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Casimir forces in multilayer magnetodielectrics with both gain and loss
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A path-integral approach to the quantization of the electromagnetic field in a linearly amplifying
magnetodielectric medium is presented. Two continua of inverted harmonic oscillators are used to describe
the polarizability and magnetizability of the amplifying medium. The causal susceptibilities of the amplifying
medium, with negative imaginary parts in finite frequency intervals, are identified and their relationships to
microscopic coupling functions are determined. By carefully relating the two-point functions of the field theory to
the optical Green functions, we calculate the Casimir energy and Casimir forces for a multilayer magnetodielectric
medium with both gain and loss. We point out the essential differences with a purely passive layered medium. For
a single layer, we find different bounds on the Casimir force for fully amplifying and for lossy media. The force
is attractive in both cases, even if the medium exhibits negative refraction. From our Lagrangian we also derive
by canonical quantization the postulates of the phenomenological theory of amplifying magnetodielectrics.
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I. INTRODUCTION

The Casimir force is a pure quantum effect that can be
considered as the macroscopic manifestation of the vacuum
fluctuations of the electromagnetic fields in the presence
of boundaries. Originally derived in 1948 for two ideally
conducting or reflecting plates in a vacuum [1], the Casimir
force per area FC/A was found to be −h̄cπ2/(240d4),
an attractive force with characteristic inverse fourth-power
dependence on the plate separation d. A theory for Casimir
forces between parallel dielectrics was developed by Lifshitz
et al. [2], further refined by Schwinger et al. [3], and since then
extended to arbitrary multilayer dielectrics [4–8] and other
geometries.

In recent years, the Casimir force has become technolog-
ically relevant, with the development of micro- and nano-
electromechanical systems with small components at close
proximity to each other. On the one hand, the Casimir force
can be a major cause of stiction (i.e., microscopic components
sticking together), friction, or adhesion and thus forms a
possible obstacle for the operation of nanostructured devices.
On the other hand, a novel class of microelectromechanical
systems (MEMSs) works only because of the Casimir force
[9,10].

It is therefore both fundamentally interesting and tech-
nologically relevant to what extent the Casimir force can
be controlled by changing the electromagnetic environment.
For most geometries, the Casimir force between two media
separated by a vacuum is an attractive force, with a magnitude
that becomes appreciable in the submicron range and rapidly
increases in the nanometer range. However, Lifschitz predicted
that the Casimir force for parallel dielectric layers can be
attractive or repulsive, depending on the relative values of
the dielectric constants of the successive layers [2]. The
first experimental confirmation of his prediction came only
recently: Munday et al. found Casimir forces with different
signs for suitably chosen interacting materials immersed in a
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fluid [11], with a measured repulsive interaction which was
weaker than the attractive counterpart. Further measurements
of Casimir forces are reported in Refs. [12–21].

If Casimir forces could be made repulsive, then this could
eliminate the unwanted phenomenon of stiction [22], enable
quantum levitation of objects in a fluid, and lead to new classes
of switchable nanoscale devices with ultralow static friction
[23–26]. So what options exist to make the Casimir force
repulsive, besides Lifschitz’s suggestion?

Metamaterials have been proposed to this end. However,
loss in metallic substructures may turn a repulsive force into
an attractive one, which may explain why repulsive Casimir
forces with metamaterials have not yet been reported [27,28].
Recently, Zhao et al. showed theoretically that a repulsive
Casimir force could be realized with metamaterials with strong
chirality [29]. Another mechanism to obtain repulsive Casimir
forces is Boyer’s Casimir repulsion based on an asymmetric
three-layer setup of a nonmagnetic medium on the one end
and a purely magnetic medium on the other, separated by
a vacuum [30,31]. It relies on the nontrivial possibility of
developing new artificial negative-index metamaterials [28].

A third option to obtain repulsive Casimir forces, and the
one considered in this paper, is the use of media with optical
gain [32,33]. Indeed, the main aim of the present paper is
to determine Casimir energy and forces in amplifying mag-
netodielectrics. By amplifying medium, we mean a medium
for which the imaginary part of the electric or the magnetic
susceptibility becomes negative for one or more frequency
intervals (Im[ε(ω)] ≡ εI(ω) < 0 or μI(ω) < 0), in contrast to
lossy systems for which both εI(ω) and μI(ω) are always
positive. We allow for gain not only in the electric but also in
the magnetic response, thereby treating electric and magnetic
fields equally in our theory.

