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Nonlinear properties and stabilities of polaritonic crystals beyond the low-excitation-density limit
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Coherent properties of a two-dimensional spatially periodic structure, polaritonic crystal (PolC) formed by
trapped two-level atoms in an optical cavity array interacting with a light field, are analyzed. By considering the
wave function overlapping for both photonic and atomic states, a cubic-quintic complex nonlinear Schrödinger
equation is derived for the dynamics of coupled atom-light states, wave function of low-branch polaritons,
associated with PolC in the continuous limit. A variational approach predicts that a stable ground-state wave
function of PolC exists but is accompanied by an oscillating width. For a negative scattering length, the wave
function collapses in the presence of a small quintic nonlinearity appearing due to a three-body polariton
interaction. By studying the nonequilibrium (dissipative) dynamics of polaritons with adiabatic approximation,
we have shown that the collapse of PolC wave function can be prevented even in the presence of small decaying
of a number of polariton particles.
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I. INTRODUCTION

Present remarkable achievements with ultracold trapped
atomic gases evoke a great interest in investigating quantum
phases for coupled matter-field states [1,2]. By cooling atoms
to about absolute zero, the state of matter known as Bose-
Einstein condensate (BEC) is described as a macroscopic wave
function that can extend over several micrometers [3]. With
optical lattices, artificial crystals made by interfering laser
beams, one can observe many-body dynamics from a Mott-
insulator (MI) phase to a superfluid (SF) phase in the gas of
ultracold atoms with periodic potentials [1,4]. Recently, it has
been demonstrated that the superradiant phase corresponds
to the periodical self-organized phase of the atoms when a
standing-wave laser-driven BEC is loaded into a high-finesse
optical cavity [5,6].

Instead of a single cavity, state-of-the-art fabrication tech-
nology makes it possible to create periodical structures on the
basis of coupled microcavity chains, where few-level atoms
are placed inside [7,8]. With an array of optical cavities,
atoms strongly interacting with photon modes can provide
a platform to study quantum phase transitions of light by in-
cluding photon-atom on-site interactions and photon hopping
effects between adjacent cavities [9–12]. Based on atom-light
interactions in cavity arrays, exotic quantum states of light have
been predicted for a Heisenberg spin-1/2 Hamiltonian [2,13],
a two-species Bose-Hubbard model [14], arrays of coupled
cavities [15,16], and dual-species optical-lattice cavities [17].
These studies allow us to analyze critical quantum phenomena
in conventional condensed matter systems by manipulating
the interaction between photons and atoms. In this respect,
polaritons, bosonic quasiparticles, representing a linear super-
position of photons in the external electromagnetic field and
excitations in a two-level system act as natural objects for the
study of photon-atom interactions. Such coupled matter-field
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states have attracted lots of attentions in quantum physics for
simultaneously possessing coherent matterlike and photonlike
wave functions (cf. [18]).

At present, evidence of coherent macroscopic properties of
polaritons has been found both in the solid state and the atomic
physics domain—see [19–30]. First, we are speaking about
promising experiments aimed at observing BEC phenomenon
and SF properties of low-branch (LB) exciton polaritons in
semiconductor quantum well structures embedded in Bragg
microcavities [19–23]. In particular, macroscopic occupation
of LB polaritons in Cd/Te/CdMgTe microcavities at a tem-
perature of 5 K has been demonstrated in [19]. The first-
order coherence and spontaneous linear polarization of light
emission have been shown for polaritons trapped in harmonic
potential [20]. Such behavior of polaritons opens the door to
the investigation of many-body physics, solitons, and pattern
formation due to nonlocal nonlinear effects in matter-field
interaction (cf. [21,23]). Alternatively, in atomic optics the
macroscopic coherent properties with atomic polaritons are
observed in various problems of atom-field interaction where
long-lived coherence of the quantized optical field strongly
coupled with two (or multi)-level atoms can be achieved
(cf. [24–30]).

From a practical point of view such systems with coupled
matter-field states (dark-state polaritons) represent an indis-
pensable ingredient for designing temporary quantum memory
and quantum-information processing devices. Obviously, in
the real world such polaritonic devices should operate with a
large number of qubits, which implies a large enough number
of cavities as well. We emphasize two important circumstances
that must be taken into account if we want to implement
spatially periodic structures for both phase transition problems
and quantum computing purposes. First, it is important to
achieve a thermodynamic limit considering a macroscopically
large number of cavities and small decay (decoherence) rates
(cf. [28]). Second, nonlinear effects arising due to polariton-
polariton scattering should be taken into account in a general
case.
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Combining coupled quantum electrodynamic cavity arrays
and ultracold atoms, we analyze trapped two-level atoms
interacting with the photon fields in a two-dimensional
(2D) cavity array at a zero temperature limit. Taking into
consideration both photonic and atomic wave function over-
lapping between adjacent cavities, we introduce a polaritonic
crystal (PolC) formed by the superposition of photonic cavity
modes and atomic excitations in spatially periodic structures
[28]. Based on the Holstein-Primakoff transformation [31]
but being beyond the low-excitation-density approximation,
we derive a cubic-quintic complex nonlinear Schrödinger
equation (CNLSE) for LB polaritons in the continuum limit.
We use the Gaussian variational approach to analyze the
stability of a PolC structure for different atom numbers, two-
and three-body polariton-polariton interaction strengths. The
applicability of the variational method that is widely used for
describing atomic BEC [3,32,33] (or optical beams and solitary
waves [34,35]) is justified if the shape of the actual solution of
the NLSE is closer to the ansatz function.

The paper is arranged as follows. In Sec. II we describe a
model to realize 2D PolCs that occur due to the atom-field
interaction in a cavity array. Some aspects of many-body
physics for PolCs in the momentum representation including
their three-body interactions are established in Sec. III. In
Sec. IV, we study the dynamics of PolCs in the continuum
limit, where the corresponding stabilities of a ground-state
wave function at equilibrium are shown by the variational
approach. Nonequilibrium effects of a weak polariton number
decaying in the PolC structure are examined as well. In Sec. V
we summarize our results.

