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PT -symmetric sinusoidal optical lattices at the symmetry-breaking threshold
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The PT -symmetric potential V0[cos(2πx/a) + iλ sin(2πx/a)] has a completely real spectrum for λ � 1
and begins to develop complex eigenvalues for λ > 1. At the symmetry-breaking threshold λ = 1 some of the
eigenvectors become degenerate, giving rise to a Jordan-block structure for each degenerate eigenvector. In
general this is expected to result in a secular growth in the amplitude of the wave. However, it has been shown in
a recent paper by Longhi, by numerical simulation and by the use of perturbation theory, that for a broad initial
wave packet this growth is suppressed, and instead a saturation leading to a constant maximum amplitude is
observed. We revisit this problem by explicitly constructing the Bloch wave functions and the associated Jordan
functions and using the method of stationary states to find the dependence on the longitudinal distance z for a
variety of different initial wave packets. This allows us to show in detail how the saturation of the linear growth
arises from the close connection between the contributions of the Jordan functions and those of the neighboring
Bloch waves.
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I. INTRODUCTION

The study of quantum mechanical Hamiltonians that are
PT -symmetric but not Hermitian [1–6] has recently found
an unexpected application in classical optics [7–15], due
to the fact that in the paraxial approximation the equation
of propagation of an electromagnetic wave in a medium
is formally identical to the Schrödinger equation, but with
different interpretations for the symbols appearing therein. The
equation of propagation takes the form

i
∂ψ

∂z
= −

[
∂2

∂x2 + V (x)

]
ψ, (1)

where ψ(x,z) represents the envelope function of the ampli-
tude of the electric field, z is a scaled propagation distance,
and V (x) is the optical potential, proportional to the variation
in the refractive index of the material through which the wave
is passing. A complex V corresponds to a complex refractive
index, whose imaginary part represents either loss or gain. In
principle the loss and gain regions can be carefully configured
so that V is PT symmetric, that is, V ∗(x) = V (−x).

Propagation through such a medium exhibits many new and
interesting properties, such as nonreciprocal diffraction [16]
and birefringence [13]. One of the main features of complex
optical lattices is the nonconservation of the total power. In
the PT -symmetric case this can lead to effects such as power
oscillations [13]. It has been argued that one can distinguish
three universal dynamics [17] related to broken or unbroken
symmetry. While this is in general true, the behavior can be
modified considerably for special initial conditions, as we will
discuss in the present paper. Many familiar effects such as
Bloch oscillations and dynamical localization get drastically
modified in the presence of imaginary potentials and PT -
symmetry [18,19]. The new features of complex optical lattices
provide exciting opportunities for engineering applications.
As an example, the possibility of realizing unidirectional
light propagation has been envisaged [20]. In the case of
high intensities the propagation equation (1) gets modified
due to the Kerr nonlinearity, leading to an additional term

proportional to |ψ |2ψ . It has been shown in Ref. [15] that the
influence of the nonlinearity on the nonreciprocal effects can be
advantageous for applications such as unidirectional couplers.
It is interesting to note that the nonlinear propagation equation
also has a counterpart in quantum dynamics, as the mean-field
description of Bose-Einstein condensates, where there has also
been interest in PT symmetric models [21]. However, for the
purposes of this paper, we shall limit ourselves to the linear
case.

A model system exemplifying some of the novel features of
beam propagation in PT -symmetric optical lattices uses the
sinusoidal potential

V = V0[cos(2πx/a) + iλ sin(2πx/a)].