Since it is a quantum mechanical effect, the calculation of
the Casimir force for media with gain requires a consistent
procedure for quantization of the electromagnetic field in the
presence of an amplifying medium. This can be done with the
concept of inverted quantum harmonic oscillators introduced
by Glauber [34]. Generally, a rigorous quantization procedure
would require a Lagrangian and Hamiltonian formulation of
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the theory, followed by the standard canonical quantization
rules. Currently, a consistent phenomenological approach
exists to macroscopic quantum electrodynamics in presence of
amplifying media, but no canonical formulation is attempted
[35–39]. We derive the postulates of this phenomenological
theory from a canonical quantum theory, where continua of
inverted oscillators are used to describe linearly amplifying
media.

The Casimir force in the presence of amplifying materials,
with or without negative index, has begun to be explored
only recently. Leonhardt and Philbin calculated the effects
of an amplifying dielectric on the Casimir force, based on
the assumption that the well-known Lifshitz formula for the
Casimir force is applicable without change to amplifying
media [33], and found that the Casimir force in the presence
of this medium is repulsive. We address this issue here as well.

Sambale et al. [40,41] apply the phenomenological quan-
tization of the electromagnetic field for amplifying magne-
todielectric media to calculate the Casimir and Casimir-Polder
forces. They find that the Casimir-Polder force on a weakly
polarizable plate of excited gas atoms is attractive at short
distances from a mirror and oscillates between attraction and
repulsion for larger plate-mirror separations. However, at a
more technical level, there is some controversy about the
applicability of the Minkowski stress tensor, and an alternative,
Lorentz-force-based tensor was proposed [42]. This approach
was adopted in Refs. [40,41] to calculate the Casimir (-Polder)
forces but is disputed by Pitaevskii [43] and Brevik [44].

Our approach to calculating Casimir forces is different.
We first develop a path-integral method for the quantization
of the electromagnetic field in linearly amplifying magne-
todielectrics. We benefit from and generalize recent results
obtained with path integrals. In Ref. [45], Li and Kardar
developed a path-integral approach for computing fluctuation-
induced forces between manifolds immersed in a correlated
fluid. Golestanian and Kardar extended this formalism to
arbitrary but small deformations of the boundaries and focused
on the mechanical response of the vacuum [46]. Emig and
colleagues also used the path-integral formalism to obtain the
normal and lateral Casimir forces between two sinusoidally
corrugated perfectly conducting surfaces [47]. Recently, one
of the authors extended this formalism to calculate the Casimir
force between two perfectly conducting plates immersed
in a magnetodielectric medium [48]. Here we extend this
quantization scheme to arbitrary multilayer amplifying media.

The structure of the paper is as follows: In Sec. II, we
propose a Lagrangian for the electromagnetic field in an
amplifying magnetodielectric medium and derive the gener-
ating function, which is used in Sec. III for the path-integral
quantization. Causal electric and magnetic susceptibilities of
the amplifying medium are obtained, both in the frequency
interval(s) with gain and in the remaining lossy regions.
We calculate the Green tensor and Casimir forces for a
multilayer amplifying magnetodielectric medium in Sec. IV,
and corresponding numerical results are presented in Sec. V.
In Sec. VI, we derive from our Lagrangian a canonical
theory that supports the known phenomenological approach to
quantization in amplifying magnetodielectrics. We conclude
in Sec. VII. Further details of our calculations are given in two
appendixes.

II. FIELD QUANTIZATION

The quantum electrodynamics of a linearly damped mag-
netodielectric medium can be described by modeling the
medium as two independent reservoirs that interact with the
electromagnetic field. Each reservoir contains a continuum
of three-dimensional harmonic oscillators that describe the
polarizability and magnetizability of the medium [49–55]. We
assume the medium is linearly amplifying, at least in one
or more finite frequency windows where εI(ω) < 0 and/or
μI(ω) < 0. Despite the striking practical differences between
amplifying and lossy media, their theoretical descriptions turn
out to be quite similar. We adopt Glauber’s inverted oscillator
to model the quantum amplifier [34] and use continua of
inverted oscillators to describe gain instead of loss in the
polarizability and magnetizability of the medium.

