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Magneto-optic gradient effect in domain-wall images: At the crossroads of
magneto-optics and micromagnetics
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An anomalous symmetry of magneto-optical images of ferromagnetic domain walls was reported by Schäfer
and Hubert [Phys. Status Solidi A 118, 271 (1990)] and interpreted in terms of light amplitudes proportional
to the magnetization gradient. We present analytic and numerical calculations supporting such proportionality
under additional conditions implied by classical rules of micromagnetics and address some objections presented
by Banno [Phys. Rev. A 77, 033818 (2008)] against such proportionality.
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I. INTRODUCTION

The magneto-optic (MO) images of magnetic domain
boundaries reported in Ref. [1] attracted considerable attention
due to the unexpected symmetry with respect to light polar-
ization. The images appeared in a polarization microscope as
bright and dark lines on the sample surface and the contrast
was reversed on rotation of the polarizer by 90◦, which is
characteristic for linear birefringence; as in the Voigt effect [1],
the domain magnetization was parallel to the sample surface.
The observed patterns were of two types, with different sets of
birefringence axes and different gradients of the magnetization
direction vector m. When (i) only the m component parallel
to the wall varied, the main axes were parallel and normal to
the wall. But when (ii) the m component normal to the wall
line varied across the wall, the main axes were at ±45◦ to the
wall line i.e., the MO contrast was largest when the polarizer
axis was parallel or normal to the wall line; this included cases
with the surface domain m parallel to the E field of the incident
light, although in such cases the MO interaction in the classical
dielectric law

D = ε(E + iQm × E) (1)

is expected to vanish. The authors [1] found that all features
of the observed images were consistent with an extension of
the dielectric law in Eq. (1), with additional components of D
at the surface; these were described as

D(s)
η = P

(
∂mξ

∂ξ
− ∂mη

∂η

)
Eξ (2)

in the special coordinate system where ξ and η denote the axes
of the polarizer and (crossed) analyzer and subsequently gen-
eralized [1,2]. The parameter P was found to be proportional
to Q in Eq. (1) in a variety of materials [1]. The first term in
Eq. (2), containing a product of mutually parallel components
mξ and Eξ , was particularly required for description of type
(ii) patterns.

The full symmetry of the wall images [1] could not be
explained from MO diffraction and the dielectric law [Eq. (1) ]
alone. In an early brief note [3] only the last term in Eq. (2) was
derived from diffraction on m gradient components parallel to
the sample surface. Intuitive discussions [4,5] of this particular

effect pointed out the role of MO polarization normal to the
sample surface (and corresponding surface charges) with a
gradient and thus a depolarizing E field pointing across the
domain wall.

The failure to explain the controversial first term in Eq. (2)
and the contrast in type (ii) structures was pointed out by A.
Hubert in seminal discussions. An improved analysis of type
(ii) contrast [6] took into account also the polar Kerr effect
caused by m components perpendicular to the sample surface
in the subsurface region in type (ii) structures schematically
shown in Fig. 1. Some role of subsurface polar Kerr effect was
originally suspected [1], but its symmetry of circular rather
than linear birefringence was reconciled with the experimental
results only later [6], taking into account the correlation
between the planar and polar m gradient implied by the
micromagnetic conditions of magnetic flux closure in soft
magnetic materials [7–9]. The full angular dependence of
the wall contrast [1] was thus derived analytically [6,10] and
discussed in the context of MO depth sensitivity [10,11] and
of phenomenological MO tensors sensitive to the m gradient
[1,2,12].

In the original version of Ref. [5] the gradient phenomenol-
ogy [1] was stated to be physically unacceptable because
of an apparent divergence of the magnetization gradient.
Consequently, the previous work [1,10] was not reviewed
correctly in several respects (see item 2 in Ref. [5]).

In this paper it is first shown in detail that the gradient phe-
nomenology, Eq. (2), leads to the observed angular dependence
[1] of the wall images and the objections [5] were not justified.
An additional section reviews and augments the argument
supporting the correctness of descriptions of the domain wall
images [1] in terms of the magnetization gradient. It is stressed
that the adequacy of linear gradient approximations and the
symmetry of the effect are due, respectively, to the relatively
large domain wall widths and to the tendency to magnetic flux
closure (i.e. to the elementary micromagnetic rules formulated
by Landau and Lifshits [7]).