This model has been studied numerically and theoretically,
e.g., in Refs. [9,12,13]. The propagation in z of the amplitude
ψ(x,z) is governed by the analog Schrödinger equation (1),
which for an eigenstate of H , with eigenvalue β and z

dependence ψ ∝ e−iβz, reduces to the eigenvalue equation

−ψ ′′ − V0[cos(2πx/a) + iλ sin(2πx/a)]ψ = βψ. (2)

These eigenvalues are real for λ � 1, which corresponds to
unbroken PT symmetry, where the eigenfunctions respect the
(antilinear) symmetry of the Hamiltonian. Above λ = 1 pairs
of complex conjugate eigenvalues begin to appear, and indeed
above λ ≈ 1.77687 all the eigenvalues are complex [22].
Clearly one would expect oscillatory behavior of the amplitude
below the threshold at λ = 1 and exponential behavior above
the threshold, but the precise form of the evolution at λ = 1
is less obvious. At first sight one would expect linear growth
(see e.g., Ref. [23]) because of the appearance of Jordan blocks
associated with the degenerate eigenvalues that merge at that
value of λ, but, as Longhi [12] has emphasized, this behavior
can be significantly modified depending on the nature of the
initial wave packet.

It is this problem that we wish to discuss in the present paper.
In Sec. II we explicitly construct the Bloch wave functions
and the associated Jordan functions corresponding to the
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degenerate eigenvalues and then use the analog of the method
of stationary states to construct the z dependence. We find
that the explicit linear dependence arising from the Jordan
associated functions is indeed canceled by the combined
contributions from the nondegenerate wave functions (which
individually give an oscillatory behavior). In Sec. III we ana-
lyze this cancellation in detail, showing how the coefficients
of the two contributions are closely related, and obtaining an
approximate analytic expression for the z derivative of their
sum. Our conclusions are given in Sec. IV.

II. BLOCH AND JORDAN ASSOCIATED
WAVE FUNCTIONS

At the threshold λ = 1, the potential V in Eq. (2) becomes
the complex exponential V = V0 exp(2iπx/a), for which the
Schrödinger equation reads

−ψ ′′ − V0 exp(2iπx/a)ψ = βψ. (3)

This is a form of the Bessel equation, as can be seen by
the substitution y = y0 exp(iπx/a), where y0 = (a/π )

√
V0,

giving

y2 d2ψ

dy2
+ y

dψ

dy
− (y2 + q2)ψ = 0, (4)

where q2 = β(a/π )2. Thus the spectrum is that of a free
massive particle, shown in the reduced zone scheme in Fig. 1,
and for q ≡ ka/π not an integer, the solutions ψk(x) =
Iq(y) and ψ−k(x) = I−q(y) are linearly independent and have
exactly the correct periodicity, ψk(x + a) = eikaψk(x), to be
the Bloch wave functions. It is important to note, however,
that because the original potential is PT -symmetric rather
than Hermitian, these functions are not orthogonal in the
usual sense, but rather with respect to the PT inner product
[see Eq. (9)].

1 1
k.

a

π

2

4

9

16

β.
π

2

a2

FIG. 1. Band structure for λ = 1 in the reduced zone scheme. The
Bloch momentum k is plotted in units of π/a and the eigenvalue β in
units of (a/π )2.

A. Jordan associated functions

However, for q = n, a nonzero integer, In(y) and I−n(y)
are no longer independent, but are in fact equal, signaling
the degeneracy of the eigenvectors at those points, and the
formation of spectral singularities and Jordan blocks. In
that case the Bloch eigenfunctions do not form a complete
set, and we must search for other functions, still with the
same periodicity, to supplement them. These are the Jordan
associated functions (see the Appendix and Refs. [24,25]),
which we denote by ϕk(x) ≡ χn(y), defined not by the
eigenvalue equation itself, but by[

y2 d2

dy2
+ y

d

dy
− (y2 + n2)

]
χn(y) = In(y), (5)

and the periodicity condition χn(eiπy) = eiπχn(y), corre-
sponding to the Bloch periodicity ϕk(x + a) = eikaϕk(x). A
particular solution of this equation, which can be expressed
explicitly in terms of generalized hypergeometric functions, is
given by