We introduce our model for optical media with both gain
and loss by first specifying its Lagrangian density in real space,

L = LEM + Le + Lm + Lint, (1)

where the electromagnetic part LEM has the standard form
LEM = 1

2ε0E2(x,t) − 1
2μ0

B2(x,t). There is gauge freedom to
write the electric field E = −∂A/∂t − ∇φ and the magnetic
field B = ∇ × A in terms of the scalar and vector potentials φ

and A. For convenience, we choose the Weyl gauge in which
the scalar potential vanishes, which allows us to write E and
B in terms of only the vector potential. The amplifying mag-
netodielectric medium is modeled with frequency continua
of independent vector fields Xω(x,t) and Yω(x,t), in terms of
which we describe the linear electric and magnetic polarization
of the medium. Therefore, the material part of the Lagrangian
density describing the amplifying medium can now be written
as

Le =
∫ ∞

0
dω

[
1

2
Ẋ2

ω(x,t) − 1

2
ω2X2

ω(x,t)

]
sgn[εI(ω)], (2a)

Lm =
∫ ∞

0
dω

[
1

2
Ẏ2

ω(x,t) − 1

2
ω2Y2

ω(x,t)

]
sgn[μI(ω)].

(2b)

In these Lagrangian densities, for frequencies with positive
signs the medium is lossy, and otherwise it is amplifying as
modeled with inverted oscillators due to the minus sign. As
we see in Sec. VI, this modification leads to field operators
that satisfy Maxwell’s equations and whose positive-frequency
components are associated with both annihilation and creation
operators in the case of amplifying media, in accordance with
the previous works [37–39].

We define the polarization and magnetization fields of the
medium as

P(x,t) =
∫ ∞

0
dω f (x,ω)Xω(x,t), (3a)

M(x,t) =
∫ ∞

0
dω g(x,ω)Yω(x,t), (3b)

and assume a linear coupling of the electromagnetic field with
these fields,

Lint(A,P,M) = A(x,t) · Ṗ(x,t)

+∇ × A(x,t) · M(x,t). (4)
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The f (x,ω) and g(x,ω) in Eq. (3) are the real-valued scalar
coupling functions of the inhomogeneous medium and the
electromagnetic field. We have implicity assumed that the
medium is isotropic by taking scalar coupling functions.
Anisotropy could be included by making them tensors, but
this is not pursued here.

With the Lagrangian in a suitable form, we can now define
a generating function for our path-integral quantization. For
a field theory with only a single scalar canonical field ϕ, the
generating functional (or partition function) has the form [56]

Z[J ] =
∫

D[ϕ] exp

{
i

h̄

∫
d4x{L[ϕ(x)] + J (x)ϕ(x)}

}
, (5)

where x ∈ R4 is a space-time coordinate and J is the auxiliary
source field associated with the scalar field ϕ. In our case, we
have several interacting canonical fields in our total Lagrangian
(1), so we need to generalize Eq. (5). We first calculate
the partition function Z0 for the free fields, neglecting their
interactions:

Z0[JEM,Je,ω,Jm,ω]

=
∫

D[A]D[Xω]D[Yω] exp

{
i

h̄

∫
d4x

[
LEM + Le

+Lm + J0 · A +
∫

dω Je,ω · Xω + Jm,ω · Yω

]}
, (6)

in terms of the auxiliary source vector field JEM for the
electromagnetic field and the frequency continua of source
fields Je,ω and Jm,ω associated with the electric and magnetic
polarization fields, respectively. We can write Z0 in a more
convenient form by employing the four-dimensional version
of Gauss’s theorem for the vector potential, thereby replacing
LEM in Eq. (6) by [−μ−1

0 A · (∇ × ∇ × A) − ε0A · ∂2
t A] and

by using integration by parts for the polarization fields Xω and
Yω. This gives

Z0[JEM,Je,ω,Jm,ω]

=
∫

D[A]D[Xω]D[Yω] × exp

{
− i

h̄

∫
d4x

×
[

1

2
A · (

μ0
−1∇ × ∇× + ε0∂

2
t

)
A − JEM(x) · A(x)

−
∫

dω

(
Je,ω(x) · Xω(x) + Jm,ω(x) · Yω(x)

+ 1

2
Xω(x) · (

∂2
t − ω2

)
Xω(x)sgn[εI(ω)]

+ 1

2
Yω(x) · (

∂2
t − ω2

)
Yω(x)sgn[μI(ω)]

)]}
.