II. THE MODEL OF PolC

PolC structure can be created basically by means of atom-
field interaction in a 2D cavity array, as illustrated in Fig. 1.
Here we consider the array of M single-mode microcavities
with the nearest-neighbor interactions in the XY plane. Each of
the cavities represents an atom-photon cluster system, which
contains a small but macroscopic number of ultracold two-
level atoms with two internal states labeled as |a〉 and |b〉,
respectively. To produce such a system experimentally, one
may trap ultracold two-level atoms in 2D optical lattices the
minimum of which coincide with positions of defect cavities
in a band-gap structure, as shown in the schematic picture
in Fig. 1(b). We can represent the total Hamiltonian for the
system in Fig. 1 as

Ĥ = Ĥat + Ĥph + Ĥint, (1)

where Ĥat is a Hamiltonian for weakly interacting two-level
atoms, Ĥph is responsible for the photonic field distribution,
and Ĥint characterizes the atom-light interaction in each cavity.
These Hamiltonians can be written in the second quantized
form as

Ĥat =
∑

i,j = a,b

i �= j

∫
�̂

†
j

(
− h̄2�

2Mat
+ V

(j )
ext

+ 1

2
Uj�̂

†
j �̂j + 1

2
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†
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)
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FIG. 1. (Color online) (a) Schematic picture of the proposed
PolC in a 2D structure. Each cavity lattice has a nearest-neighbor
interaction in the XY plane. The integer numbers nx and ny

enumerate lattice cells containing cavities; nx = 1,2, . . . ,Nx and
ny = 1,2, . . . ,Ny , with the number of cavities in the X and Y

directions as Nx and Ny , respectively. M = Nx × Ny is the total
number of cavities. (b) Illustration of a possible PolC system formed
by loading ultracold atoms into optical lattices within a photonic
defect cavity array.

Ĥph =
∫

�̂
†
ph

(
− h̄2�

2Mph
+ Vph

)
�̂phd

3r, (2b)

Ĥint = h̄κ

∫
(�̂†

ph�̂
†
a�̂b + �̂

†
b�̂a�̂ph)d3r, (2c)

where Mat is a mass of free atoms and Mph is an effective
mass of trapped cavity photons. The quantum field operators
�̂a,b(r) and �̂

†
a,b(r) [�̂ph(r) and �̂

†
ph(r)] annihilate and create

atoms (photons) at the position r; while V
(j )

ext (j = a,b) and
Vph are the trapping potentials for the atoms and photons,
respectively. As an example, for the PolC structure illustrated
in Fig. 1(b), the potential V (j )

ext for a magneto-optical trap can be
chosen as V

(j )
ext = V0[sin2(πx

lx
) + sin2(πy

ly
)] + 1

2Matωzz
2, with

the optical lattice constants, lx,y , and a characteristic frequency
of harmonic trapping for atoms in the z direction, ωz. The
interaction strength between two-level atoms and the quantized
field is denoted by κ .
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In Eq. (2a) parameters Ua = 4πh̄2a
(sc)
a

Mat
and Ub = 4πh̄2a

(sc)
b

Mat
characterize atom-atom scattering processes at two internal

levels, |a〉 and |b〉, respectively. Parameter Uab = 4πh̄2a
(sc)
ab

Mat
is

relevant to interactions between atoms in different internal
states; a

(sc)
a,b and a

(sc)
ab are scattering lengths for corresponding

elastic collisions of atoms (cf. [3]).
In general, one can expand the field operators �̂a,b(r) and

�̂ph(r) by separable spatial wave functions as follows:

�̂a(r) =
∑
nx,ny

ânxny
ϕ(a)

nxny
(r), (3a)

�̂b(r) =
∑
nx,ny

b̂nxny
ϕ(b)

nxny
(r), (3b)

�̂ph(r) =
∑
nx,ny

ψ̂nxny
ξnxny

(r), (3c)

where ϕ(a,b)
nxny

and ξnxny
are real Wannier functions representing

spatial distributions of ultracold atoms and photons at nxny lat-
tice cells. In fact, Eqs. (3a) and (3b) correspond to a convenient
single (condensate) mode approximation that relates to each
site of the lattice in Fig. 1 [3]. In particular, the annihilation
operators ânxny

and b̂nxny
characterize the dynamical properties

of atomic ensembles (single atomic quantum modes) at lower
(|a〉) and upper (|b〉) levels. The annihilation operator ψ̂nxny

in
Eq. (3c) describes the temporal behavior of a single photonic
mode located at the cavity site.

Thereafter, we restrict ourselves by a tight binding ap-
proximation if the coupling between neighbor sites is weak
enough [4]. Plugging Eq. (3) into Eq. (2) for the parts of
Hamiltonian Ĥ under the rotating wave approximation one
can obtain

Ĥat = h̄
∑
nx,ny

[
ω

(a)
nxny , atâ

†
nxny

ânxny
+ ω

(b)
nxny , atb̂

†
nxny

b̂nxny

−β(a)
nx

(
â†

nxny
ânx+1 ny

+ â†
nxny

ânx−1 ny

)
−β(a)

ny

(
â†

nxny
ânxny+1 + â†

nxny
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)
−β(b)
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(
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b̂nx+1 ny
+ b̂†nxny

b̂nx−1 ny

)
−β(b)

ny

(
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)
+ 1

2
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(
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)2(
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+ 1

2
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(
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)2(
b̂nxny

)2

+uab â†
nxny

ânxny
b̂†nxny

b̂nxny

]
, (4a)

Ĥph = h̄
∑
nx,ny

[
ωnxny, phψ̂

†
nxny

ψ̂nxny

−αnx

(
ψ̂†

nxny
ψ̂nx+1ny

+ ψ̂†
nxny

ψ̂nx−1ny

)
−αny

(
ψ̂†

nxny
ψ̂nxny+1 + ψ̂†

nxny
ψ̂nxny−1

)]
, (4b)

Ĥint = h̄
∑
nx,ny

gnxny

[
ψ̂†

nxny
â†

nxny
b̂nxny

+ b̂†nxny
ânxny

ψ̂nxny

]
, (4c)

where gnxny
= κ

∫
ξnxny

(r)ϕ(a)
nxny

(r)ϕ(b)
nxny

(r)d3r; ω
(a,b)
nxny , at and

ωnxny, ph are the frequencies for atoms and photons in
the lattice, respectively; and ua,b = 1

h̄
Ua,b

∫
(ϕ(a,b)

nxny
)4d3r and

uab = 1
h̄
Uab

∫
(ϕ(a)

nxny
)2(ϕ(b)

nxny
)2d3r characterize frequencies of

nonlinear self- and cross-atomic mode interactions. Hopping
constants β(a,b)

nx,ny
are calculated by performing an integral for

atomic wave function overlapping in the adjacent sites, i.e.,
nearest-neighbor hopping constants for the atoms in the lattice,
while αnx,ny

characterize a spatial overlapping of optical fields
between the neighboring cavities.