II. EMPIRICAL EQUATIONS

To show that Eq. (2) leads to the observed angular symmetry
of the intensity of the wall images (integrated across the wall
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FIG. 1. Schematic V-line structure

width [1]), consider that m varies only along the wall normal,
identified further with the y axis (Fig. 2). The gradient of any
function f (y) has components along the polarizer and analyzer
axes ξ and η equal to

∂f

∂ξ
= df

dy
cosγ (3a)

∂f

∂η
= df

dy
sinγ, (3b)

where γ is the angle between the ξ and y axes. Using these
relations for both mξ and mη in Eq. (2) and integrating across
the wall we get∫

D(s)
η dy = −P (Sξ cosγ − Sηsinγ )Eξ (4a)

where S = m1 − m2 is the difference of the unit vectors m1,2
in the two domains (Fig. 2). Its ξ and η components are equal
to |S|cosα and |S|sinα where α is the angle between the ξ axis
and S. Thus ∫

D(s)
η dy = −P |S|cos(α + γ )Eξ , (4b)

which agrees with the equation for the integrated contrast in
the original report [1], where |S| is written as 2sin(�/2) and �

is the angle between m1 and m2 (Fig. 2). The compact angular
factor in Eq. (4) may be written as cos(2γ + δ), where δ is
the angle between y and S, fixed in the magnetic structure,
and the argument 2γ shows clearly the periodicity of linear
birefringence. Since |S|cosδ = Sy and |S|sinδ = Sx are the
components of S along the wall normal and the wall direction,
respectively, the empirical Eq. (4b) may also be written as∫

D(s)
η dy = P (Sxsin2γ − Sycos2γ )Eξ , (4c)

which shows separately the effects connected with the two
kinds of magnetization gradient, mentioned in the preceding
section as type (i) and type (ii).

In the first version of Ref. [5], the factors cosγ and
sinγ in the gradient transforms used instead of present
Eq. (3) appeared as divisors instead of multipliers, which
led to spurious divergence of the angular dependence and to

FIG. 2. (Color online) Angles and axes characterizing magneti-
zation directions in the surface domains (after Ref. [1]).

unjustified critique of the gradient model [1] (see item 2 in
Ref. [5] for corrections).

III. MAGNETO-OPTIC DIFFRACTION

Standard perturbation theory [10], as applied earlier to
diffraction on domain walls [13] and to scattering on spin
waves [14], uses the MO polarization P(m) = iQεm × E0 from
Eq. (1) as the source of the first-order scattered E1, while E0

is the zero-order field corresponding to Q = 0. For normal
incidence of light, in the coordinates shown in Fig. 2 (and
e−iωt dependence), the scattered field amplitudes E1

x,y may be
expanded as

E1
r (y,z) =

∫
E′1

r (q,z)eiqzdq. (5)

The relations between the amplitudes E′1
r and E0

r ′ depend
on the m′

r ′(q,z) components of similar Fourier expansions of
mr ′(y,z) in the whole depth of light penetration, with complex
retardation factors taking into account the path from 0 to
z and back: φ(z) = ei(k+k′)z with the propagation constants
k = 2πn/λ for E0

r (z) and k′ = (k2 − q2)1/2 for E1
r (q,z), if n

is the refraction index and λ the vacuum wavelength. The result
for E1

r (q) at the z = 0 surface is a superposition of four terms

E′1
y (q)(mx) = −Qq

∫
m′

x(q,z)φ(z)dzE0
y ty, (6a)

E′1
y (q)(my) = Qq

∫
m′

y(q,z)φ(z)dzE0
x ty, (6b)

E′1
y (q)(mz) = −Qk′

∫
m′

z(q,z)φ(z)dzE0
x ty, (7a)

E′1
x (q)(mz) = Qk

∫
m′

z(q,z)φ(z)dzE0
y tx . (7b)

The superscripts (mr) denote the active m component. For
thick samples, the integrals run from 0 to ∞ and the factors tx,y

(listed in Appendix A) are close to n/(n + 1) for |q/k|2 � 1.
Equations (7a) and (7b) describe the Kerr effect due to polar
magnetization, mz. Equations (6a) and (6b) involve directly
the Fourier components of the planar magnetization gradient
across the wall, iqmx,y(q,z), which causes a corresponding
gradient of the MO polarization current, −iωP (m)

z normal to
the surface. Similar terms cause the well-known transverse
and longitudinal Kerr effects at skew light incidence in the y-z
plane [10], then P (m)

z varies along y due to variations of E0
y

and E0
x , respectively.

Support for the empirical linear gradient approximation
is discussed below with regard to two basic micromagnetic
aspects: (i) the relatively large wall width and (ii) the tendency
to magnetic flux closure.

