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Instabilities of optical solitons and Hamiltonian singular solutions in a medium of finite extension
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We analyze the role of soliton solutions and Hamiltonian singularities in the dynamics of counterpropagating
waves in a medium of finite spatial extension. The soliton solution can become unstable due to the finite extension
of the system. We show that the spatiotemporal dynamics then relaxes toward a Hamiltonian singular state of a
nature different than that of the soliton state. This phenomenon can be explained through a geometrical analysis
of the singularities of the stationary Hamiltonian system.
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I. INTRODUCTION

Nonlinear partial differential equations (PDE) which are
completely integrable can be solved by means of the inverse
scattering transform [1]. This method can be applied to a large
variety of nonlinear equations, which have found applications
in many different fields of physics and, in particular, in
the context of nonlinear optics (see Ref. [2] for a recent
overview). Among the solutions obtained by this approach,
soliton solutions are known to play a key role because of their
peculiar properties of stability.

The inverse scattering transform was originally developed
for nonlinear systems of infinite extension, while the case of
systems with finite spatial extension has only been addressed
recently. The question of the stability of solitons in systems
of finite length was recently analyzed by Kozlov and Wabnitz
in Ref. [3]. Considering the example of a counterpropagating
nonlinear wave interaction, they showed that the stationary
soliton solution obtained in an infinitely extended medium
becomes unstable when considered in a medium of finite
extension. The soliton solutions of this system are the so-
called polarization-domain wall solitons [4,5]. The model of
Ref. [3] refers to the important practical situation in which two
counterpropagating optical beams are injected in a continuous
way from both ends of an optical fiber of length L. The
numerical simulations reported in Ref. [3] reveal that even
for a fiber length much larger than the characteristic width �

of the soliton, the soliton solution exhibits an instability and
relaxes, after a complex transient, toward a stationary state of
a nature different than that of the initial soliton solution. Note
that this type of relaxation process has also been the subject of
several experimental studies in optical fibers and is now called
“polarization attraction” [4,6,7], due to its role in the dynamics
of polarizations of the optical beams.

From a different perspective, we recently showed that the
stationary states selected by the spatiotemporal dynamics
can be associated with Hamiltonian singular solutions of
the stationary system. These stationary solutions belong to
a two-dimensional object of the associated phase space, the
so-called singular torus, which plays the role of an attractor
for the nonlinear system [8,9]. The natural important problem
is to analyze the relation between the stability properties of the
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soliton solution and the structure of the singular Hamiltonian
solutions of the corresponding stationary system.

In this paper, we consider two models of the same general
class. One of them has a single isolated singular torus, while
the other one, analyzed in Ref. [3], is shown to have a
one-parameter family of singular tori. We first show that
the soliton solution belongs to the ensemble of singular
Hamiltonian solutions of the associated stationary system.
The analysis reveals that when the singular torus of the
Hamiltonian system is isolated then the space-time dynamics
is asymptotically attracted toward the soliton solution, which
is thus stable. Conversely, the soliton becomes unstable in
the presence of a continuous family of Hamiltonian singular
tori and the dynamics relaxes toward another stationary state
of this family. These examples indicate that the geometrical
analysis of the singularities of the stationary Hamiltonian
system appears to be the appropriate theoretical framework
to study nonlinear wave systems in a medium of finite spatial
extension. In particular, the fact that the selected stationary
states can strongly differ from the soliton solution can be
explained through the analysis of the topological properties
of the corresponding singular tori.

Besides its fundamental interest, the process of polarization
attraction discussed here has applications as a polarizer
performing polarization of light with almost 100% efficiency,
in contrast with standard polarizers that unavoidably waste
50% of unpolarized light (also see Ref. [10]). This aspect is
presently attracting great interest because of the possibility
of achieving a repolarization of optical transmission lines in
telecommunication systems [7,11].

We consider the one-dimensional counterpropagating con-
figuration of the four-wave interaction. Different models
describing a variety of situations have been introduced in
the literature. Using the Stokes formalism, the equations
governing the polarization dynamics of the counterpropagating
beams can be written in the following general form:

∂ �S
∂t

+ ∂ �S
∂z

= �S × (I �J ) + FS(�S, �J ),
(1)

∂ �J
∂t

− ∂ �J
∂z

= �J × (I �S) + FJ (�S, �J ).

The Stokes vectors �S = (Sx,Sy,Sz) and �J = (Jx,Jy,Jz) de-
scribe, respectively, the polarization states of the forward
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and backward beams on the Poincaré sphere. The matrix
I is diagonal and ‘×’ denotes the vector product, while
the functions FS and FJ are polynomials of the Stokes
vectors (�S, �J ), which account for the nonlinear self-interaction
terms of the waves. The radii of the forward and backward
spheres, S0 and J0, are related to the signal and pump powers.
We normalized the variables with respect to the nonlinear
interaction time τ0 = 1/(γ S0) and length �0 = vτ0, where
γ is the nonlinear coefficient and v the group velocity of
the waves. The variables can be recovered in standard units
through t → tτ0, z → z�0, and (�S, �J ) → (�S, �J )S0. In the limit
where the two functions FS,J (�S, �J ) vanish, the PDE system (1)
is integrable in an infinite medium [2,12].

