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Dark localized structures in a cavity filled with a left-handed material
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We consider a nonlinear passive optical cavity filled with left-handed and right-handed materials and driven by
a coherent injected beam. We assume that both left-handed and right-handed materials possess a Kerr focusing
type of nonlinearity. We show that close to the zero-diffraction regime, high-order diffraction allows us to stabilize
dark localized structures in this device. These structures consist of dips in the transverse profile of the intracavity
field and do not exist without high-order diffraction. We analyze the snaking bifurcation diagram associated with
these structures. Finally, a realistic estimation of the model parameters is provided.
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I. INTRODUCTION

During the last decade, the study of optical properties
of left-handed materials (LHMs), often referred to as meta-
materials, has attracted considerable attention both from
fundamental as well as from applied point of views (see recent
special issue [1]). Particular attention has been paid to the
characterization of their linear properties and their fabrication
[2–8]. Several studies reveal the importance of nonlinear
phenomena in the propagation of light in LHMs [9–12].
More recently, the combination of a layer of LHM together
with nonlinear propagation in a second layer of right-handed
material (RHM) (see Fig. 1) has shown to offer possibilities
to design devices where the mean diffraction is close to zero
[13,14]. When operating around the zero-diffraction regime
and by taking into account the nonlocal properties of light
propagation in such a double-layered (LHM+RHM) optical
cavity, the spatiotemporal evolution of the intracavity field can
be described by the following dimensionless partial differential
equation [15]:

∂A

∂t
= Ai − (1 + i�)A + i� |A|2 A

+ iδ∇̃2
⊥A +

(
iθ − δ2

2

)
∇̃4

⊥A, (1)

where A is the slowly varying envelope of light within the
ring cavity, Ai is the amplitude of the injected field, � is the
normalized cavity detuning parameter, and � is the normalized
nonlinear Kerr coefficient. The Laplace operator that acts on
the transverse plane is ∇̃2

⊥ = (∂2
xx + ∂2

yy)/k2
0, with k0 the wave

number of the light. The time has been scaled as in [15]. The
effective diffraction coefficient is denoted by δ. As explained
in [13], the coefficient δ can be tuned by adjusting the relative
width of the RHM and the LHM layers. The coefficient θ

accounts for the higher-order spatial effects in the cavity.
In this work, we show that combining a RHM and LHM

allows us to stabilize both one-dimensional (1D) and two-
dimensional (2D) dark localized structures (DLS). These
DLS consist of a slug of a patterned state embedded in
a homogeneous steady state, i.e., they arise as dips in a
homogeneous steady state of higher intensity. The number
of dips and their spatial distribution in the transverse plane of

the cavity is determined by the initial conditions. We construct
the bifurcation diagram associated with these structures and
show that they exhibit a homoclinic snaking type of behavior.

In the absence of the bi-Laplacian term (∇4
⊥A = 0) in

Eq. (1), we recover the Lugiato-Lefever model [16]. It has
been shown that the Lugiato-Lefever equation admits stable
1D and 2D bright localized structures [17,18]. These localized
structures can be seen as intensity peaks on a homogeneous
steady state of lower intensity. A theoretical study of the model
[Eq. (1)] without the diffusion term, i.e., δ2∇4

⊥A, reveals that
high-order diffraction can give rise to a degenerate modu-
lational instability where two separate unstable wavelengths
simultaneously appear [14]. Close to the first modulation
instability threshold, stable bright localized structures are
created. These bright localized structures in nonlinear optical
cavities, also called cavity solitons, have been experimentally
demonstrated using semiconductor microcavities [19] or liquid
crystal light valves with optical feedback [20]. More recently,
such cavity solitons have been reported experimentally in
one dimension in a normal dispersive all-fiber ring resonator
[21]. In the case of a fiber ring resonator, diffraction is
replaced by chromatic dispersion. In this context, localized
structures are often called temporal cavity solitons. Localized
structures have been shown to have potential applications in
the all-optical control of light and in the optical storage and
processing of information [19]. Recent overviews can be found
in Refs. [22–26]. So far, however, the width of these localized
structures is limited by diffraction, presenting an important
limitation on the data capacity in optical storage schemes based
on localized structures. The inclusion of a LHM element in
microcavities allows us to operate close to a low-diffraction
regime, which leads to a dramatic reduction of the width of
localized structures [14]. Close to the zero-diffraction regime,
higher-order spatial derivatives have to be included in order
to correctly capture the dynamics of the system [see Eq. (1)].
Note that localized structures (also called dissipative solitons)
in the regime close to zero dispersion have also been predicted
in other nonlinear systems, such as Bose-Einstein condensates
[27]. Diffraction engineering also occurs in resonators filled
with photonic crystals, where index modulation has been
proposed to overcome the diffraction limit of midband solitons
[28].
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FIG. 1. Schematic setup of a ring cavity filled with right-handed
and left-handed materials. The cavity is driven by a coherent external
injected beam. The lengths of the left- and right-handed layers are Ll