A. Gradient approximation

In the classical Bloch wall [7] only the m components
parallel to the wall vary and the images of the mx gradient are
described by Eq. (6a). In the classical wall model [7] mx(y)
varies as tanh(y/w0) and the transform m′

x(q) is equal [13] to
w0/2isinh(πqw0/2) with an obvious exponential cutoff. The
plot of the image field E1

y generated at the surface is shown
in Fig. 3 (for n = 2.9 + 3.1i for iron, λ = 633 nm and a
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FIG. 3. Profile of the normalized MO amplitude E1(y): absolute
value (solid line), phase (dashed line), and the gradient approximation
(dotted lines) (phase is constant) generated at the surface by mx =
tanh(y/w0) in the classical wall model [7,13].

rather small value of w0 = 20 nm). The solid line shows the
normalized absolute value |E1

y/iQE0
y |. It is remarkably close

to the corresponding plot of the gradient approximation (dotted
line)

E1a
y (y) = −B

dmx

dy
E0

y (8a)

B = Qλ

4π (n + 1)
(8b)

Also the phase of the normalized image field (dashed line)
in the central part of the image is close to the constant phase of
the approximation in Eq. (8) (dotted line). The approximation
in Eq. (8) follows from first-order expansions in components
of the magnetization gradient [12]. Derivation from Eqs. (5)
and (6a) assumes that |q/k|2 � 1 in a substantial part
of the mx(q) spectrum, so that k′ � k and ty � n/(n + 1).
Then

∫
mx(q)eiqzdq in Eq. (5) gives −i∂mx/∂y and the

remaining
∫

φ(z)dz in Eq. (6a), gives i/2k = iλ/4πn. Such
approximation is adequate in relatively wide domain walls,
with |kw0|2 � 1 (with k = 2πn/λ referring to light inside
the ferromagnet). In the present example, |kw0| � 2 is near
the limit of validity of the local gradient approximation, but
the values of w0 expected in iron alloys are substantially
higher [9].

Figure 4 shows the dependence of E1
y(0), calculated at the

image center, on the wall half-width w0. The solid line shows
the ratio |E1

y(0)/E1a
y (0)|, quite close to 1 in the range of w0

corresponding to domain walls in iron alloys in the original
experiment [1]. On the other hand, in very narrow walls, the
ratio |E1

y(0)/E1a
y (0)| decreases with decreasing w0 (i.e., due

to diffraction broadening of the image, the magnitude of the
central field |E1

y(0)| does not grow as fast as the magnetization
gradient).

The phase of the image field ratio E1
y(0)/iQE0

y (dashed
line in Fig. 4) in wide walls remains the same as in the
gradient approximation, but in very narrow walls it drops with
decreasing w0, indicating that E1

y(0) may be nearly in phase
with P ∞

z = iQε0E
0
y , the surface polarization charge density

far from the wall (see Ref. [5] and Appendix A).

FIG. 4. Normalized MO amplitude E1(y) at wall center (y=0) vs
wall half-width w0: absolute value relative to the gradient approxima-
tion (solid line), phase (dashed line), gradient approximation (dotted
line), model and parameters as in Fig. 3.

Theoretically, images of very narrow walls would be
generated by the polarization very close to the surface [5],
as φ(z) in Eqs. (6) and (7) would fall off as e−qz for the
prevalent very high q, |q/k|2 � 1 in the m′

r (q) spectrum. Such
boundaries of width on only an interatomic scale are typical
for ferroelectric domains [17], but not for ferromagnets, where
domain walls are broadened by the exchange stiffness [7]
and subsurface effects are important [1,11] in the whole light
penetration depth.

Gradient approximations to the remaining terms in Eqs. (6)
and (7) are analogous to Eq. (8). Equation (6b) corresponds
to domain boundaries with variable component my (normal
to the wall line). The result obtained by supplementing mxE

0
y

with −myE
0
x is

E1(mx,y)
y (y) = B

(
∂my

∂y
E0

x − ∂mx

∂y
E0

y

)
. (9)

The same approximation in the polar Eqs. (7a) and (7b),
k′ � k and tx,y � n/(n + 1) = t0, gives analogous equations
for the local E1

r (y) and mz(y,z) from Eq. (5). Then integration
per parts over z gives [15] two terms in each equation,

E1(mz)
y = 1

2

(
−iQt0mz + B

∂mz

∂z

)
E0

x (10a)

E1(mz)
x = 1

2

(
iQt0mz − B

∂mz

∂z

)
E0

y . (10b)

The first terms involve the surface magnetization and prevail
in the bulk Kerr effect (e.g., discussed in Ref. [5]). The second
terms describe the effect of a subsurface polar gradient and
have a decisive role in the symmetry of the V-line images.