This partition function is Gaussian since the integrand
is quadratic in terms of the fields. Therefore, the func-
tional integration can be performed exactly, and the result
is Z0[JEM,Je,ω,Jm,ω] = exp

{
iL0/2h̄

}
, in terms of the La-

grangian for noninteracting fields

L0 =
∫

d4x

∫
d4x ′ JEM(x) · G(0)

EM(x − x ′) · JEM(x ′)

+
∫

d3x
∫

dt

∫
dt ′

∫
dω

×{Je,ω(x,t) · Ge,ω(t − t ′) · Je,ω(x,t ′)sgn[εI(ω)]

+ Jm,ω(x,t) · Gm,ω(t − t ′) · Jm,ω(x,t ′)sgn[μI(ω)]}. (7)

Here, the space component of the space-time x ∈ R4 is
indicated in bold by x ∈ R3 and the time component is
indicated by t ∈ R. The Green tensor G(0)

EM(x − x ′) for the
free electromagnetic field satisfies(

∇ × ∇ × + 1

c2

∂2

∂t2

)
G(0)

EM(x − x ′) = μ0δ
4(x − x ′)13,

(8)

describing the propagation of light in time and in free space,
whereas the Green tensors Ge,ω(t − t ′) = Gm,ω(t − t ′) for
the noninteracting electric and magnetic polarization fields
describe propagation only in time,(

∂2

∂t2
+ ω2

)
Ge/m,ω(t − t ′) = δ(t − t ′)13, (9)

where 13 denotes the spatial unit tensor. This indicates
that the only way to transport energy in the interacting
system is via the electromagnetic field. For the same reason,
the polarization and magnetization fields in the absence of
the electromagnetic field do not lead to a Casimir force
[48]. The retarded solution of Eq. (9) in Fourier space is
Ge/m,ω(ω′) = 13/[ω2 − (ω′ + i0+)2]. It is convenient to define
the source fields JP,M for the electric and magnetic polarization
fields as linear combinations of the corresponding frequency
continua Je,m, namely JP(x) ≡ ∫ ∞

0 dω f (x,ω)Je,ω(x,ω) and
JM(x) ≡ ∫ ∞

0 dω g(x,ω)Jm,ω(x,ω). With these, the generating
functional for the interacting fields can be written in terms of
the free generating functional as [56]

Z[JEM,JP,JM] = Z−1
0 [0,0,0] exp

{
i

h̄

∫
d4x Lint

×
(

h̄

i

δ

δJEM(x)
,
h̄

i

δ

δJP(x)
,
h̄

i

δ

δJM(x)

)}
×Z0[JEM,JP,JM], (10)

where Z0[JEM,JP,JM] is the free-space partition function, Lint

is given in Eq. (4), and Z−1
0 [0,0,0] is the normalization factor.

The exponential in this functional is to be understood as a
power series in the coupling functions, that is, by perturbation
theory. By using the specific form Eq. (4) for the interaction,
we obtain

Z[JEM,JP,JM] = Z−1
0 [0,0,0]

∞∑
n=0

1

n!

{
−ih̄

∫
d4x

×
[

δ

δJEM(x)
· ∂

∂t

δ

δJP(x)
+ ∇

× δ

δJEM(x)
· δ

δJM(x)

] }n

×Z0[JEM,JP,JM]. (11)

Hereby we determined as one of our main results the
partition function Z for the interacting fields that describe
a magnetodielectric medium with both linear gain and loss.
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III. GREEN TENSORS AND SUSCEPTIBILITIES OF THE
AMPLIFYING MEDIUM

As we see in the following, the Casimir force can be
computed in terms of the electromagnetic Green tensor
of the medium. In our zero-temperature field theory, the
Green tensors (or propagators) are vacuum expectation values
of time-ordered products of field operators, which can be
computed as functional derivatives of the partition function
(see also Ref. [48]),