χPI
n (y) =

∫ y

y0

dz

z
In(z)[Kn(z)In(y) − Kn(y)In(z)], (6)

as is easily checked by differentiation and use of the Wron-
skian identity Kn(y)I ′

n(y) − K ′
n(y)In(y) = 1. However, the

corresponding ϕPI
k (x) has a discontinuity in its imaginary part

at x = ±a and does not have the required periodicity. This
problem can be rectified by recognizing that we may add to
χPI

n any multiple of In(y), or more importantly Kn(y). The
latter displays exactly the same kind of discontinuity1 as χPI

n ,
and by choosing its coefficient judiciously the discontinuities
can be made to cancel. Specifically, we take

χn(y) = χPI
n (y) − 1

2Kn(y). (7)

An alternative derivation of this relation using the definition of
ϕk(x) in terms of dφk(x)/dk will be given in the next section.
With the addition of the last term the resulting ϕk(x) is not
only free of discontinuities but also obeys the correct Bloch
periodicity condition. This is shown in Fig. 2, where we plot
the real and imaginary parts of ϕPI

k (x) and ϕk(x) for q = 2.
Note the PT symmetry of ϕk(x), namely, ϕk(−x) = ϕ∗

k (x).
The complete set of functions, orthogonal with respect

to the PT metric, now consists of the Bloch eigenfunctions
ψk(x), supplemented by the Jordan associated functions ϕk(x)
for k = nπ/a with n > 0, and a general wave function f (x)
may be expanded as

f (x) = c0ψ0(x) +
∑

k �=nπ/a

ckψk(x) +
∑
n>0

[αnIn(y) + βnχn(y)].

(8)

Here we have discretized the problem by putting the system
in a box of length 2Na, in which case k → kr = rπ/(Na).

1This arises because Kn(y) has a branch cut along the negative real
axis, and when x passes through ±a one should really go to the next
Riemann sheet.
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FIG. 2. (Color online) The real (green, continuous) and imaginary (red, dashed) parts of (a) the particular integral ϕPI
k (x) and (b) the

corrected Jordan function ϕk(x) for a = π , k = q = 2, and V0 = 2.

The coefficients ck can be obtained [9] by using the PT
orthogonality∫

dx ψ−k(x)ψk′(x) = δkk′

∫
dx ψ−k(x)ψk(x), (9)

as

ck =
∫

dx ψ−k(x)f (x)∫
dx ψ−k(x)ψk(x)

. (10)

Here the sign of the denominator alternates from band to
band, reflecting the indefinite nature of the PT metric.
However, this relation breaks down precisely at the Brillouin
zone boundaries, where the single Bloch eigenfunctions are
self-orthogonal,

∫
dx I 2

n (y) = 0, another indication that we
need the supplementary Jordan functions.

Thus it is βn, rather than αn, that is determined by
integrating f (x) with respect to In(y):

βn =
∫

dx In(y)f (x)∫
dx In(y)χn(y)

, (11)

while αn is subsequently determined by integrating f (x) with
respect to χn(y).

As an immediate check of the correctness of the functions
χn, the identity

1 = I0(y) − 2I2(y) + 2I4(y) − · · · (12)

implies that∫
dx χ2n(y) = 2(−1)n

∫
dx I2n(y)χ2n(y), (13)

for n > 0, a relation we have verified numerically.

B. Method of stationary states

In standard quantum mechanics one method of solving the
time-dependent Schrödinger equation

i
d

dt
ψ(x,t) = Hψ(x,t) (14)

is to expand the initial wave function ψ(x,0) in terms of the
(complete) set of orthonormal eigenfunctions ψr as

ψ(x,0) =
∑
m

amψm(x), (15)

with the coefficients am given by the overlap

am =
∫

dx ψ∗
m(x)ψ(x,0). (16)

The wave function at time t is then given by

ψ(x,t) =
∑
m

ame−iEmtψm(x). (17)

Here we have essentially the same problem, with z taking the
role of t , but with the crucial difference that we must include
the Jordan associated functions in the sum, which now takes the
form of Eq. (8), with the coefficients determined as in Eqs. (10)
and (11). As is well known, and has been emphasized again
recently in Refs. [12] and [23], the time dependence then takes
a different form. The Jordan function ϕr satisfies the equation
(H − Er )ϕr = ψr , and hence

e−iH tϕr = e−iEr t e−i(H−Er )tϕr

= e−iEr t (ϕr − itψr ). (18)