and Lr , respectively.

The paper is organized as follows. In Sec. II, we discuss
the spatial dispersion in a left-handed material and provide an
estimation of the model parameters in Eq. (1). In Sec. III, we
present a summary of a linear stability analysis. In Sec. IV,
we show that the presence of high-order diffraction allows
us to stabilize dark localized structures in both one and two
spatial dimensions. Next, we discuss the snaking phenomenon
associated with these structures. Finally, in Sec. V, we
conclude.

II. SPATIAL DISPERSION IN A LEFT-HANDED MATERIAL

In Ref. [15], it is mentioned how to calculate θ on the basis
of the spatial dispersion coefficient η of the material. However,
this coefficient

η = 1

4!

∂4 β2
0

∂kx
4 (2)

cannot be defined without further assumptions about the
geometry of the material, i.e., its spatial symmetries as well as
its structure at the wavelength scale (a few nanometers up to
1 μm in the optical range).

In Appendix A, we consider one of the simplest cases of
interest, for which the structure presents the group symmetry
4/mmm (as the one studied in [29]), and the nonlocal
interaction between light and this structure is given by an
homogeneous response [30]

e−μ|r′−r|

|r′ − r| , (3)

where r and r′ denote, respectively, the source and the test
points, and where the parameter μ determines the effective
range of the nonlocality. Such a nonlocal interaction corre-
sponds in the Fourier domain to a dielectric susceptibility
given by

˜̂χ = χ0

k2 + L(ω)
, (4)

where k is the wave number, ω is the pulsation, and L(ω) =
μ2 accounts for the frequency response of the material. The
nonlocality extends over a range given by the mean interaction
radius [see Eqs. (A3)–(A5) for details].

R = 1

Re[
√
L(ω)]

. (5)

Combining the analytic expression for the susceptibility
with the assumption that the material is left handed leads to a
set of one equation and two inequalities. This set of relations
can be calculated in the vicinity of a resonance characterized
by a Lorentz peak

L(ω) = (
ω2

r − ω2 − iγrω
)
/c2, (6)

with ωr and 1/γr, respectively, the central pulsation and
the width of the resonance peak. Provided that the reso-
nance is sharp enough, γr � ωr, the calculation presented in
Appendix A leads to the conclusions that η ≈ (n2

r − 1)/kr [see
Eq. (A39)], and that the interaction radius is mainly linked to
the width of the resonance:

R ≈ c

√
2

γrωr
. (7)

In these expressions, nr denotes the refractive index and kr =
ωr nr/c. On the left-handed side of the resonance, nr = nL < 0,
which implies that the available range of values for η is varying
from a few percents of k−2

r up to k−2
r . In a cavity with a

negligible spatial dispersion in the right-handed material, a
finesse F , and a thickness of the left-handed material lL, for
F lL/λL ≈ 100 and n2

L ≈ 1, we find an effective dispersion
coefficient in reduced units:

θ̄ ≈ (
1 − n2

L

) F
2

lL

λL

, (8)

varying between 0.1 and 1. All the results presented in this
paper were obtained in this range of values for θ̄ .

III. LINEAR STABILITY ANALYSIS

The homogeneous steady states As of Eq. (1) are given by
Ii = [1 + (� − �Is)2]Is . The transmitted intensity Is = |As |2
as a function of the input intensity Ii = |Ai |2 is monostable
for � <

√
3. Bistable behavior arises for � >

√
3. The

homogeneous steady states are not affected by the high-order
diffraction terms. However, these terms play an important role
in the linear stability analysis with respect to finite wavelength
perturbations of the form exp(σ t + iq · r⊥) with q = (qx,qy).
The modulation instability occurs when σ = 0. This leads to
the marginal stability curve(

θ2 + δ4

4

)
q8 − 2δθq6 + 2[θ (2�Is − �) + δ2]q4

+ 2δ(� − 2�Is)q
2 + 1 + �2 − �Is(4� − �Is) = 0.