Let us discuss the main approximations and bounds for the
applicability of the PolC model in Fig. 1.

First, since we are interested in the mean-field properties of
a polaritonic system, we assume for simplicity that all cavities
are identical to each other and contain the same average
number of atoms N = 〈â†

nxny
ânxny

+ b̂
†
nxny

b̂nxny
〉. Furthermore,

we suppose that atom-light coupling coefficients are equal to
each other at all sites by assuming g0 ≡ gnxny

.
Second, we use a single mode approach for atomic

ensembles assuming that a motional degree of freedom is
unimportant. It is possible to show that this approximation
is valid only when the size of the atomic trap (cavity size)
is much larger than the parameter N |a(sc)

j |(j = a,b,ab) at
each site of the lattice (cf. [36]). Taking into account a
typical value of atomic scattering length, |a(sc)

j | � 5 nm, and
a maximal cavity size, � � 3 μm, it is possible to estimate a
maximally available total number of atoms as N � 800 for
each site.

Third, we are working under the strong atom-field coupling
condition for which the inequality

g0 > 
,γph (5)

is satisfied; 
 and γph are the spontaneous emission and
cavity field decay rates, respectively. To be more specific,
we consider that a quantized optical field interacts with
ensembles of two-level rubidium atoms, which have resonance
frequency ωab/2π = 382 THz corresponding to rubidium D

lines [26]. The lifetime for rubidium atoms is taken as 27 ns
corresponding to the spontaneous emission rate 
 of about
2π × 6 MHz.

A cavity field decay rate is defined as γph = ωc/2Q,
where ωc is the frequency of the cavity mode and Q is
the cavity quality factor. At present it is practically possible
to achieve the values of Q � 105–106 for photonic crystal
microcavities (cf. [8]), which implies, for example, the value
γph/2π � 0.955 GHz for the cavity decay rate, taken at atom-
field resonance for Q � 2 × 105.

The strength of interaction of a single atom with a quantum
optical field is taken as g0 = (|dab|2ωab/2h̄ε0VM )

1/2
at each

cavity with the atomic dipole matrix element dab and the
interaction (mode) volume VM . To achieve a strong atom-field
coupling regime (5) the mode volume VM has to be as small
as possible. Practically it is possible to reach VM � (λ0/2)3,
where λ0 is a light-field wavelength (cf. [7,8]) . In this case
the atom-field coupling strength g0/2π is of the value of a few
gigahertz.

Next, we follow the Holstein-Primakoff transformation
by mapping atomic excitation operators φ̂n and φ̂

†
n into a

Schwinger representation for a two-level oscillator system
[31], i.e.,

Ŝ+,n = φ̂†
n

√
N − φ̂

†
nφ̂n, (6a)
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Ŝ−,n = (
√

N − φ̂
†
nφ̂n) φ̂n, (6b)

Ŝz,n = φ̂†
nφ̂n − N/2, (6c)

where the operators are defined as Ŝ+,n = b̂
†
nân, Ŝ−,n = â

†
nb̂n,

and Ŝz,n = 1
2 (b̂†nb̂n − â

†
nân), and n ≡ {nx,ny}. If φ̂

†
nφ̂n � b̂

†
nb̂n

approximates the atomic excitations, then it is possible to treat
operators describing atoms at lower and upper levels as

b̂n � φ̂n, (7a)

b̂†n � φ̂†
n, (7b)

ân,â
†
n �

√
N − φ̂

†
nφ̂n

≈
√

N − φ̂
†
nφ̂n

2N1/2
−

(
φ̂
†
nφ̂n

)2

8N3/2
. (7c)

Evidently, such an approximation is only valid for a
macroscopic number of atoms being at coherent state at each
cell of the lattice when relative quantum phase properties
of the atoms at the ground state for neighbor sites can be
ignored. Traditionally, the Bogoliubov approach to studying
superfluidity is restricted by keeping the first term in Eq. (7c)
for the expansion of atomic operators ân and â

†
n, respectively

(see, e.g., [3]). It leads to the so-called low-excitation-density
limit, i.e., 〈b̂†nb̂n〉 	 〈â†

nân〉 (cf. [28]). The low-excitation
limit implies that the atoms mostly populate their ground
level |a〉. It can also be rewritten in a slightly different
form as 〈φ̂†

nφ̂n〉 	 N/2, which is typically considered in the
framework of exciton-polariton BEC analysis [18–21].

In this paper we keep all terms in the expansion of Eq. (7c).
In this limit operators ân and â

†
n represent q-deformed bosonic

operators and characterize saturation effects occurring beyond
the low-density limit (cf. [37]). Combining Eqs. (7) and
Eqs. (4a) and (4c), we rewrite the Hamiltonians Ĥat and Ĥint

containing atomic operators as

Ĥat = h̄
∑
nx,ny

[(
ω

(b)
nxny , at − ω

(a)
nxny , at

+ 2β(a)
nx

+ 2β(a)
ny

+ (uab − ua)N
)
φ̂†

nxny
φ̂nxny

−β(b)
nx

(
φ̂†

nxny
φ̂nx+1 ny

+ H.c.
)

−β(b)
ny

(
φ̂†

nxny
φ̂nxny+1 + H.c.

)
+ u

2

(
φ̂†

nxny

)2(
φ̂nxny

)2]
, (8a)

Ĥint = h̄g
∑
nx,ny

[
ψ̂†

nxny
φ̂nxny

+ H.c.
]

− h̄g

2N

∑
nx,ny

[
ψ̂†

nxny
φ̂†

nxny

(
φ̂nxny

)2

+ 1

4N
ψ̂†

nxny

(
φ̂†

nxny

)2(
φ̂nxny

)3 + H.c.
]
, (8b)

where g = g0

√
N is a collective atom-field coupling con-

stant taken at each site of the lattice; u = ua + ub − 2uab +
1
N

β(a)
nx

+ 1
N

β(a)
ny

characterizes nonlinear effects in excitations
of a two-level atomic system.