Thus, in addition to the usual phase factors making up
the sum for the time-dependent wave function, one has an
explicit factor of t multiplying the degenerate eigenfunctions
associated with a Jordan block, giving the complete time
dependence of the initial wave function of Eq. (8) as

f (x,t) = c0ψ0(x) +
∑

k �=nπ/a

ckψk(x)e−ik2t

+
∑
n>0

[(αn − itβn)In(y) + βnχn(y)]e−i(n2π2/a2)t .

(19)

However, the explicit factor of t appears only when the
coefficient of the Jordan function is nonzero. The expansion
of Eq. (12) is a case in point.

In the corresponding optical problem it therefore appears
that the z dependence should be expected to be oscillatory
for λ < 1, exponential for λ > 1, and linear precisely at
the symmetry-breaking threshold λ = 1 for initial states
that excite a Jordan function. However, Longhi [12] has
shown numerically and in perturbation theory that this linear
dependence may not be realized, depending on the nature of the
initial wave function. Since we now have explicit expressions
for the Bloch and Jordan functions, we are in a position to
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FIG. 3. (Color online) (a) |ψ(x,z)| as a function of x, z. (b) Maximum value (red solid line) of |ψ(x,z)| as a function of z. Blue dashed-dotted
line: Jordan block contributions [second line of Eq. (19) only]. Green dashed line: other contributions only. The parameters are a = π , V0 = 2,
w = 6π, and q0 = −1.

investigate the origin of this phenomenon in the context of the
method of stationary states.

We will take as our input a Gaussian profile of the form

ψ(x,0) = f (x) ≡ e−(x/w)2+ik0x, (20)

with offset k0 and width w. Because of the periodicity of
the Bloch eigenfunctions and Jordan associated functions the
range of the integral in Eqs. (10) and (11) can be reduced to
0 � x � a, provided that f (x) is replaced by

Fq(x) ≡
N−1∑

m=−N

e−iπmqf (x + ma), (21)

in which we recall that q = ka/π . That is,

ck =
∫ a

0 dx ψ−k(x)Fq(x)

2N
∫ a

0 dx ψ−k(x)ψk(x)
, (22)

and similarly for αn, βn. In particular

βn =
∫ a

0 dx In(y)Fn(x)

2N
∫ a

0 dx In(y)χn(y)
. (23)

For N large, the sum in Eq. (21) can be extended to infinity
without significant error. However, we have to be careful about
the periodicity in q of the discretized version.2 That is, Fq as
given in Eq. (21) is really a function of q mod 2. Thus we
first replace q by q̄, where q̄ is the nearest to q0 of the set
of equivalent momenta, satisfying |q̄ − q0| � 1, to obtain the
result

Fq(x) = w
√

πe− 1
4 π2(q̄−q0)2w2/a2+iπq̄x/a

×ϑ3

[
π

x

a
+ 1

2
iπ2(q̄ − q0)

w2

a2
,e−π2w2/a2

]
, (24)

where ϑ3(z,v) is the Jacobi elliptic theta function, which has
the expansion [26]

ϑ3(z,v) = 1 + 2
∞∑

s=1

vs2
cos(2sz). (25)

2This is similar to the difference between the delta function and its
discretized version, the sinc function.

For a broad wave packet, with w � a, the argument v =
e−π2w2/a2

is very small, so that ϑ3(z,v) ≈ 1. Moreover the
prefactor in Eq. (24) is also small except for the case q̄ =
q0 ≡ k0a/π .