(9)

The threshold associated with the modulation instability
as well as the wavelength of the periodic structure emerging
from that threshold can be obtained when ∂Is/∂q = 0. The
results of the linear stability analysis are summarized in
Fig. 2. When decreasing the input field intensity Ii , the upper
homogeneous steady state becomes unstable at IM = |AM |2.
At this bifurcation point, the most unstable wavelength is
2π/qM . When further decreasing Ii , the lower branch of the
bistable input-output characteristics is reached which is stable
again. Close to the first modulation instability threshold, bright
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FIG. 2. Bistable input-output characteristics. The dashed curve
indicates unstable solutions and the solid lines indicate stable ones.
The associated marginal instability curve Is = |As |2 as a function of
wave number q2 is also shown. The hatched area corresponds to an
unstable region with respect to modulation instabilities. Parameters
are � = 2, θ = 0.2, � = 1, and δ = 0.5.

localized structures can exist. Such bright cavity solitons in
nonlinear optical cavities based on LHM have been theoreti-
cally predicted [14,31]. Note that in the absence of the diffusion
term, i.e., δ2∇4

⊥A, in Eq. (1), the critical wave number at the
onset of the modulation instability affecting the upper branch
of the homogeneous steady states is q2

M = δ/(4θ ). This simple
expression thus clearly shows that the spontaneous modulation
instability requires δθ > 0, i.e., δ and θ should have the same
sign.

IV. FORMATION OF DARK LOCALIZED STRUCTURES

In this work, we are interested in the situation where
two stable solutions coexist and can connect to each other
forming a stable DLS. In region A, both homogeneous steady
states are stable [see Fig. 3(a)]. Numerical simulations have
shown, however, that the lower homogeneous steady state is
always favored. Depending on the initial conditions, the system
either evolves toward the lower homogeneous steady state or a
periodic structure, such that no DLS can exist as a connection
between the two stable homogeneous steady states. However,
as the patterns are created subcritically, a finite domain of
coexistence between stable periodic structures and a stable
upper homogeneous steady state is also present. Figure 3(a)
shows two such periodic pattern solutions Pn with wavelengths
kn = 2πn/L, with n an integer defining the number of periods
that fit in the domain with size L. In this region, there exists a
so-called “pinning region” (region B) where single or multiple
dips in the intensity profile can be generated numerically.
Examples of such DLS are shown in Fig. 3(c), where only
the profiles (1) and (6) represent stable DLS profiles.

In order to analyze the DLS in more detail in 1D, we
draw a snaking bifurcation diagram in Fig. 3(b), plotting the
“energy” = “normalized number of photons” =

∫
dx|A|2 as a

function of Ai . These solutions are found by using appropriate
initial conditions and are then continued in parameter space
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FIG. 3. (a) Bistable input-output characteristics. Dashed curves indicate periodic solutions and solid lines indicate homogeneous steady
states. Stable (unstable) solutions are colored in black (gray). (b) Snaking bifurcation diagram of the 1D DLS. (c) Intensity profiles of 1D DLS
obtained for input field amplitudes as indicated in (b). (d) Zoom of the bifurcation behavior around the profile (2) indicated in (b). Parameters:
� = 2, θ = 0.2, � = 1, δ = 0.5, and L = 153.6 (with 512 discretization points).

013807-3



MUSTAPHA TLIDI, PASCAL KOCKAERT, AND LENDERT GELENS PHYSICAL REVIEW A 84, 013807 (2011)