Then we take the k representation for the Hamiltonians in
Eqs. (4b), (8a), and (8b) relying on the periodical properties of
our PolC system and introduce the operators φ̂n ≡ φ̂nxny

and
ψ̂n ≡ ψ̂nxny

in the form of

φ̂n = 1√
M

∑
k

φ̂ke
ik�, (9a)

ψ̂n = 1√
M

∑
k

ψ̂ke
ik�, (9b)

where � is a lattice vector. For a 2D periodic structure of
PolC we have k� = kxnx�x+ kyny�y , nx = 1,2,...,Nx , ny =
1,2,...,Ny , and M = Nx × Ny , with the lattice constants �x ,
�y in x and y directions, respectively. For anisotropic lattice
configuration we may have �x �= �y . By substituting Eqs. (9a)
and (9b) for Eqs. (4b), (8a) and (8b), we arrive at a k-space
expression for the Hamiltonian, which can be written as a
linear one and a nonlinear one, i.e.,

Ĥ = Ĥ (L) + Ĥ (NL), (10a)
Ĥ (L) = h̄

∑
k

[ωatφ̂
†
kφ̂k + ωphψ̂

†
kψ̂k

+ g(ψ̂†
kφ̂k + φ̂

†
kψ̂k)], (10b)

Ĥ (NL) = h̄u

2M

∑
k1,2 ,q

φ̂
†
k1+qφ̂

†
k2−qφ̂k2 φ̂k1

− h̄g

2Ntot

∑
k1,2 ,q

[
ψ̂

†
k1+qφ̂

†
k2−qφ̂k2 φ̂k1 + H.c.

]

− h̄g

8N2
tot

∑
k, k1,2, q1,2

[
ψ̂

†
k+q1+q2

φ̂
†
k1−q1

φ̂
†
k2−q2

× φ̂k2 φ̂k1 φ̂k + H.c.
]
, (10c)

where Ntot = NM is the total number of atoms at all sites.
The frequencies ωat(k) ≡ ω

(b)
at − ω

(a)
at and ωph(k) characterize

the dispersion properties of atomic and photonic states in a
PolC structure, which are determined by

ωat = ω
(b)
nxny , at − ω

(a)
nxny , at

+ 2
∑

j=x,y

(
β(a)

nj
− β(b)

nj
cos kj�j

) + (uab − u)N, (11a)

ωph = ωnxny, ph − 2
∑

j=x,y

αnj
cos kj�j . (11b)

For small quasimomentum components, these dispersion
relations can be approximated as

ωat(k) � ω
(ba)
at +

∑
j=x,y

h̄k2
j

2mat, j

, (12a)

ωph(k) � ωL +
∑

j=x,y

h̄k2
j

2mph, j

, (12b)

where the related atomic and photonic frequencies ωat(k)
and ωph(k) are taken at the center of Brillouin zone, i.e.,
ω

(ba)
at ≡ ωat(k)|k=0, ωL = ωph(k)|k=0. In Eqs. (12) we also

introduce effective lattice masses for photons and atoms,
denoted by mph, j = h̄/2αnj

�2
j and mat, j = h̄/2β(b)

nj
�2

j (j =
x,y), respectively.
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Hamiltonian Ĥ in Eqs. (10) represents a many-body Hamil-
tonian describing the atom-field interaction in the momentum
space for a 2D PolC structure. The linear part Ĥ (L) of
this Hamiltonian is usually examined in the framework of
upper- and lower-branch polaritons [18]. But the nonlinear
part Ĥ (NL) characterizes polariton interaction effects beyond
the low-density limit. The latter one is the main result of the
present work and is used to study the nonlinear dynamics of
PolC in the following sections.

III. POLARITON PROPERTIES IN MOMENTUM
REPRESENTATION

If a quantum field intensity in the lattice is not too high,
we can assume that the corresponding dispersion relation for
a polariton states is not modified. Thus, we use the polariton
basis to diagonalize the total Hamiltonian. In particular, one
can use the following linear transformations to couple cavity
photons and atomic excitations,

�̂1,k = Xkψ̂k + Ckφ̂k, (13a)

�̂2,k = Xkφ̂k − Ckψ̂k, (13b)

where Xk and Ck are the corresponding Hopfield coefficients
defined as

Xk = 1√
2

⎛
⎝1 + δk√

4g2 + δ2
k

⎞
⎠

1/2

, (14a)

Ck = 1√
2

⎛
⎝1 − δk√

4g2 + δ2
k

⎞
⎠

1/2

. (14b)

Here we have defined a quasimomentum-dependent fre-
quency mismatch

δk ≡ ωph(k) − ωat(k)

= � + 2
∑

j=x,y

(
β(b)

nj
− αnj

)
cos kj�j , (15)

with momentum-independent atom-field detuning � =
ωnxny,ph − [ω(b)

nxny ,at − ω
(a)
nxny ,at +2(β(a)

nx
+ β(a)

ny
) + (uab − u)N ].

Parameters Xk and Ck are symmetric and normalized with
respect to quasimomentum, i.e., Xk = X−k, Ck = C−k, and
C2

k + X2
k = 1.

Operators �̂1,k and �̂2,k characterize two types of bosonic
quasiparticles under the atom-field interaction, i.e., upper- and
lower-branch polaritons. At the low-density limit, these two
branches of polariton states are the exact solutions of the linear
Hamiltonian H (L), with two characteristic frequencies �1,2(k)
defined by

�1,2(k) = 1

2

(
ωat(k) + ωph(k) ±

√
4g2 + δ2

k

)
, (16)

determining a dispersion relation for polaritons in a band-gap
structure. In Fig. 2 the dispersion relation for LB polaritons is
examined in the first Brillouin zone of a periodic structure. The
principal feature of the dispersion surface shown in Fig. 2 is the
presence of the energy minimum for polaritons at kx = ky = 0.
A flat region on this surface appears due to a small Rabi
splitting frequency in comparison with an atomic transition

ky y
kx x

2
/2

  (
 )

T
H

z
π

Ω

-π

-π π

π

0 0

382

381.93

381.86

381.79

FIG. 2. (Color online) Dependence of the characteristic fre-
quency �2(kx,ky)/2π for LB polaritons on the quasimomentum
components in the first Brillouin zone. The parameters used are the
following: the average number of rubidium atoms at each cavity
is taken as N = 100; the collective atom-field coupling strength is
g/2π = 12.2 GHz; the total number of cavities is M = 100; the
photon masses in the lattice are mph,x � mph,y = 2.8 × 10−36 kg;
the ratio of lattice constants is αnx

/αny
= 4 for �x = 6 μm and

�y = 3 μm; and the atom-field detuning is � = 0.

frequency, i.e., g 	 ωab. Following this peculiarity, one can
approximate the dispersion relation for LB polaritons as a
parabolic curve,

�k ≡ �2(kx,ky) � h̄k2
x

2mx

+ h̄k2
y

2my

, (17)

which is relevant for small quasimomentum components.
In Eq. (17) we introduce the LB polariton mass mx,y in
spatial directions. Thus, polaritons in the lattice structure are
represented as massive particles in two spatial directions with
tensorial mass mx and my [29].