B. Symmetry of wall images

If E0 is applied along the polarizer axis ξ (Fig. 2), the
bracket in Eq. (9) equals −(∂mη/∂y)E0

ξ . Since the vector E1

points along the gradient axis y, its component E1
η is propor-

tional to the corresponding component of the gradient (i.e., to
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the slope along the analyzer axis η). The observed contrast
generated by purely in-plane gradient is thus determined as

E1(mx,y)
η = −B

∂mη

∂η
E0

ξ , (11)

which reproduces qualitatively only the last term in the
empirical Eq. (2). This is because the in-plane gradient
model assumed in Eq. (9) is not sufficient in cases involving
head-on magnetization structure at the surface, as shown
schematically in Fig. 1 (i.e., longitudinal gradient components
∂my/∂y). Such m structure also contains polar magnetization
in order to eliminate the divergence of m and the associated
stray-field energy. The conditions postulated in the original
micromagnetic theory [7] are

divm = 0 (12a)

mz(z = 0) = 0, (12b)

respectively, for the magnetic volume and for its planar
surface at z = 0. The first condition requires that nonvanishing
∂my/∂y be compensated by opposite values of polar ∂mz/∂z.
The second condition implies that the subsurface polar Kerr
effect is determined by the polar gradient terms alone in
Eqs. (10a) and (10b). The contrast generated by the polar
gradient supplementing Eq. (11) is

E1(mz)
η = −1

2
B

∂mz

∂z
E0

ξ . (13)

In the flux-closure structures the polar and planar gradients are
correlated,

−∂mz

∂z
= ∂mξ

∂ξ
+ ∂mη

∂η

(
= ∂my

∂y

)
. (14a)

Substitution to Eq. (13) and addition with Eq. (11) gives

E1(mx,y,z)c
η = 1

2
B

(
∂mξ

∂ξ
− ∂mη

∂η

)
E0

ξ (14b)

in agreement with both terms in the empirical Eq. (2). The
superscript c indicates that mz and my are correlated according
to the conditions in Eq. (12).

Explicit angular dependence of the integrated MO ampli-
tudes corresponding to Eq. (4c) follows from Eq. (14b) like in
Sec. II, with two refinements. It has slightly wider validity than
the local gradient approximation [16], and it may be written
separately for the planar and polar gradient contributions.

The contrast caused by gradient of mx (parallel to wall) is
obtained from Eqs. (6a) or (8), with the detected E1

η = E1
ysinγ

and the primary field component E0
y derived from the applied

field (parallel to the polarizer axis) (Fig. 2) as E0
y = E0

ξ cosγ .
Consequently, ∫

E1(mx)
η dy = 1

2
BSxE

0
ξ sin2γ (15)

in accordance with the first term in Eq. (4c).
Analogously, for the contrast caused by variable component

my (normal to the wall line), Eq. (6b) or the first term in Eq. (9),
with the active E0

x equal to −E0
ξ sinγ , imply∫

E1(mx)
η dy = BSyE

0
ξ sin2γ, (16)

which does not reproduce the last term in Eq. (4c). Diffraction
on variable my component alone would produce only black
lines (or only white lines, depending on the sign of Sy),
with maxima at γ = ±90◦, while the experimental results [1]
showed alternating black and white lines at γ = ±90◦ and at
0 and 180◦.

In the flux-closure structures satisfying the conditions in
Eqs. (12) and (14a), substitution of the last term in Eq. (14a)
to Eq. (13) and integration across the image width gives a
constant polar contribution∫

E1(mz)c
η dy = −1

2
BSyE

0
ξ . (17)

Addition of this constant term modifies the angular dependence
in Eq. (16) to∫

E1(my,z)c
η dy = −1

2
BSyE

0
ξ cos2γ, (18)

in accord with the last term in Eq. (4c) and with a theoretical
estimate of the empirical parameter P in Eqs. (4c) and (2),
here equal to εB/2 and B defined in Eq. (8b).

IV. CONCLUSION

The interpretation [1] of the unexpected domain wall
images proposed additional MO terms D(s) in the dielectric
law, Eq. (2), caused by microscopic MO currents. The present
argument supports the derivation [6,10] of such terms from
macroscopic currents, as Ds = εE1 where E1 follows from
Maxwell’s equations and the classical MO dielectric law,
Eq. (1), under two simplifying conditions reflecting two rules
postulated in micromagnetics [7]: weakness of the magneti-
zation gradient (due to ferromagnetic exchange stiffness) and
magnetic flux closure (eliminating magnetostatic stray-field
energy). The weak gradient condition is not applicable to
hypothetical infinitely thin walls [5] and to ferroelectric
domain boundaries [17] of atomic dimensions.