using a Newton method. Periodic boundary conditions are
used. A typical snaking diagram, as, e.g., widely studied in
the context of the variational Swift-Hohenberg equation [32],
consists of two snaking curves; one describes DLS with an odd
number of dips and the other corresponds to an even number
of dips. The DLS originate at the modulation instability of the
homogeneous steady state and are initially unstable. As one
moves further along the snaking curve, the DLS become better
localized and acquire stability at the turning point where the
slope becomes infinite. Afterwards, the DLS begin to grow
in spatial extent by adding extra dips symmetrically at either
side. This growth is associated with back and forth oscillations
across the pinning interval. This behavior is referred to as
homoclinic snaking [32–36]. Although both the odd and even
branch are present here, to simplify the analysis, we focus
only on DLS with an odd number of dips in the intensity
profile. Although the snaking curve in Fig. 3(b) is similar to
the homoclinic snaking of DLS as, e.g., shown in Ref. [34],
one can notice that on the left-hand side of the snaking curve,
the growth process is more complicated. In order to nucleate an
extra pair of DLS, the system evolves through a more intricate
transient with dips showing a double-peaked minima. When
decreasing the energy of the stable single DLS [see profile
(1)], a double dip in the intensity profile is continuously
introduced [see profile (2)]. Afterwards a series of fold
bifurcations [see Figs. 3(b) and 3(d)] changes the morphology
of the DLS profile until it has evolved to a stable DLS
consisting of three dips [see profile (6)]. The presence of such
a central defect in the growth process of DLS bears similarity
with the recently introduced defect-mediated snaking [35].
However, in contrast to Ref. [35], here the central defect is
first removed [see evolution profile (5) to (6)] and the extra
rolls are then added at the sides instead of growing from the
center.

The added complexity in the snaking curve seems to be
connected to the proximity of the saddle-node bifurcation of
the lower branch homogeneous steady state such that a region
A of coexistence between two stable homogeneous steady
states is present. When decreasing the detuning �, the lower
fold bifurcation and the modulation instability shift to lower
values of Ai . Due to the faster change of the position of the
fold, however, the width of region A decreases and eventually
disappears. In doing so, for � < 1.91, the complexity in the
snaking branch is no longer present and the more regular
homoclinic snaking [32–34] is again recovered. Although
beyond the scope of this work, a more detailed investigation
of the interplay of the snaking curve with the region of the
bistable homogeneous steady state is interesting in its own
right and is left for future investigations.

In two spatial dimensions, the number of DLS can clearly
be much larger than in 1D. We focus on the situation where
2D DLS are close to one another. They exert mutual forces
due to their overlapping oscillatory tails. As the number of
DLS increases, the transverse profile of the output electric
field exhibits clustering behavior as shown in Fig. 4. As
in the 1D case, the number of 2D dips and their spatial
distribution depends only on the initial condition used.
Examples of 2D DLS are plotted in Fig. 4. Figures 4(a)–
4(c) correspond to the real part, and Figs. 4(d)–4(f) to the
imaginary part of the intracavity field. All these DLS profiles

(a) (b) (c)

(d) (e) (f )

Re(E)

Im(E)

x
y

FIG. 4. Examples of 2D multiple DLS obtained for � = 2, θ =
0.2, � = 1, δ = 0.5, and Ai = 1.437. Minima are colored in black
and the grid is 256×256. The domain size of the system in both
transverse directions is Lx = Ly = 89.6.

are obtained for the same parameter values, and thus, the
system exhibits a high degree of multistability. Constructing
corresponding snaking curves in 2D is a challenging task,
which we do not pursue further here. For an in-depth study of
snaking in the 2D Swift-Hohenberg equation, we refer readers
to Ref. [36].

V. CONCLUSIONS

In conclusion, we have shown that around the zero-
diffraction regime in an optical cavity containing both left-
and right-handed materials, one- and two-dimensional dark
localized structures can become stable. The stabilization of
these structures is the result of high-order diffraction modeled
by a bi-Laplacian term with a complex coefficient. We have
provided an estimation of this bi-Laplacian term for such a
double-layered cavity. In one spatial dimension, a snaking
bifurcation diagram has been demonstrated to exist for these
solutions, which shows a larger complexity than generally
observed in homoclinic snaking. In two dimensions, numer-
ical simulations have demonstrated a similar coexistence of
multiple dips in the intensity profile.
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APPENDIX: ORDER OF MAGNITUDE ESTIMATION OF
THE SPATIAL DISPERSION IN A LEFT-HANDED

MATERIAL

In this Appendix, it is our intent to evaluate the order of
magnitude of the spatial dispersion parameter η defined in [15].
To this end, the nonlocal behavior is described with the use of
a homogeneous model. On the basis of realistic assumptions,
we provide a range of values for the spatial dispersion
parameter.
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1. Preliminary

Before we introduce the model that we used to evaluate the
magnitude of the spatial dispersion in a left-handed material, it
is probably important to provide a definition for the concept of
spatial dispersion. We use the expression “spatial dispersion,”
as defined by Agranovich and Ginzburg in [37], p. 239] and
[38], p. 252], i.e., to denote a dependence of the permittivity
tensor on the wave vector. This dependence reflects the
nonlocality of the medium: the fact that the displacement
field at a given point is induced by the electric field in a
neighborhood of this point.