This parabolic-type dispersion relation for �2(k) describes
free quasiparticles (polaritons) at the bottom of the dispersion
surface in Fig. 2. Such a characteristic of the LB atomic
polariton dispersion can be used to achieve a BEC state with
a quasimomentum k = 0 [28]. It is well known that such a
phase transition for a uniform 2D gas of Bose particles occurs
at temperature T = 0 [3]. But a finite (nonzero) temperature
of polariton condensation can only be achieved by trapping
LB polaritons [20]. An interesting feature of polariton BEC is
that its corresponding critical temperature TC ∝ 1/

√
m can be

many orders higher than that of an atomic ensemble due to a
small polariton mass m. For example, for isotropic (symmetric)
lattices, the polariton mass is m = 2mph � 5.6 × 10−36 kg
under the atom-field resonance condition � = 0. However,
critical features of LB polaritons in PolC are limited by
the temperature of maintaining coherent properties of a 2D
combined atom-light structure presented in Fig. 1.
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The interaction between polaritons occurs due to the
nonlinear term Ĥ (NL) in Eq. (10c). By keeping LB polariton
terms, the total Hamiltonian Ĥ can be restored as

Ĥ =
∑

k

h̄�k�̂
†
k�̂k

+ 1

2M

∑
k1,2,q

U
(1)
k1k2q�̂

†
k1+q�̂

†
k2−q�̂k2�̂k1

+ 1

2M

∑
k,k1,2,q1,2

U
(2)
kk1k2q1q2

�̂
†
k+q1+q2

�̂
†
k1−q1

�̂
†
k2−q2

× �̂k2�̂k1�̂k, (18)

where we omit index label “2” at LB polariton operators
for simplicity. In Eq. (18) we also introduce two polariton
interaction parameters,

U
(1)
k1k2q = h̄

[
uX|k1+q|Xk2 + g

N

(
C|k1+q|Xk2

+Ck2X|k1+q|
)]

X|k2−q|Xk1 , (19a)

U
(2)
kk1k2q1q2

= h̄g

4MN2

(
C|k+q1+q2|Xk1

+Ck1X|k+q1+q2|
)
X|k2−q2|X|k1−q1|Xk2Xk,

(19b)

which are relevant to two- and three-body polariton-polariton
collisions, respectively.

In Eq. (18) we ignore the terms which describe interactions
between lower and upper polariton branches. It seems to be
justified if condition kBT 	 h̄g is fulfilled. For example, in
the course of current experiments with exciton polaritons in
semiconductor microstructures the lower branch of polaritons
is essentially more populated at thermal equilibrium (see,
e.g., [19–21]). For a sufficiently low temperature, we can
also take polariton scattering parameters close to the zero
quasimomentum by assuming

U
(1)
0 ≡ U

(1)
k1k2q

∣∣∣
k1,k2,q=0

= 2h̄gC0X
3
0

N
+ h̄uX4

0, (20a)

U
(2)
0 ≡ U

(2)
kk1k2q1q2

∣∣∣
k,k1,k2,q1,q2=0

= h̄gC0X
5
0

2MN2
. (20b)

Physically, two nonlinear processes, i.e., the process of
atomic collisions and the process of saturation of two-level
atomic systems, contribute to the parameter U

(1)
0 that describes

two-body polariton-polariton scattering (cf. [38]). However,
for moderate average atom number N < 800 taken at each site
of the lattice the parameter unpol for trapped rubidium atoms
is a few hertz (cf. [39]), which is smaller by many orders than
the reduced collective atom-field coupling strength gnpol/N ,
where npol is the number of polaritons that can be estimated
as the average number of excited atoms at each cavity. In this
paper we consider polaritons for which Hopfield coefficients
are of the same order, i.e., Xk ∼ Ck, which corresponds to
a moderate atom-field detuning � that is of the order of the
atom-field coupling parameter g. In this case a contribution of
the last term in Eq. (20a) is negligibly small and we can take
U

(1)
0 � 2h̄gC0X

3
0/N for further processing (cf. [38]).

N=100
N=50

-3 -2 -1 0 1
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40

60

80
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0

2Δ g

U
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(M
H

z)
(1

)

U
12

-1.0 0 1.0
0

105

3.105

FIG. 3. (Color online) Strength of polariton-polariton interaction
U

(1)
0 ≡ U

(1)
k /2πh̄ as a function of normalized atom-field detuning

�/2g at k = 0. The lattice constants are �x = �y = 3μm. Other
parameters are the same as those in Fig. 2. The inset shows the ratio
U12 ≡ U

(1)
0 /U

(2)
0 between two- and three-body polariton scatterings.

A dashed line corresponds to the case of a half-matter half-photon
polariton with a zero detuning of � = 0.

Figure 3 demonstrates the behavior of parameter U
(1)
0 as a

function of reduced atom-field detuning � taken at the bottom
of the dispersion surface. The U

(1)
0 parameter vanishes for

a negative detuning (� < 0) where polaritons become more
photonlike. The maximal value of the polariton scattering
parameter is achieved for atomlike polaritons with a positive
atom-field detuning of � = 2g/

√
3. The dependence of

the ratio U12 ≡ U
(1)
0 /U

(2)
0 = 4Ntot/X2

0 of polariton nonlinear
interaction parameters is also outlined in the inset of Fig. 3.
It is worth mentioning that when U

(1)
0 � U

(2)
0 the last term in

Eq. (18) can be neglected for a negative detuning (� < 0) for
a photonlike polariton.

IV. NONLINEAR DYNAMICS OF PolC

A. Variational approach for PolC

Let us consider the properties of PolC in the continuum
limit. By treating a many-body Hamiltonian in Eq. (18) in the
coordinate representation, one can get

Ĥ =
∫ {

�̂†(r)

[
− h̄2∂2

2mx∂x2
− h̄2∂2

2my∂y2
+ V

(pol)
tr (r)

]
�̂(r)

+ U1

2
�̂†(r)2�̂(r)2 +U2

3
�̂†(r)3�̂(r)3

}
d2r, (21)

where �̂ (�̂†) is polariton field annihilation (creation)
operator that describes quantum macroscopic properties of
PolC. Related two- and three-body polariton-polariton inter-
action strengths are defined as U1 = 2h̄g�x�y