GEM(x,x ′) = −ih̄
δ2Z[JEM,JP,JM]

δJEM(x)δJEM(x ′)

∣∣∣∣
JEM=JP=JM=0

, (12)

in terms of space-time coordinates x,x ′. The medium described
by our Lagrangian (1) in general is not translationally
invariant, but it is stationary, and consequently GEM(x,x ′) =
GEM(x,x′,t − t ′). After evaluating the functional derivatives
of Eq. (12), we obtain a Dyson equation for the Green tensor
that after time-Fourier transformation becomes

GEM(x,x′,ω) = G(0)
EM(x − x′,ω)

+ω2
∫

dx1

[
G(0)

EM(x − x1,ω) ·

×
∫

dω′{sgn[εI(ω
′)]f 2(x1,ω

′)Ge,ω′ (ω)} ·

× GEM(x1,x′,ω)

]

+
∫

dx1

[
G(0)

EM(x − x1,ω) × ←−∇ 1 ·

×
∫

dω′{sgn[μI(ω
′)]g2(x1,ω

′)Gm,ω′(ω)} ·

×∇1 × GEM(x1,x′,ω)

]
. (13)

This long equation for the Green tensor can be brought into
a more familiar form by applying the differential operator
(μ−1

0 ∇ × ∇ × −ω2ε013) to both sides, giving

∇ × [μ−1(x,ω)∇ × GEM(x,x′,ω)]

− ω2ε(x,ω)

c2
GEM(x,x′,ω) = μ0δ

3(x − x′)13. (14)

Here we defined the electric permittivity ε(x,ω) = 1 +
χe(x,ω) and the inverse magnetic permeability μ−1(x,ω) =
1 − χm(x,ω) of the amplifying magnetodielectric via

χe(x,ω) = 1

ε0

∫ ∞

0
dω′ f

2(x,ω′)sgn[εI(ω′)]
ω′2 − (ω + i0+)2

, (15a)

χm(x,ω) = μ0

∫ ∞

0
dω′ g

2(x,ω′)sgn[μI(ω′)]
ω′2 − (ω + i0+)2

. (15b)

With these definitions and the requirement on the coupling
functions that f 2(x, − ω∗) = f 2(x,ω) and g2(x, − ω∗) =
g2(x,ω), the ε and μ are complex functions of frequency
which satisfy Kramers-Kronig relations [57] and have the
properties of response functions, that is, ε(x, − ω∗) = ε∗(x,ω),
and analogously for μ. Purely lossy media would have the
further properties εI(x,ω) > 0 and μI(x,ω) > 0, but here we
have a model that can describe amplification in some frequency

interval(s) as well, for which εI(x,ω) < 0 and/or μI(x,ω) < 0.
The functions χe,m(x,ω) have no poles in the upper half of
the frequency plane and tend to zero as ω → ∞, so that in
the time domain, the electric and magnetic susceptibilities
χe,m(x,t) corresponding to Eq. (15) become proportional to
the step function 
(t). This is as it should be, since with either
gain or loss, the response should be causal.

It is important to stress the generality of our model: If we
are given definite functions for the electric permittivity ε(x,ω)
and magnetic permeability μ(x,ω) of the gain medium, then
we can invert the relations (15) to find the corresponding cou-
pling functions f (x,ω) = √

2ωε0|εI(x,ω)|/π and g(x,ω) =√
2ω|μ−1

I (x,ω)|/πμ0, where the modulus signs ensure that the
coupling functions are real-valued both for lossy and for
amplifying media. A similar general theory, albeit for purely
lossy media, can be found in Refs. [54,55]. Specific choices for
the optical functions ε and μ will be made for our numerical
investigations in Sec. V.