We are now in a position to identify under what conditions
the Jordan associated functions are excited, that is, when βn,
as given by Eq. (23), is nonvanishing. In order to obtain an
appreciable value of Fn the scaled offset momentum q0 must
be an integer m, with n ≡ m mod 2. Now, however, there is
the integral in the numerator to be considered. Given that the
phase of Fn(x) is approximately eiπq̄x/a and that In(y) has the
expansion

In(y) =
(

1

2
y

)n ∞∑
s=0

(
1
4y2

)s

s!(n + s + 1)
, (26)

where we recall that y = y0e
iπx/a , it is easily seen that the

integral vanishes unless m is negative and n � |m|. In that case
the Jordan functions ϕ|m|,ϕ|m|−2, . . . are excited. However, if
q0 is not a negative integer, no Jordan blocks are excited, and
thus no linear growth is to be expected. For q0 = 0 no Jordan
function is excited because the ground-state level n = 0 is
nondegenerate. Thus no linear growth is expected in this case.
Nor is it expected for the case q0 = +1. In the setup chosen
by Longhi in Ref. [12], on the other hand, the offset q0 was
taken to be −1, in which case ϕ1 is excited. Note the left-right
asymmetry here: the Hamiltonian is not parity invariant, but
only PT invariant.

Figures 3 and 4 show the different propagation behavior
for a wide beam in the two cases q0 = −1 and q0 = 0,

respectively. The parameters are a = π , w = 6π , and V0 = 2.
In the first case, where one Jordan mode ϕ1, is excited, the
beam spreads out but does not split, as shown in Fig. 3(a). In
Fig. 3(b) we show the different contributions to the maximum
amplitude. The lower curve shows the contribution of the
Jordan block sector only, which indeed rises linearly, as
expected. However, the intermediate curve, the contribution
of all other modes, mysteriously begins to decrease after an
initial rise, and the upper curve, which takes into account
all the contributions, exhibits the saturation first noted by
Longhi [12].
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FIG. 4. (Color online) (a) |ψ(x,z)| as a function of x, z. (b) Maximum value of |ψ(x,z)| as a function of z. The parameters are a = π ,
V0 = 2, w = 6π , and q0 = 0.

In the second case, where no Jordan mode is excited, the
behavior is quite different. The beam does not significantly
spread, but instead splits into two, exhibiting the phenomenon
of birefringence [9], and the maximum amplitude, after some
initial fluctuations, decreases slowly with z. The behavior for
the case when q0 = 1 is similar.

III. THE MECHANISM OF SATURATION

In this section we investigate in detail how the contributions
from the other (non-Jordan) eigenfunctions conspire to cancel
out the explicit linear growth in z coming from the Jordan
sector. A priori such a cancellation seems highly unlikely,
but since it does occur it must be because the two sets of
contributions are in fact closely connected. Mathematically
the cancellation cannot be complete, but can happen only over
a limited range in z. However, that is sufficient for the physical
situation, because our lattice is finite in the x direction, and
at very large values of z the beam will have encountered the
edges of the lattice.

We now show that the contributions of the Jordan block
and of the nearby eigenfunctions are indeed closely related.
We will consider specifically the first case of the previous
section, where the Jordan mode ϕ1 is excited.

Recall that ψ(x,0) ≡ f (x) is expanded as

ψ(x,0) = c0ψ0(x) +
∑

k �=nπ/a

ckψk(x)

+
∑
n>0

[αnIn(y) + βnχn(y)], (27)

as in Eq. (8). The expression for ck is given in Eq. (10), in
which the integration over x can be reduced to the interval
[0,a] by exploiting the periodicity of the Bloch functions, to
obtain

ck =
∫ a

0 dx ψ−k(x)Fq(x)

2N
∫ a

0 dx ψ−k(x)ψk(x)
, (28)

where

Fq(x) ≡
N−1∑

m=−N

e−iπmqf (x + ma). (29)

Similarly βn is given by

βn =
∫ a

0 dx In(y)Fn(x)

2N
∫ a

0 dx In(y)χn(y)
. (30)

The denominator of ck would vanish at q = n. In fact, it turns
out that it is precisely a sinc function:∫ a

0
dx ψ−k(x)ψk(x) = a sinc(ka) = a sinc(qπ ). (31)