N
C0X

3
0 and U2 =

3h̄g�2
x�

2
y

4N2 C0X
5
0, respectively. In Eq. (21) we have also introduced

a trapping potential V
(pol)

tr (r) for the polaritons, which is
assumed to be parabolic, i.e.,

V
(pol)

tr (r) = mxω
2
xx

2

2
+ myω

2
yy

2

2
. (22)
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Next, we use a mean-field approach to replace the corre-
sponding polariton field operator �̂(r) by its average value
〈�̂(r)〉 ≡ �(r), which characterizes the LB polariton wave
function associated with the PolC structure. By using Eq. (21),
we obtain a governed equation for �(r),

ih̄
∂�(r,t)

∂t
=

{
− h̄2∂2

2mx∂x2
− h̄2∂2

2my∂y2
+ V

(pol)
tr (r)

+U1|�(r,t)|2 + U2|�(r,t)|4 − iγ

}
�(r,t),

(23)

which is a modified complex nonlinear Schrödinger equation
with a particle tensor mass, trapping potential, and cubic-
quintic nonlinearities. In addition, we have introduced the
last term in brackets that is responsible for nonequilibrium
properties of polaritons. In particular, parameter γ = X2

0
 +
C2

0γph characterizes the weak decay rate of the polariton
number depending on photon leakage (parameter γph) as well
as on atomic decoherence (spontaneous emission rate 
) for a
coupled atom-light system in Fig. 1 (cf. [30]).

Various aspects of such an equation (in the isotropic case for
mx = my ≡ m) have been studied previously with respect to
the analysis of SF behavior of atomic [33] or photonic quantum
“liquids” [34].

In general it is useful to recast Eq. (23) in terms of new

coordinates x̄ =
√

mx

m
x and ȳ =

√
my

m
y, introducing a new

variable �(r,t) = ψ(x̄,ȳ,t)e−γ t that obeys the equation

ih̄
∂ψ

∂t
=

{
− h̄2

2m

(
∂2

∂x̄2
+ ∂2

∂ȳ2

)
+ V

(pol)
tr (x̄,ȳ)

+ Ū1|ψ |2 + Ū2|ψ |4
}
ψ, (24)

where we have defined Ū1 = U1e
−2γ t and Ū2 = U2e

−4γ t ;
m is an effective polariton mass. In Eq. (24) the
trapping potential given by Eq. (22) is represented as
V

(pol)
tr (x̄,ȳ) = m

2 (ω2
x x̄

2 + ω2
y ȳ

2). Thus, in the presence of the
polariton number decaying we transform CNLSE to “usual”
NLSE for wave function ψ(x̄,ȳ,t) with time-dependent non-
linear parameters Ū1(t) and Ū2(t) (cf. [40,41]). It is worth
noticing that Ū1(t) and Ū2(t) are diminishing in time with
different rates.

Below we study ground-state properties of PolC by means
of the variational approach for the solution of Eq. (24). In
particular, we take the Gaussian trial function

ψ(x̄,ȳ,t) =
√

N0

πRxRy

× exp

[
− x̄2

2R2
x

− ȳ2

2R2
y

+ ix̄2bx

2
+ iȳ2by

2

]
(25)

for describing the quantum mechanical macroscopic ground
state of LB polaritons. In the zero temperature limit the wave
function �(r) is relevant to the description of LB polariton
BEC that can occur in the limiting case at full thermal
equilibrium; N0 is the average total number of polariton
particles. In this case one can assume that N0 = npolM .

The time-dependent function Rx,y(t) determines the width
of a wave function, and bx,y(t) characterizes a related wave
function curvature. For further processing it is useful to
introduce new dimensionless variables for the wave function
width dx,y = Rx,y/r0, the rescaled time τ = ω0t , and the
decay rate ϒ = γ /ω0, with the characteristic length scale r0 ≡√

h̄/mω0 and the geometric mean of the harmonic oscillator
(trapping) frequency ω0 = √

ωxωy .
For the 2D configuration of PolC illustrated in Fig. 1, we

may take r0 = 20 μm and ω0/2π ≈ 7.5 GHz by referring to
possible experimental parameters [20]. With the corresponding
Lagrangian for Eq. (23),

L = h̄N0

4

∑
η=x,y

{
R2

η

dbη

dt
+ h̄

m

(
1

R2
η

+ R2
ηb

2
η

)

+ mω2
0λ

2
ηR

2
η

h̄

}
+ N2

0 Ū1

4πRxRy

+ N3
0 Ū2

9π2R2
xR

2
y

, (26)

we can derive a set of coupled nonlinear equations for the wave
function widths in x̄ and ȳ coordinates,

d̈x = 1

d3
x

− λ2
xdx + P1

d2
xdy

+ P2

d3
xd2

y

, (27a)

d̈y = 1

d3
y

− λ2
ydy + P1

d2
ydx

+ P2

d3
yd2

x

, (27b)

with λx,y = √
ωx,y/ωy,x .

Two rescaled interaction parameters, P1 ≡ N0Ū1m/2πh̄2

and P2 ≡ 4N2
0 Ū2m/9π2h̄2r2

0 , are introduced for polariton-
polariton two- and three-body scattering processes,
respectively. Notice that, practically, the values of interaction
parameters for PolC structures satisfy the inequality |P2| 	
|P1| � 1 for a small number of atoms. On the other hand,
|P1| � 1 in the Thomas-Fermi limit, which implies a large
number of microcavities such as M � 103.

We examine equilibrium properties of polaritons which can
be obtained on short time scales or for negligibly small rates of
γ . Loosely speaking we are taking parameters P1,2 in Eq. (27)
as a constant in time.

We have also assumed that, initially, quasiparticles are
placed at rest, i.e., ḋx(0) = ḋy(0) = 0. The equilibrium points
dx = dx0 and dy = dy0 for wave function widths in two
dimensions are determined in steady-state conditions:

λ2
x,ydx,y0 = 1

d3
x,y0

+ P1

d2
x,y0dy,x0

+ P2

d3
x,y0d

2
y,x0

, (28)

which cannot be solved analytically in a general case. We first
analyze the stability of PolC with some specific physically
important limits.