Different models can be used to describe the nonlocal
behavior of the material. We will not review all of them,
but present the homogeneous one that should provide a
good estimate of the spatial dispersion in metamaterials with
4/mmm point symmetry.

2. Symmetry of the subwavelength structure

Refering to Eq. (50) in [15], the parameter of importance
to characterize the nonlocal behavior of the material is

η = 1

4!

∂4 β2
0

∂kx
4 . (A1)

This value is obtained under the assumption that the medium
is symmetric with respect to a rotation of π/2 around the
propagation axis. This assumption does not hold in certain
kinds of metamaterials, such as those based on structures with
a “U” shape. However, other structures, like the one presented
in [29], are compatible with this assumption. These materials
belong to the group symmetry 4/mmm. Therefore, in what
follows, we will restrict our analysis to structures of this group.

3. Nonlocal homogeneous response

Different models have been proposed to take into account
nonlocal interactions at the microscopic level. In a simple
but yet efficient model [39], it is assumed that the nonlocal
interaction decreases as

e−μ|r′−r|

|r′ − r| , (A2)

where r and r′ denote, respectively, the source and the test
points, and where the parameter μ determines the effective
range of the nonlocality.

This model is not perfect, namely when describing more
limited interactions [40] (limited to a given molecule) or when
screening is important. However, we will use it as a first
approximation that provides a first estimate for the parameter
η. In the frame of the homogeneous model, the dielectric
susceptibility reads

˜̂χ = χ0

k2 + L(ω)
, (A3)

which makes the dependency of the permittivity on the wave
vector explicit. This function is the Fourier transform of ˜̂χ
with respect to space and time.

When the assumption Re[
√
L(ω)] > 0 holds, 1 the inverse

Fourier transform of Eq. (A3) with respect to space is

χ̃ (r,ω) = χ0

4πr
e−r

√
L(ω). (A4)

The nonlocality extents over a range directly linked to
Re[

√
L(ω)]. Therefore, we define the mean interaction radius

R as

R = 1

Re[
√
L(ω)]

. (A5)

4. Derivation of the spatial dispersion coefficient

Once the model and the definition of η are known, it is a
simple exercise to compute η when kx = 0 and ky = 0, taking
into account that β2

0 = k2 = k2
x + k2

y + k2
z . We obtain

η = ω2

c2
χ0

1[
k2 + L(ω)

]3 , (A6)

where β0 = k = kz.

5. Left-handed material in the E, D, B approach

The modeling of media with spatial dispersion is easier to
perform in the E,D,B approach [41,42], in which the magnetic
and the electric responses of the material are fully contained
in the generalized electromagnetic susceptibility

˜̂χ
(1) = n2(�k,ω) − 1. (A7)

It is, therefore, important to determine how the usual definition
of a left-handed material in a nonchiral material transposes to
our model. It is usually stated that left-handed metamaterial
verifies

Re[μ(ω)] < 0, (A8)

Re[ε(ω)] < 0. (A9)

However, in our model, μ and ε are not defined. Only their
product appears in the definition of the refractive index

εrμr = n2 (k,ω) = 1 + χ̃ (1) = c2

ω2
k2. (A10)

With the definitions

εr = 1 + χ̃e(ω), (A11)

μr = 1 + χ̃h(ω) = [1 − χ̃b(ω)]−1 (A12)

introduced in Eq. (A10), the classical electric and magnetic
parts can be retrieved from

˜̂χ
(1)

(k,ω) = χ̃e(ω) + k2

[
c2

ω2
χ̃b(ω)

]
, (A13)

χ̃e(ω) = ˜̂χ
(1)

(0,ω), (A14)

1In this case, the exponential is decreasing at (positive) infinity.
Indeed, as two square roots exist, we can always choose the one
corresponding to Re[

√
a] > 0. The only exception would be when

Re[
√

a] = 0. In this case, the integral defining the Fourier transform
would be undefined.
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χ̃b(ω) = ω2

2c2

∂2 ˜̂χ
(1)

∂k2

∣∣∣∣∣
k=0

. (A15)

From these relations, a nonchiral left-handed material should
verify

Re[1 + χ̃ (1)(0,ω)] < 0, (A16)

Re

[
1 − ω2

2c2

∂2χ̃ (1)

∂k2

∣∣∣∣
k=0

k2

]
< 0. (A17)

If the structure under consideration presents chirality, the LHM
should be defined as having opposite signs for the phase
velocity and the group velocity, i.e., Re[ k

ω
]Re[ d k

dω
] < 0.