We make some further consistency checks on the path-
integral quantization for amplifying dielectrics. Similar checks
for lossy media were performed in Ref. [48]. Recall that
the defining equation (14) for the electromagnetic Green
tensor is found by functional differentiation of the partition
function. This equation enables the identification of the
dielectric functions ε(ω) and μ(ω) for the amplifying medium.
Analogously, we can find Green tensors for the material fields
in our theory, as well as correlations functions of mixed type.
An example of the latter type is

GEM,P(x,x′,ω) = −ih̄
δ2Z[JEM,JP,JM]

δJEM(x)δJP(x ′)

∣∣∣∣
JEM, JP,JM=0

= iωε0[ε(x,ω) − 1]GEM(x,x′,ω). (16)

Analogously we find GEM,M(x,x′,ω) = μ−1
0 [1 − μ−1(x,ω)]

∇ × GEM(x,x′,ω), with ε(ω) and μ(ω) as previously defined
in Eqs. (15). This shows that the definition of these response
functions for amplifying media can be made uniquely and
consistently in the path-integral quantization method. In
Sec. VI, we derive the equivalent canonical quantization theory
for amplifying dielectrics, with the same Lagrangian (1) as a
starting point.

IV. CASIMIR FORCE FOR AMPLIFYING
MULTILAYER MEDIA

A. Derivation of FC in path-integral formalism

Here we calculate the Casimir force for two parallel
perfectly conducting plates that are separated by a multilayer
linearly amplifying medium of total width d. Of course, perfect
conductors do not exist, and the assumption of linear ampli-
fication in reality will break down in an amplifying medium
without round-trip losses. Still, an important advantage of our
model is that we consider causal optical response functions
ε(ω) and μ(ω), satisfying the Kramers-Kronig relations, as it
should for any medium that respects causality, amplifying or
not.
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For the single homogeneous amplifying medium, the
Casimir force between two plates can be computed as the
spatial derivative of the effective action

FC = ∂

∂d
Seff(d), (17)

where the effective action is proportional to the logarithm of
the partition function,

Seff(d) = h̄ ln Z[d]. (18)

Now since for planar structures there are independent TE
and TM solutions of Maxwell’s equations, the total partition
function is the product of ZTE[d] and ZTM[d] partition
functions, so that the effective action intuitively becomes the
sum of TE and TM contributions

Seff[d] = h̄(ln ZTM[d] + ln ZTE[d]), (19)

and likewise for the Casimir force. The details of the
calculation of the partition functions are left to Appendix A,
and the calculation yields

ZTE,TM = 1√
det �TE,TM(x,y,z1,z2)

, (20)

where

�TM(x,y,z1,z2)

=
[GTM(x − y,z1,z1) GTM(x − y,z2,z1)

GTM(x − y,z1,z2) GTM(x − y,z2,z2)

]
, (21a)

�TE(x,y,z1,z2)

=
[−∂2

zGTE(x − y,z1,z1) −∂2
zGTE(x − y,z2,z1)

−∂2
zGTE(x − y,z1,z2) −∂2

zGTE(x − y,z2,z2)

]
.

(21b)

We see from Eqs. (17)–(21) how the Casimir force is
expressed in terms of Green tensors GTE,TM, which can be
obtained from the Green tensor Eq. (14) by applying a Wick
rotation. The explicit form of the Green tensor for planar
multilayer dielectric structures was obtained in Ref. [58]. The
details of the calculation of the Green tensors for the more
general situation of amplifying magnetodielectric multilayer
media are summarized in Appendix B.

Before considering multilayer media in more detail, we fo-
cus on Casimir force in the presence of a single homogeneous
amplifying layer. This is the geometry originally studied by
Casimir but now with the vacuum between the conductors
replaced by the amplifying medium. For this simple geometry,
the Dirichlet and Neumann boundary conditions are formally
the same and lead to the same result, so that TE and TM waves
each account for half of the Casimir force.

For this case, the Green function (14) in two-dimensional
(2D) Fourier space and after Wick rotation can be
written as GEM(q,iω,z,z′) = μ0μ(iω) e −Q|z−z′ |/(2Q), where
Q(q,iω) =

√
q2 + ω2ε(iω)μ(iω)/c2 (see Appendix B).