B. Symmetric (isotropic) PolC

For a complete isotropic configuration of PolC, we can
assume trapping potential frequencies to be equal, i.e., λx =
λy = 1, and take dx,y = d. From Eq. (27), we obtain a Newton-
like differential equation,

d̈ = 1 + P1

d3
− d + P2

d5
, (29)
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d dd0
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M=3000

M=1190
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FIG. 4. (Color online) Effective potential V (d) as a function of
normalized width of the polariton wave function for positive and
negative scattering lengths is shown by dashed and solid lines,
respectively. The black dotted line characterizes a negative scattering
length without quintic nonlinearity, P2 = 0. The parameters used are
� = 0, N = 50, npol = N0/M = 10, �x = �y = 3 μm, r0 = 20 μm,
and g/2π = 8.6 GHz. In the insert V (d) is plotted within a wide
range of d; M = 300.

with an effective potential,

V (d) = 1 + P1

2d2
+ P2

4d4
+ d2

2
, (30)

and a corresponding dimensionless chemical potential μ,

μ = 1

2

(
1

d2
+ d2

)
+ P1

d2
+ 3P2

4d4
. (31)

In Fig. 4 the dependencies for potential V (d) as a function
of the width d of the PolC wave function are shown. A
corresponding chemical potential behavior is represented in
Fig. 5. For a positive polariton scattering length (P1 > 0),
an effective potential V (d) has only one minimum d0 and a
supported polariton wave function is always stable. The quintic
nonlinearity P2 in this case does not play an important role.
From Eq. (29) we get an equilibrium value of wave function
width d0 � (1 + P1)1/4 that corresponds to the chemical
potential μ = (1 + 1.5P1)/(1 + P1)1/2, as shown by the green
(upper) dotted curve in Fig. 5.

The situation dramatically changes if we deal with po-
laritons with a negative scattering length, P1 < 0. In this
case the atom-field coupling constant g should be negative
too. A polariton wave function is found to be stable if
we completely neglect three-body polariton interactions, i.e.,
P2 = 0, as shown by the black dotted curves of Figs.
4 and 5, respectively. Roughly speaking, for P2 = 0, the
effective potential V (d) has one equilibrium point defined
as d0 � (1 − |P1|)1/4.

In the presence of quintic nonlinearity, the PolC becomes
unstable and the corresponding wave function collapses, as
shown in the solid curves of Figs. 4 and 5. In particu-
lar, a critical polariton number is found as N0c = 11 890,
which corresponds to nonlinear parameters |P1c| = 0.4915
and |P2c| = 0.1396; all this relates to the blue solid (bold)
curve in Fig. 4. The corresponding critical width of a polariton

0 5 10 15 20 25

2

0

-2

-4

-6

-8

-10

µ

for P1<0, P2=0

for P1<0

for P1>0

for P1=0, P2=0

N0 (103 Polaritons)

FIG. 5. (Color online) Dimensionless chemical potential μ versus
the number of polaritons N0. The vertical (red) dashed line cor-
responds to a critical number N0c = 11 890. The other parameters
are the same as those in Fig. 4. The horizontal dashed-dotted line
(μ = 1) characterizes a related chemical potential for the ideal gas of
noninteracting polaritons. Each curve is plotted with d0 being in the
steady state.

wave function is d0c = 0.6417. It is interesting to note that
such a behavior of the polariton wave function is commonly
inherent in BECs in higher dimensions [33].

For a number of cavities, such as M = Mc, there exists
one metastable point dc for a polariton wave function that
characterizes the bending of the effective potential V (d),
as shown by the blue solid (bold) curve of Fig. 4. As the
number of cavities increases, M > Mc, our PolC is unstable
and the related wave function �(r) collapses, as shown by
the green solid (lower) curve of Fig. 4. For a smaller number
of microcavities, M < Mc, there exist two equilibrium points
d10 and d0 for a polartion “cloud” behavior, as shown in the
inset of Fig. 4. One of these two equilibrium points, d10, is
unstable. A LB polariton wave function behaves unstable and
tends to collapse if we go to the left from this point, i.e., for
d � d10. On the other hand, a polariton cloud oscillates within
the region d10 � d � d20.

C. Anisotropic PolC: Small amplitude oscillations

Expanding Eqs. (27) around the equilibrium points dx0 and
dy0 one can easily find low-energy-excitation frequencies for
LB polaritons in a PolC structure as

ω1,2 =
√

2ω0
[ (

λ2
x + λ2

y − P 13
1 − P 31

1

)
±

√(
λ2

x − λ2
y + P 13

1 − P 31
1

)2 + 4
(
P 22

1 + P 33
2

)2]1/2
,

(32)

where P
ij

1 = P1

4di
x0d

j

y0

and P
ij

2 = P2

2di
x0d

j

y0

. Two types of orthogonal

oscillation modes are determined by two signs in Eq. (32).
In Fig. 6(a) we plot the dependencies of small oscillation
frequencies ω1,2 (in ω0 units) as a function of polariton
particle number N0 for the case P1 > 0. The horizontal dashed
curves characterize the Thomas-Fermi limit. In particular,
oscillation frequencies ω1,2 approach ω1 � ω0

√
2 and ω2 �

ω0

√
2(2 + P2

d6
0
)1/2 for a symmetric case when wave function
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FIG. 6. (Color online) Normalized low amplitude oscillation
frequencies ω1,2 (in trapping frequency ω0 units) as a function of
polariton particle number N0 for (a) P1 > 0 and (b) P1 < 0. The
horizontal dashed curves in (a) characterize the Thomas-Fermi limit,
while the vertical dashed lines in (b) correspond to a critical number
of particles for which the collapse of wave function happens. Other
parameters are the same as those in Fig. 4.

spatial widths dx,y and trapping frequencies are the same,
i.e., dx,y0 = d0 and λx = λy = 1, respectively. Instead, for a
negative scattering length, i.e., for P1 < 0, the characteristic
oscillations are limited by critical value N0c for which collapse
of PolC wave function occurs (cf. [32]).

For a nonsymmetric case we choose the parameters λ ≡
λy = 1/λx and demonstrate in Fig. 7 the dependence of
the critical number of polaritons N0c and related critical
widths dx,yc of a wave function on parameter λ for negative
scattering length. In both cases the particle number N0c as
well as wave function widths dx,yc diminish due to symmetry
properties of Eq. (28). From Fig. 7(a) it is clearly seen that
the maximal value N0c = 11 890 is obtained for a radially
symmetric polariton cloud with trapping frequencies ωx =
ωy (λ = 1). On the other hand, two limits λ 	 1 (ωy 	
ωx) and λ � 1 (ωy � ωx) correspond to highly anisotropic
traps which physically correspond to the reduction of a
2D lattice to a 1D spatially periodic structure (see Fig. 1).
The collapse of a wave function happens for parameters of
the system belonging to the domain at the outside of the
shaded region in Fig. 7(a). It is interesting to note that the
extreme width of the wave function in one spatial dimension
is achieved for the nonsymmetric case for which ωx �=
ωy . In particular, dxc reaches its maximal value dxc, max =
0.6618 at λ = 1.518. The same magnitude of dyc, max can be
obtained in another limit of polariton trapping frequencies
for λ = 0.659.