The denominator of βn is proportional to the derivative of this
previous denominator with respect to k. Thus

d

dk

∫ a

0
dx ψ−k(x)ψk(x)

= a

π

d

dq

∫ a

0
dx I−q(y)Iq(y)

= a

π

∫ a

0
dx[I ′

−q (y)Iq(y) + I−q(y)I ′
q(y)]. (32)

2 1 1 2
q

0.05

0.10

0.15

0.20

0.25

0.30
c^

k

FIG. 5. The numerator ĉk of the expansion coefficients ck in
Eq. (28) for N = 40, a = π , w = 6π, and V0 = 2. At the points
q = ±1, which are not included in the expansion, the figure gives
instead the value of the numerator of β1.
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FIG. 6. (a) Modulus of the function in square brackets in Eq. (34) as a function of z for N = 40, a = π , and w = 6π . (b) The function
z + sin(2z)/2.

But by differentiating the general relation I−q(y) = Iq(y) +
(2/π ) sin qπKq(y) and setting q = 1, we find that I ′

−1(y) =
I ′

1(y) − K1(y). Thus, using the derivative definition of the
Jordan associated function as3ϕPI

k = (1/(2k))dψk/dk, we see
by reference to Eq. (7) that

d

dk

∫ a

0
dx ψ−k(x)ψk(x)

∣∣∣∣
q=1

= 4
a

π

∫ a

0
dx I1(y)

[
χPI

1 (y) − 1

2
K1(y)

]

= 4
a

π

∫ a

0
dx I1(y)χ1(y). (33)

The numerator of βn is a smooth continuation of the numerator
of ck , which from now on we denote as ĉk . Moreover, ĉk is
highly peaked around q = 1 (and also around q = −1), as is
shown in Fig. 5. In fact, near q = 1 it is given by the Gaussian
ĉk ∝ e−π2ε2w2/(4a2), where ε = q − 1, while the denominator
is proportional to ε.

We are now in a position to examine the z development
of the Jordan contribution and the related contributions from
nearby values of q. Recall that ψ(x,z) is given by

ψ(x,z) = c0ψ0(x) +
∑

k �=nπ/a

ckψk(x)e−ik2z

+
∑
n>0

[(αn − izβn)In(y) + βnχn(y)]e−i(n2π2/a2)z.

Thus the total contribution from the neighborhood of q = 1
and −1 is

ψ(x,z)J
≈ const × I1(y)e−iz

×
[
z +

∑
r=1

(
a2

π2εr

)
sin

(
2π2

a2
εrz

)
e−ε2

r π2(w2/4+iz)/a2

]
,

(34)

where εr = r/N . In principle the upper limit of the sum is
infinity, but in practice it can be taken less than N . Note that if

3In fact, this differs from ϕPI as given in Eq. (6) by a multiple of
Iq (y).

ε were continuous the limit of the second term as ε → 0 would
be twice the first term, which comes from the Jordan function.
It turns out that although |ψ(x,z)J | does exhibit the expected
linear behavior in z initially, it subsequently |ψ(x,z)J | has
an extremely wide and flat plateau before it eventually rises
again as z approaches Nπ . This is illustrated in Fig. 6(a)
for N = 40. A hint of such a plateau-like behavior can be
seen in the simple function z + sin(2z)/2, which is plotted
in Fig. 6(b). However, in this case the plateau is much less
pronounced.