The correlation of planar and polar m gradient implied by
the flux closure rules is essential for the anomalous symmetry
of the V-line images and for the proportionality of their
intensity to the difference of m components parallel to the
planar gradient, called Sy in Eqs. (4c) and (18). Images of such
planar gradient alone, without the flux-closing participation
of polar mz, were predicted [10] to have lower symmetry,
as in Eq. (16), but they were not observed in spontaneous
domain structures. Such low-symmetry contrast was only
recently reported [18] in thin NiFe films in which stripes
of opposite m directions perpendicular to the stripe axis
were artificially stabilized by exchange bias [18–20] (from an
antiferromagnetic overlayer structured by local ion irradiation
in magnetic field).

Also the structure of Bloch walls with no net change of
my normal to the wall is affected by the flux closing tendency
[21–25]. The simple analytic model used in the illustration
in Sec. III A does not describe the structure correctly in the
surface region. Besides the gradient of mx shown in Fig. 3 the
classical model [7] involves polar mz equal to ±1/cosh(y/w0).
If this were valid for all z > 0, the bulk polar Kerr effect
caused by the wall core would have integrated amplitude
exceeding the gradient effect (in relatively wide walls), but
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the condition (12b) would be violated. The polar Kerr contrast
is not observed [1], because directly at the surface the m
direction in the wall rotates in the x-y plane like in Néel
walls in thin films, and in the subsurface region the mz and my

components are again correlated so as to avoid divergence of
m. The surface Néel caps of Bloch walls in iron and its alloys
have vortex features theoretically predicted [21,22], confirmed
by micromagnetic simulation [23–25] as well as by scanning
electron microscopy with polarization analysis [23,24] and
recently also discussed in the context of nanostructured iron
particles [26]. Numerical simulation of MO images of complex
micromagnetic structures have been reported for thin film
vortex walls [27] and for a V-line model in iron [28].

APPENDIX

The amplitudes from Eq. (5) are sought in the form

E1
x(q,z) = e+

x (z)eik′z + e−
x (z)e−ik′z. (A1a)

Such amplitudes with constant e±
r , h±

r are solutions without the
MO term in Maxwell’s equation rotH1 + iωεE1 = IωPm. The
MO right-hand side implies inclusion of additional derivatives
on the left-hand side, like

de+
x

dz
eik′z + de−

x

dz
e−ik′z = D(ex). (A1b)

Maxwell’s equations lead to the set of two pairs,

D(hy) = iωP (m)
x (q,z) (A2a)

D(ex) = 0 (A2b)

D(hx) = −iωP (m)
y (q,z) (A3a)

D(ey) = −iqP (m)
z (q,z)/ε (A3b)

where D() is the symbol defined in (A1b) and the amplitudes
satisfy additional paired relations, h±

x = ∓Ye±
y /γ ′ and h±

y =
±γ ′Ye±

x , with Y = ωε/k and γ ′ = k′/k, allowing elimination
of h±

r . The final equations (6, 7). follow as

E′1
x,y(q,0) = −Tx.y

∫ ∞

0

de−
x,y

dz
dz (A4)

with Tx.y derived from Fresnel’s transmission coefficients and
with explicit P′(m)(q,z) = iQε[m′(q,z) × E0]eikz. The result-
ing coefficients in Eqs. (6) and (7) are: ty = n/(n + γ /γ0) and
tx = n/(nγ + γ0) with γ0 = [1 − (qλ/2π )2]1/2.

Equations like (A2) and (A3) were discussed earlier
[11,14]. While Eqs. (A2a) and (A3a) result from the x − ,y−
components of rotH1 + iωεE1 = IωPm, its z−component

∂H 1
x

∂y
− iωεE1

z = iωP (m)
z (A5)

shows that E1
z has two parts: the diffracted field of the

form (A1a), proportional to ∂H 1
x /∂y, and the depolarizing

E(V )
z = −P (m)

z /ε. Equations (A2b) and (A3b) result from
rotE1 − iωμH1 = 0 with E1

z substituted from (A5). The field
E(V )

z contributes to the Voigt effect and reduces Pz: far from
the domain wall, P ∞

z = P (m)
z ε0/ε is n2 times less than P (m)

z .
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