II. MODEL I

We consider here the example of Ref. [3] defined by I =
diag(1, − 1, − 2), which is denoted system I in the following.
The choice of this particular example stems from the fact that
it is known to model light propagation in a birefringent spun
fiber [13]. The corresponding soliton solution is a zero-velocity
domain wall [5]:

Ss
x = −tanh(

√
2z), J s

x = −tanh(
√

2z),

Ss
y = − 1√

3
sech(

√
2z), J s

y = − 1√
3

sech(
√

2z), (2)

Ss
z =

√
6

3
sech(

√
2z), J s

z = −
√

6

3
sech(

√
2z).

The solution (2) is a stationary solution of Eq. (1). Moving soli-
ton solutions can also exist for different powers of the beams
(S0 �= J0), but they are not relevant to the finitely extended
medium discussed here. In the following we assume S0 = J0.
The first step of our analysis consists of studying the singu-
larities of the stationary system associated with system (1)
[8]. It is straightforward to see that this system is an ordinary
differential equation (ODE) with the Hamiltonian

H = −SxJx + SyJy + 2SzJz, (3)

where the Poisson brackets are defined by {Si,Sj } = εijkSk,

{Ji,Jj } = −εijkJk , εijk being the completely antisymmetric
tensor. This ODE system is integrable since it admits an
additional constant of the motion K = Sz + Jz. We construct
the energy-momentum diagram (H,K), which indicates the
location of the singularities in the set of the possible values of
H and K . More precisely, the Liouville-Arnold theorem [14]
shows that the phase space is foliated by invariant sets, labeled
by the values H and K . In general, the invariant sets are
standard tori, but there are points of this diagram for which the
corresponding tori are singular [15]. The singular sets of this
diagram correspond to the points where the two gradients ∇H

and ∇K are collinear (we refer the reader to Refs. [8,9,16] for
an explicit construction of a similar diagram). In the present
model, the energy-momentum diagram contains a continuous
line of singularities whose corresponding set in the original
phase space is a bitorus, i.e., a singular torus consisting of
two tori glued along a circle [see Fig. 1(a)] [15]. A bitorus
can also be viewed as the Cartesian product of an eight figure
with a circle. The soliton solution (2) is a particular case of a
Hamiltonian singular solution that belongs to the torus located

FIG. 1. (Color online) Energy-momentum diagram of stationary
model I (a) and of model II (b). The green (light gray) curve in panel
(a) denotes the singular line of bitori. The unstable soliton solution (2)
is a particular point of the singular line located at (H = −1,K = 0).
The crosses on the singular line locate the positions of the stationary
states obtained by solving numerically the PDE model I for different
fiber lengths L (from L = 3 to L = 10). The energy-momentum
diagram for model II (b) has an isolated singularity located at
(K = 0,H = −1), which corresponds to a doubly pinched torus. This
singularity coincides with the position of the soliton solution (5). In
this case, the PDE space-time dynamics relaxes to the stable soliton
state.

at (K = 0, H = −1) in the energy-momentum diagram. The
trajectory of the soliton solution (2) is schematically illustrated
on the corresponding bitorus in Fig. 2(a) [red (thick gray) line].
Note that the trajectory starts and ends on the singular circle
of the bitorus.

We perform numerical simulations of the space-time
system I. We start the simulation from the soliton solution
(2) truncated in the finite interval [0,L], as well as from a
homogeneous solution (see the dashed lines in Fig. 3). The
boundary conditions at both ends of the optical fiber are kept
fixed to the corresponding values of the initial wave, i.e.,
�S(z = 0,t) = �S(z = 0,t = 0), �J (z = L,t) = �J (z = L,t = 0).
In the case of the homogeneous initial condition, the boundary
conditions are the same as those for the soliton initial condition,
�S(z = 0,t) = �Ss(z = 0), �J (z = L,t) = �J s(z = L). For these
two sets of initial conditions, the simulations reveal that,
after a complex transient, the system relaxes toward the same
stationary state. As illustrated by the continuous lines in Fig. 3,
this stationary state is completely different from the soliton
solution (2), which confirms the previous results of Ref. [3]
where the instability of the soliton in a finitely extended system
is reported.

FIG. 2. (Color online) Trajectories of the soliton solutions on
the bitorus for model I (a) and on the doubly pinched torus for
model II (b).
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FIG. 3. (Color online) Numerical integration of the PDE
model I showing the instability of the soliton solution: (a, b)
Soliton solution (2) considered as the initial condition (dashed lines)
and corresponding stationary state asymptotically selected by the
space-time dynamics (continuous lines). Panel (a) displays the �S
components, and panel (b) displays the �J components. The x, y,
and z components are represented in red (dark gray), blue (black),
and green (light gray), respectively. (c, d) Same as in panels (a) and
(b), but starting from a homogeneous solution (see the text): the
system relaxes toward the same singular stationary state as in panels
(a) and (b).