We can understand the extreme flatness of the plateau in
Fig. 6(a) in terms of Jacobi ϑ3 functions. For simplicity let us
set a = π , so that we are analyzing the function

j (z) ≡ z +
∞∑

r=1

(
1

εr

)
sin(2εrz)e−ε2

r /(w2/4+iz)

≈ z +
∞∑

r=1

(
1

εr

)
sin(2εrz)e−4ε2

r /w2
(35)

for the values of z we are considering. While this is not itself a
ϑ3 function, its derivative with respect to z can be so expressed:

j ′(z) ≈ 1 + 2
∞∑

r=1

cos(2εrz)e−ε2
r w2/4

= 1 + 2
∞∑

r=1

cos(2rz/N)e−r2w2/(4N2)

= ϑ3

(
z

N
,e−w2/(4N2)

)
. (36)

The behavior of this ϑ function is not immediately apparent,
since the second argument is of O(1) for w � 2N . However,
it can be made clear by using the alternative notation ϑ(z,q) =
ϑ3(z|τ ), where q = eiπτ , and applying Jacobi’s imaginary
transformation [27], whereby

ϑ3(z|τ ) = (−iτ )−
1
2 e−iτ ′z2/(πτ ′)ϑ3(zτ ′|τ ′), (37)

where τ ′ = −1/τ . This converts j ′(z) to

j ′(z) = 2
√

π
N

w
e−4z2/w2

ϑ3

(
4πiN

w2
z,e−4π2N2/w2

)
. (38)

In this form the second argument of ϑ3 is small, so that for
moderate values of z we can approximate ϑ3 by 1, in which case
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FIG. 7. j ′(z) from Eq. (38) vs z. The parameters are the same as
in Fig. 6.

the behavior is dominated by the preceding Gaussian, which
rapidly falls from 1 to a very small value, corresponding to
the plateau in j (z). The Gaussian is eventually overwhelmed
by the hyperbolic cosines occurring in the expansion of ϑ3,
as must be the case, since ϑ3 is periodic in z. The plot of this
function is given in Fig. 7.

IV. CONCLUSIONS

On general grounds one expects linear growth of the
amplitude ψ(x,z) at the symmetry-breaking threshold λ = 1,
due to the degeneracy of a subset of the eigenfunctions
at this point and the consequent development of Jordan
blocks. However, it has been observed numerically [12] that
this growth becomes saturated at large z, at least for wide
input beams. We have been able to explain this saturation
phenomenon by analyzing in detail the separate contributions
from the Jordan blocks and the contributions from the nearby
Bloch functions in which they are embedded.

For the particular potential considered here, the Bloch
eigenfunctions are associated Bessel functions of the first
kind, Iq(y), and we were able to explicitly construct the
associated Jordan functions at the exceptional points q = n.
Hence we were in a position to use the analog of the method of
stationary states to generate the z dependence. In this method
we were able to isolate the separate contributions of the Jordan
blocks from the other nondegenerate states with normal z

dependence generated by multiplying each eigenfunction by
its appropriate z-dependent phase. We found that, in cases
where the Jordan associated functions are excited (Fig. 3), the
explicit linear increase of the Jordan-block contributions is
precisely compensated by a linear decrease of the contribution
of the nondegenerate states, which, of course, have no explicit
linear z dependence. In cases where the Jordan associated
functions are not excited (Fig. 4), there is no initial linear
increase, but rather a rapid oscillatory behavior followed by
a very slow decrease. The topology of the beams in these
two cases is markedly different. In the first case, although
the maximum amplitude becomes constant, the beam spreads
laterally in a linear fashion, and hence the total power grows
linearly, with the beam taking energy from the lattice. In the

second case the total power turns out to be constant for large
z, with the slow decrease in the maximum amplitude being
matched by the slow broadening of the individual beams.

We then examined in detail the mechanism of saturation,
which is possible only because of the close relation between
the contribution of the Jordan block and the contributions of
the Bloch functions in which it is embedded. With the aid
of a certain amount of approximation we were able to write
the respective contributions in the relatively simple form of
Eq. (34) and to express its z derivative as a ϑ3 function. This
ϑ3 function encodes the initial increase and the subsequent
extremely wide and flat plateau. As a mathematical function it
also encodes further steps and plateaux for larger z, but these
are not physically relevant because they correspond to values
of x outside the range of the finite lattice.
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APPENDIX

Since the references for Jordan associated functions are not
readily accessible, we give here a brief outline of their main
properties. They are the analog of the Jordan associated vectors
that occur in simple matrix eigenvalue problems of the form

