and at
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FIG. 6. (Color online) (a) Average excited-state population n(t )

vs detuning A for t; = 80 ms. (b) s(ty)[n,(t;) — n.(ty)] (solid red

curve) and (¢ ;)[n,(ts) — n.(t;)] (dashed black curve) vs detuning
A for t; = 80 ms.

around 0.75 pK, Av begins to increase with temperature.
At large temperatures, Av appears to tend to zero. For
the higher detunings of A =27 x 25 and A =27 x 50 Hz
shown in the second panel, the collisional shift increases
with increasing temperature and then saturates. Again, the
magnitude of s(t)[ng(t) — n.(¢)] is almost always smaller
than (1 ;)[ng(¢r) — n.(ty)]. Moreover, we see a very different
temperature dependence of the clock shift for small detunings
than for larger detunings.

T

L L )

IRAASRARE LI

A (2rkHz)

FIG. 7. (Color online) (a) n.(ty) and (b) Z(t;)[ny(t;) — n.(ts)]
vs detuning A for t; = 1.7 ms.
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FIG. 8. (Color online) »(ts)[ny(tf) — n.(ts)] (solid curves) and
2(ty)[ng(ty) — n.(ty)] (dashed curves) vs temperature for ; = 80 ms
and for four detunings: (a) A =0 and A =27 x 15 Hz, and
(b) A =21 x25and A = 2m x 50 Hz.

V. BOSONIC ATOM CLOCK

Let us now consider a nondegenerate gas of bosonic atoms
that is nevertheless sufficiently cold so that only s-wave
collisions participate in the collisional frequency shift. For
example, consider an atomic clock based on neutral bosonic
atoms trapped in a deep “magic-wavelength” optical lattice, or
more specifically, 88Sr atoms in the 552 'Sy |F = 0,My = 0).
A weak transition to the 3 Py | F = 0, M = 0) state is available
when a static magnetic field enables a direct optical excitation
of forbidden electric-dipole character that is otherwise pro-
hibitively weak (the transition occurs by mixing the 3 P; with
the 3 Py state) [24]. Such an atomic clock, probed using Ramsey
fringe spectroscopy [25], was analyzed in Ref. [26]. For the
collision of two bosons in such a gas via s-wave collisions,
the internal two-particle state must also be symmetric. The
internal states of the atoms in such a collision can be of
the form [14) + [41), [L4), or [$1), where |{) = |g) and
|1) = |e). The s-wave scattering lengths for these states are
denoted ay g, dy, ¢, and g .., respectively. The Hamiltonian is
given by [26]

. . N RQE) i, ara
H = Z A(ala,Z — a;ag) - (ag,ae +aja,)
i=g,e
4mh?
Atata A
+ - Z as,ij@; a;4;0; . (23)
L, ]=8,e

This leads to the following formula for the collisional fre-
quency shift for bosons [12,21,22]:

on 1 [T
Ay = — —
mT 0

+ a5, g0 741, ) (D (1) + A e 3217 (N1}

dt {as,ge%m%\w B)[ng(t) — n(1)]

(24)
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This expression can be compared with Eq. (7) for the fermion
case. Here, clock shifts are due to gg s-wave collisions,
ees-wave collisions, and ge s-wave collisions. The three ¢
correlation parameters that multiply these scattering lengths
can be determined by calculating the projection of the density
matrix of two colliding particles onto the symmetric states,

J%(IN) + 1)), 111). and [ ). For example,

Piaty pas(t) Piygy = 240013 (0), (25)
where Pjy4) = [11) (11 | is the projector onto state | 11), and
#11)(1) = Te(Pirgy pas(t) Piay))- (26)

After some algebra, we find that the correlation coefficients
are given in terms of the parameters of the density matrix in
Eq. (5) by

%7”“;1“) = }1[1 + Ny N+ Ny yNpy — Ny N,
2

+Cxx + ny - sz]a (27)

#y =4Il —na:—np . +na.np. +C.l,  (28)
A1ty = %[1 + Ny, + np + Ny Npg, + sz]~ (29)

When the atoms are not correlated, the C;; terms vanish in these
formulas, and the correlation coefficients are given slowly in
terms of the expectation values {n; ;} of the “spins.”

In order to use these results to calculate the clock shifts
for atomic clocks using such atoms as 133Cs, $7Rb, and
88Sr, three s-wave scattering lengths, d ¢¢, s e, and ag g,
would be required. Hopefully, improved experimental values
for these s-wave scattering lengths, perhaps in conjunc-
tion with theoretical calculations, will allow a comparison
of theory with collisional clock shifts for bosonic atomic
clocks.

VI. SUMMARY AND CONCLUSION

In summary, we developed a formalism that can be used to
calculate atomic clock shifts for arbitrary mixed states of an
atomic gas. We applied the formalism to the fermionic ®’Sr
atomic clock reported in Refs. [6,7]. When the two fermions
that collide in the gas are in a pure antisymmetric internal state,

[Was) = Lz(ll/fl)lllfz) — [Yr2) 1)), the formalism reduces to

the one presented in Ref. [6]. For sufficiently high temperatures
(e.g., T = 1or3 uK), the gas may be closer to an uncorrelated
gas, and we can treat this case, as well as the case of an arbitrary
initial correlated state, by projecting out the two-body density
matrix and using it to describe the collision process of the
atoms in the atomic clock. We saw in Sec. IV A that, for the
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experimental conditions described in Refs. [6,7], when the
internal state of colliding pairs of atoms in the gas is taken as a
product mixed state rather than an antisymmetric pure state, the
collisional clock shift is somewhat reduced, but the reduction
is small. Moreover, we showed how the formalism can be used
to describe a Bose gas; then, all the s-wave scattering lengths
(s, gg 05, ce, s, cg) are required to calculate the collisional clock
shift [26].

The formalism developed here can also be applied to
atomic clocks that use the Ramsey fringe double-resonance
technique [25,26]. Moreover, it can be used for clocks that have
a strongly correlated initial state, since arbitrary two-particle
density matrices can be modeled using the form in Eq. (5).
Furthermore, even if the initial gas is a highly correlated
many-body state, the two-body density matrix can be projected
out of the many-body density matrix. The formalism might
also be of utility for treating magnetometry wherein the
collisions affect the spin-relaxation time depolarization via
depolarization.

Another possible application of the density-matrix methods
introduced here is the calculation of blackbody radiation
(BBR) shifts. BBR shifts in atomic clocks are caused by
perturbation of the atomic energy levels of the ground and
excited clock levels by the oscillating thermal radiation. Since
we can carry out calculations with arbitrary density matrix
(mixed) states, our method could be used to calculate BBR
effects, which can populate both ground and excited clock
states of an atomic clock operating at microwave frequencies
if the clock operates at room temperature. Moreover, both
ground and excited atomic levels of an optical frequency clock
transition are perturbed by BBR, e.g., for the ' Sy — 3 P, clock
transition of strontium, both clock levels experience a BBR
shift [27]. The overall BBR correction is the difference of
the BBR shifts for the two levels. If there is a small residual
magnetic field present, the BBR could shift the energy of
ground hyperfine levels due to coupling between the various
F,Mp levels of the ground state. Such shifts would be in
addition to shifts due to coupling of the ground and excited
clock states to other states. A density-matrix method of the
type introduced here could be used to deal with the former
type of clock shift.
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