0 5 10 15 20 25
λ

0.1

0.3

0.7

0.5

0

0.7

0
0 1 2

0.35

(b)
d

d
d x

,y
c

0 5 10 15 20 25

λ

6

12

3

9

Stable

Unstable

0 (a)

N
0c

(1
03

 P
ol

ar
it

on
s)

FIG. 7. (Color online) (a) Critical number N0c of polaritons at
the ground state of PolC and (b) the corresponding wave function
widths dx,yc against a normalized trapping frequency parameter λ

for a negative scattering length (P1 < 0). The vertical dashed line
corresponds to the symmetric case with λ = 1. Other parameters are
the same as those in Fig. 4. The shaded region characterizes a stable
domain for PolC structure wave function.

D. Dissipative dynamics

Let us examine nonequilibrium properties of a polariton
system. Notably, since the relation γ 	 g,ω1,2 is fulfilled,
the adiabatic approximation is valid for the problem under
discussion (cf. [41]). A particle number decaying that is
inevitable in the general case due to polariton interaction with
the environment enables us to change the physics of PolC
dynamics sufficiently. Figure 8 demonstrates typical temporal
dynamics of PolC wave function width d = dx = dy in the
adiabatic limit for the symmetric case λ = 1. The initial con-
ditions taken for Fig. 8(a) are very close to steady-state point
d0 described by Eqs. (28)—black dotted lines. Completely
neglecting the decay rate, the polaritonic system exhibits small
amplitude oscillations for positive (the upper dashed curve)
and for negative (the lower dashed curve) scattering lengths.
In the presence of polariton decaying the steady-state levels
(dotted lines in Fig. 8) of width d are adiabatically shifted to the
value dst � 1 which occurs due to the diminishing of governed
parameters P1,2. A newly settled regime of small-amplitude
oscillations around dst can be described by Eq. (32) as well.
By using a mechanical analogy (see, e.g., [42]) we focus on the
fact that, since the action is an adiabatic invariant, the energy

013813-9



SEDOV, ALODJANTS, ARAKELIAN, LIN, AND LEE PHYSICAL REVIEW A 84, 013813 (2011)

d

0.6 1.2

1

0.9

0.8

1.1

0

ϒ=0   P1>0

ϒ=0   P1<0

ϒ≈0.0644   P1>0

ϒ≈0.0644   P1<0

(b)

0.3 0.9

t (nsec)

(a)

0.4

d

0.25 0.5 10

d(0)= 0.6417

d(0)= 0.4

0.6

0.8

1.6

0.75

1

1.4

1.2

t (nsec)

1.2

0.75

FIG. 8. (Color online) Wave function width d against time t . The
parameters are the following: (a) N0 = 10 000 (|P1| = 0.414, |P2| =
0.099), ḋ(0) = 0.05, d0 = 1.106 for positive scattering length and
d0 = 0.813 for negative scattering length; the dotted black lines
correspond to steady-state solutions; (b) N0 = N0c = 11 890 (P1 =
P1c = −0.4915, P2 = P2c = −0.1396), ḋ(0) = 0.5, ϒ ≈ 0.0644
(γ /2π ≈ 0.4805 GHz).

of small-amplitude oscillations remains proportional to the
frequency of oscillations by slow decaying PolC parameters.

The influence of a decay rate on polariton dynamics
becomes more evident if we consider a PolC with negative
scattering length initially prepared in an unstable (collapsing)
region. In Fig. 8(b) the nonequilibrium dynamics for PolC
wave function width is shown. The initial conditions are taken
for critical width d(0) = dc � 0.6417, which is shown by the
blue solid (bold) curve in Fig. 4 and for d(0) = 0.4 < dc. A col-
lapse of wave function occurs if we neglect decaying of PolC
particles. However, for a small but finite decay rate γ the sys-
tem undergoes a transition from an unstable region to a stable
domain of small-amplitude oscillations, avoiding a collapse of

wave function. One can also give another explanation for this.
Actually, since parameters P1 ∝ e−2γ t and P2 ∝ e−4γ t vary in
time with different rates, a contribution of quintic nonlinearity
in the temporal dynamics of the system vanishes much faster.
Hence, the domain of PolC wave function collapse should
vanish as well. For a much smaller value of the initial wave
function width d the collapse can be escaped for much larger
values of decay rate γ . However, for large decay rates such as
γ � g,ω1,2 that are beyond the adiabatic approximation, our
approach based on a variational method becomes inadequate.

V. CONCLUSIONS

In the paper, we consider a 2D spatially periodic structure,
coined as a PolC, for observing macroscopic properties for
coupled atom-field states (polaritons) in the lattice at the zero
temperature limit. Under the tight-binding approximation such
a system realizes weakly coupled cavities containing a small
amount of two-level atoms which interact with quantized
cavity modes. We have shown that the dynamics of the
polaritons in the lattice is much richer if it is beyond a typically
used low-density limit. First of all, we have studied two- and
three-body polariton-polariton scattering parameters by means
of the Holstein-Primakoff approach. We have shown that two-
body polariton scattering dominates in the positive atom-field
detuning domain that corresponds to atomlike LB polaritons.
As a sequence, we consider macroscopic properties of such
polaritons as a whole at the bottom of the dispersion curve in
the continuous limit of a spatially periodic (lattice) structure. A
variational approach is used to study the related widths, chem-
ical potential, and characteristic frequencies of PolC ground-
state wave functions around the equilibrium points. In particu-
lar, we consider the polariton decay rate γ , which is essentially
smaller than other characteristic parameters, such as atom-field
coupling strength g and effective trapping frequency ω0.
Physically it means that the crucial parameters P1,2 that char-
acterize polaritonic nonlinearity vary adiabatically slowly in
time. This approach is justified by supporting sufficiently low
temperatures of a polaritonic system and by exploring cavities
with a high Q factor for PolC design purposes. Our results
reveal the fact that an unstable ground state in two dimensions
is supported beyond the critical number of polaritons and
low-excitation-density limit for negative scattering length.
Simulation of small-amplitude nonequilibrium (dissipative)
dynamics in the presence of condensate particle decaying re-
veals new features in PolC behavior. For some values of initial
conditions belonging to the unstable domain, the polaritonic
system adiabatically crosses a collapsing region and reaches
a stable regime of small-amplitude oscillations. Thus, for a
negative scattering length the decay process in some cases
prevents PolC wave function from collapse and fragmentation.
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