The simulations show that the stationary state selected by
the spatiotemporal dynamics always lies in the neighborhood
of the line of singular bitori, as illustrated by the crosses
in Fig. 1(a). The stationary state is shown to converge
exponentially toward the line of singular tori as L → +∞.
However, this convergence occurs for values of K that differ
substantially from K = 0, i.e., far from the bitorus of the
soliton solution [see Fig. 1(a)]. These results show that, in
order to understand the long time behavior of the PDE system,
it is not sufficient to consider the soliton solution, but one has
to take into account the more general singular Hamiltonian
solutions.

III. MODEL II

We now consider the PDE model that describes some of the
experiments of polarization attraction reported in Refs. [4,6,7]:

∂ �S
∂t

+ ∂ �S
∂z

= �S × (I �S) + 2�S × (I �J ),
(4)

∂ �J
∂t

− ∂ �J
∂z

= �J × (I �J ) + 2 �J × (I �S),

where the diagonal matrix reads I = diag(−1,0, −1). This
system is termed model II.

The geometrical analysis of the stationary ODE system (4)
has been reported in Refs. [8,9]. Here we study the relation
between this geometrical approach and the soliton solutions.
Note that the term “soliton” is used here in its loose sense,
since the PDEs (4) are not integrable (self-interaction terms
are considered) and thus only admit solitary-wave solutions.
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FIG. 4. (Color online) Same as Fig. 3 but for model II Eq. (4):
the numerical simulations show that the soliton solution (5) is stable.

The stationary (t-independent) system (4) is an integrable ODE
with the Hamiltonian

H = 2(SxJx + SzJz) − 1
2

(
S2

y + J 2
y

)
,

which Poisson commutes with the constant of motion K =
Sy − Jy . The corresponding energy-momentum diagram is
reported in Fig. 1(b). In contrast to model I, the diagram is
now characterized by an isolated singularity associated with
a doubly pinched torus located at K = 0 and H = −1. The
stationary system (4) admits a soliton solution of the form

Ss
x =

√
3

2
sech(

√
3z), J s

x = −
√

3

2
sech(

√
3z),

Ss
y = tanh(

√
3z), J s

y = tanh(
√

3z), (5)

Ss
z = 1

2
sech(

√
3z), J s

z = 1

2
sech(

√
3z).

As shown in Fig. 1(b), the position of this soliton solution
coincides with the position of the pinched torus (K = 0,

H = −1). The soliton trajectory on the singular torus starts
and ends at the two pinch points. The solution (5) has the
same structure as the soliton solution of the integrable system
I. However, the spatiotemporal dynamics has a different
behavior. Indeed, we perform the same type of space-time
numerical simulations reported in Fig. 3 but with the PDE
model II (4). The simulations now reveal that the soliton is
stable and plays the role of an attractor for the finitely extended
spatiotemporal dynamics. This is illustrated in Fig. 4, which
shows that the dynamics asymptotically converges toward the
stable soliton solution (5).

IV. DISCUSSION

The different behaviors observed for systems I and II can
thus be explained by the structure of the energy-momentum
diagrams. In both models I and II the dynamics is characterized
by a relaxation toward a stationary state that lies in the
neighborhood of a singular torus. However, in contrast with
model II where the unique isolated singular torus coincides
with the soliton solution (5), in model I there exists a con-
tinuous family of Hamiltonian singular solutions which differ
from the soliton solution (2). Despite the apparent similarity of
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the two soliton solutions, i.e., a pair of sech-shaped functions
for the x and z components, and a tanh function for the y

component, a completely different spatiotemporal dynamics is
observed. These results indicate that the stability of a soliton
solution in a finitely extended medium can be understood
from the nature and the distribution of singular tori in the
energy-momentum diagram.

Note that although the PDEs that model the experiments
are not PDE integrable (in an infinite medium), the relaxation
toward a stationary state is of the same nature as that
discussed in the PDE integrable model I. In particular, we
have checked that the self-interaction terms of model II that
break the integrability do not change qualitatively either the
energy-momentum diagram (which still presents an isolated
doubly pinched torus) or the spatiotemporal dynamics. Based
on these numerical simulations, we conjecture that the PDE
integrability of these systems does not play any role in the
relaxation phenomenon and in the stability of the soliton
solution. Conversely, this instability can be explained through

the geometrical analysis of the singularities of the ODE
integrable stationary Hamiltonian system, which thus appears
as the appropriate theoretical framework to study nonlinear
physical systems of finite spatial extension. The mathematical
analysis of the different properties presented in this paper
is a forthcoming goal. As a first step, following the recent
results of Ref. [17], one can consider the stability of the soliton
solution of the wave propagation in a periodic grating. Indeed,
given the generality of the mathematical treatment [8,15],
the analysis developed here is expected to be transposable
to different kinds of Hamiltonian physical systems of finite
spatial extension. In this framework, another example is given
by the degenerate configuration of the resonant three-wave
interaction [18] which also presents a one-parameter family
of singular tori. However, these tori are curled and of a
different nature than the line of bitori of this paper [16].
An open question is then to study the problem of the
stability of the soliton solutions in this type of nonlinear
system.
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