There is no ambiguity how this square root is to be taken,
since ε(iω) and μ(iω) are both real-valued functions of (real)
ω. Since both ε(ω) and μ(ω) have no odd-order zeros in the
upper half of the frequency plane and tend to unity in the limit
of |ω| going to infinity, it follows that both ε and μ assume
positive real values on the positive imaginary frequency axis

[59]. Since consequently ε(ω)μ(ω) does not have any poles or
odd-order zeros in the upper half of the frequency plane, n(ω)
for Im(ω) > 0 is defined as the analytic branch of

√
ε(ω)μ(ω)

that tends to +1 as |ω| goes to infinity. (Otherwise,
√

ε(ω)μ(ω)
would not be an analytic function there and corresponds to
materials with so-called absolute instabilities [60,61].) So we
find that both n(ω) and the Green tensor GEM(q,ω,z,z′) are
analytic in the whole upper complex-frequency plane, as it
should [62]. By substituting the expression for the Green
function GEM(q,iω,z,z′) into Eq. (18), the Casimir force per
unit area for a homogeneous amplifying medium becomes

FC = −h̄

∫
dωd2q
(2π )3

2Q(q,iω)

e2Q(q,iω)d − 1

= − h̄

3c3π2

∫ ∞

0
dω

ω d
dω

[n(iω)ω ]3

e2n(iω)ωd/c − 1
, (22)

The last identity in (22) follows from a partial integration over
ω and calculating the ω derivative of the integral over q [63].
For the empty cavity, the integrals in Eq. (22) can be evaluated
exactly, giving the well-known result FC = −h̄cπ2/(240d4).

As one of our main results, we find that the Casimir force
in the presence of an amplifying medium (22) has the same
form as for a purely attenuating medium [48], provided that
ε(ω)μ(ω) for amplifying medium does not have any poles
or odd-order zeros in the upper half of the plane. Thus, the
actual value of the force for lossy and amplifying media
can only follow from the different forms of ε(ω) and μ(ω)
in both cases. The key difference was already stated in the
introduction, namely that amplifying media have one or more
frequency intervals with εI(ω) < 0 or μI(ω) < 0 or both, for
real frequencies ω > 0, whereas lossy media always have
εI(ω),μI(ω) � 0 for positive real frequencies.

B. Analytical results: Bounds on the Casimir force

Realistic amplifying media are amplifying in one or more
frequency intervals and lossy elsewhere. Since the Casimir
force (22) is obtained as an integral over all frequencies, it may
well be that the lossy part dominates the total Casimir force.
We study these issues numerically in Sec. V B. To understand
the effect of amplification on the Casimir force, we first make
the further assumption that the medium is fully amplifying, by
which we mean that εI(ω),μI(ω) � 0 not only for some but for
all positive frequencies. We make this admittedly unrealistic
assumption to single out the effect of linear amplification on
the Casimir force. This gives us some insight, and after that in
Sec. V we relax the assumption of full amplification.

Our aim here is to give a bound for the Casimir force in the
presence of a fully amplifying medium, similar to the bounds
obtained in Ref. [64] for passive dielectric (i.e., nonmagnetic)
mirrors, where from causality considerations it follows that
the Casimir force on dielectric slabs is always attractive but
less so than between two ideal mirrors separated by vacuum.

The force (22) depends on the refractive index n(iω) =√
ε(iω)μ(iω), in terms of the susceptibilities ε and μ that

both tend to unity for high frequencies. Causality implies the
identity [59]

ε(iω) − 1 = 2

π

∫ ∞

0
dξ

ξεI(ξ )

ω2 + ξ 2
, (23)
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and an analogous identity holds for μ(ω). It follows and is
known that for passive systems, with εI(ω) and μI(ω) always
positive on the positive real frequency axis, ε(iω) and μ(iω)
decrease monotonically from a finite value εstatic,μstatic > 1
(or +∞ for the electric response of metals) at ω = 0 down to
unity for ω → ∞ [59].

We instead apply the identity (23) to amplifying media,
for which it also holds as long as they are described by
causal response functions. It follows that for fully amplifying
systems, with εI(ω) < 0 and μI(ω) < 0 on the whole positive
real frequency axis, ε(iω) and μ(iω) from a finite value < 1
at ω = 0 increase monotonically toward unity for ω → ∞.
We can say even more, using the fact that causal response
functions ε(ω) and μ(ω) have no zeros in the upper half of
the frequency plane [59]: For fully amplifying media, we find
that ε(iω) and μ(iω) increase monotonically from finite values
0 � εstatic,μstatic � 1 toward unity for ω → ∞.