(H − λ)u = 0, (A1)

where H is non-Hermitian. For Hermitian problems, while two
eigenvalues λ1 and λ2 may become degenerate at a particular
critical value of a parameter in the Hamiltonian, there remain
two distinct eigenvectors. However, in the non-Hermitian case
it is possible that the eigenvectors also become degenerate:
u1 = u2. The reduction in the number of eigenvectors at
such a point means that the set of eigenvectors no longer
forms a complete basis. However, the basis can be completed
by inclusion of the Jordan associated vector v1 (generalized
eigenfunction), defined by the generalized eigenvalue equation

(H − λ1)v1 = u1. (A2)

Of course, this associated vector is not uniquely defined: to it
may be added any multiple of u1.

The archetypical example is given by the non-Hermitian
Jordan matrix

M =
(

λ 1

0 λ

)
, (A3)

which has the single eigenvalue λ and only one eigenvector u =
(1,0). The independent vector v ≡ (0,1) needed to complete
the basis is indeed a solution (undetermined up to a multiple
of u) of the generalized eigenvalue equation

(M − λ)v = u. (A4)

The eigenvectors of a non-Hermitian matrix are not orthogonal
in the usual sense. Instead one needs to introduce the
left eigenvectors uL, satisfying ũL(H − λ) = 0, which are
different from the usual (right) column vectors satisfying
(H − λ)uR = 0. The orthogonality is then between left and
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right eigenvectors: (ũL)1(uR)2 = 0 for distinct eigenvalues λ1

and λ2. When the eigenvectors become degenerate, they are
self-orthogonal. This is exemplified by the Jordan matrix M in
Eq. (A3), whose left and right eigenvectors are uL = (0,1) and
uR ≡ u = (1,0), respectively, which are indeed orthogonal.

It is easy to show in general that the associated vectors
vn are orthogonal in the same sense to eigenvectors um and
associated vectors vm belonging to different eigenvalues. In
the event that H has a PT symmetry, for some definition of
the reflection operator P , all of these overlaps can instead be
expressed in terms of right eigenvectors alone with the aid of
the PT metric.

The continuum analog of this situation is the eigenvalue
problem

(H − En)ψn = 0, (A5)

where H is a non-Hermitian differential operator with
eigenvalue En and (right) eigenfunction ψn. Again, it is
possible that at a particular critical value of a parameter in
H two eigenvalues Em and En, and also the corresponding
eigenfunctions ψm and ψn, become degenerate. At that point
the single eigenfunction becomes self-orthogonal with respect
to the metric defined by H , which, for a PT -symmetric
problem, is the PT metric.

The reduction in the number of eigenfunctions at such a
point again means that the set of eigenfunctions no longer

forms a complete basis. However, in complete analogy with
Eq. (A4), the basis can be completed by inclusion of the Jordan
associated functions ϕn (generalized eigenfunctions), defined
by the generalized eigenvalue equation

(H − En)ϕn = ψn. (A6)

This is precisely how the Jordan functions were introduced in
Eq. (5). They are defined only up to multiples of solutions of the
homogeneous equation and are guaranteed to be orthogonal,
using the PT metric, to each other and to eigenfunctions
belonging to other eigenvalues. We found it necessary to
exploit this freedom in Eq. (7) in order to ensure that the
ϕn satisfy the appropriate boundary conditions.

An alternative definition of the Jordan functions is as deriva-
tives of the eigenfunctions with respect to the energy [28].
Thus, differentiating the eigenvalue equation (H − E)ψ = 0
with respect to E we get precisely

(H − E)
dψ

dE
− ψ = 0, (A7)

so that we may identify ϕ with dψ/dE, again modulo solutions
of the homogeneous equation.

In our present problem this latter definition leads to
extremely simple formulas for the functions χn. For example,
using Eq. (9.6.44) of Ref. [26] it yields χ1(y) = −I0(y)/(2y),
which is easily seen to be a solution of Eq. (5) with the correct
periodicity.
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