6. Left-handed material with homogeneous nonlocal response

In the particular case, where

χ̃ (1) = χ0

k2 + L(ω)
, (A18)

the inequalities satisfied in a left-handed material are, there-
fore,

1 + Re

[
χ0

L(ω)

]
< 0, (A19)

1 + ω2

c2
Re

[
χ0

L2(ω)

]
< 0. (A20)

We should remember the previous assumption that

Re[
√
L(ω)] > 0. (A21)

7. Lorentz resonance

We evaluate the range of parameters near a Lorentz
resonance defined by the frequency ωr and the losses γr:

L(ω) = κ
(
ω2

r − ω2 − iγrω
)

(A22)

= a + ib. (A23)

With the help of this definition, inequalities (A19) to (A21)
lead to

χ0 > 0, (A24)(
ω2

r − ω2
)2

< (γrω)2 , (A25)

κ
(
ω2

r − ω2
)

< 0, (A26)

κγrω 	= 0. (A27)

From these inequalities and the definition of the nonlocality
radius, we conclude that the magnitude of both χ0 and R have
no maximal values.

8. Nonlocal behavior on a wavelength scale

It is important to determine how R compares to the
wavelength λ in the range of values defined by inequalities
(A24) to (A27).

As we assume that we are working near the frequency
resonance,

ω ≈ ωr, (A28)

k ≈ ωr

c
nL. (A29)

For a sharp resonance, γr � ωr, so that

|ω − ωr| � γr, (A30)

and, therefore,

|L(ω)| = |a + ib| � |κ|ω2
r . (A31)

The usual choice for κ is

|κ| = 1

c2
, (A32)

which implies

|L(ω)| � ω2
r

c2
≈ k2

n2
L

. (A33)

Near the resonance, it can, therefore, be assumed that

˜̂χ(k,ω) ≈ χ0

k2
, (A34)

|b| ≈
∣∣∣∣γr

ωr

c2

∣∣∣∣ � ω2
r

c2
, (A35)

2
∣∣∣a
b

∣∣∣ ≈ ωr − ω

γr
� 1. (A36)

From this last inequality, we deduce that |a| � 2|b| and,
therefore, that

1

R
≈

√
i b =

√|b|√
2

, (A37)

R2 ≈ 2

|b| ≈ 2c2

γrωr

 2

k2
r

. (A38)

In the frame of the homogeneous model, the value of R

depends strongly on the width of the resonance γr. The
last inequality shows that this model can take into account
large structures. It provides a value for the parameter η

approximately given by

η ≈ ω2
r

c2

χ0

k6
≈

˜̂χ

k2
r

= n2
r − 1

k2
r

, (A39)

where kr and nr are the wave vector and the refractive index
near resonance. In a left-handed material, we must have nr =
nL < 0.

Practical values for η will therefore vary between a few
percents of k−2

r , when |n| ≈ 1, and can reach values around
k−2
r when |nr | ≈ √

2.

9. Effective spatial dispersion coefficient in the mean-field model

As was stated in [15], if we define the finesse of the cavity
by F and the thickness of the left-handed medium by lL, and
we assume that the right-handed medium is a classical material
with negligible spatial dispersion, then the effective dispersion
coefficient in the mean-field model is given by

θ = F
4π

lL ηL

kL

= − F
4π k

lL ηL

|nL| . (A40)
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In reduced units, we define θ̄ = θ k4 and η̄ = η k2, so that

θ̄ = − F
4π

k
lL η̄L

|nL| . (A41)

Therefore, when

η ≈ n2
r − 1

k2
r

, (A42)

we find

θ̄ ≈ −F
2

n2
L − 1

|nL|
lL

λL

≈ (
1 − n2

L

) F
2

lL

λL

. (A43)

For values ofF lL/λL ≈ 100, θ̄ will be of magnitude 0.1–1,
provided that n2

L ≈ 1.
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