How are these results related to the Casimir force? We
have just found that for fully amplifying media, n(iω) =√

ε(iω)μ(iω) increases monotonically, assuming values be-
tween nstatic � 0 and 1. Therefore, there is a one-to-one
mapping:

ω ↔ s ≡ ωn(iω), ω,s ∈ [0,∞). (24)

This allows us to rewrite the Casimir force for fully amplifying
media of Eq. (22) in terms of the new variable s as

FC = − h̄

c3π2

∫ ∞

0
ds

s2ω(s)

e2sd/c − 1
. (25)

Notice that for free space we have n(iω) = 1 and hence ω(s) =
s, which immediately gives the well-known Casimir force
for vacuum, F vac

C = −h̄cπ2/(240d4). Also for the general
case (25) we can say more: Since 0 � nstatic � n(iω) � 1 for
fully amplifying systems, we can invert the relation (24) and
find s � ω(s) � s/nstatic for all s. Combining this with Eq. (25)
immediately gives for all separations d the inequalities

F vac
C

nstatic
� F

full amp
C � F vac

C = − h̄cπ2

240d4
. (26)

In other words, the Casimir force on two ideal conductors
separated by a fully amplifying medium of width d is always
more attractive than if the medium were a vacuum but it is not
more attractive than by a factor 1/nstatic. In particular, we find
no sign change in the Casimir force (no Casimir repulsion) on
ideal conductors separated by a homogeneous fully amplifying
magnetodielectric medium. These bounds also hold for fully
amplifying media that for some frequencies exhibit negative
refraction, as numerical examples in Sec. V illustrate.

The bound (26) holds more generally for magnetodielectric
media for which n(iω) increases and 0 � n(iω) � 1. For
example, if μ(ω) is purely lossy and ε(ω) describes full am-
plification, then the product of the monotonically decreasing
μ(iω) and the monotonically increasing ε(iω) may still be a
monotonically increasing function between 0 and 1.

Similarly, for passive media the causal response functions
ε(ω) and μ(ω) have no zeros in the upper half of the frequency
plane, and ε(iω) and μ(iω) decrease monotonically toward
unity for ω → ∞ [59]. Consequently s/nstatic � ω(s) � s for

FIG. 1. A planar multilayer magnetodielectric medium sand-
wiched between two perfect mirrors, with N parallel planar layers
labeled by l = 1,2, . . . ,N . The coordinate system is chosen such that
the layers are perpendicular to the z axis. Layer j has thickness dj .
Each layer is assumed to be homogeneous, isotropic, and of infinite
transverse size such that ε(x,ω) = εj (ω) and μ(x,ω) = μj (ω) for
x in layer j . The conductors have coordinates z1 and z2, and their
separation d equals

∑N

j dj .

all s, and we find the following inequalities for the Casimir
force:

F vac
C � FC

passive � F vac
C /nstatic � 0. (27)

Thus, the Casimir force on two ideal conductors separated by
a lossy medium is always attractive, and less attractive than
in vacuum, but the force is not reduced by a factor larger
than 1/nstatic. These bounds also hold for passive media that
for some frequencies exhibit negative refraction, as numerical
examples in Sec. V illustrate.

C. Casimir forces in amplifying multilayer magnetodielectric
media

Here we generalize our previous results for homogeneous
media to planar multilayer geometries, with N parallel planar
layers labeled by l = 1,2, . . . ,N of thicknesses dl , as depicted
in Fig. 1. Each layer is assumed to be homogeneous, isotropic,
and of infinite transverse size. As is well known for such
a planar multilayer geometry, the electromagnetic field can
be completely expanded into independent transverse electric
(TE) and transverse magnetic (TM) fields that satisfy the same
scalar wave equation but differ in their boundary conditions.
The Green tensor, that via Eq. (21) determines the Casimir
force, can also be separated into TE and TM parts. For
multilayer dielectric media, the Green tensor was obtained
by Tomaš [58], essentially using a transfer matrix approach,
and a generalization to lossy magnetodielectric can be found in
Ref. [65]. For our purposes, we need a further generalization,
namely the Green tensor for amplifying magnetodielectric
multilayer media, and in Appendix B we give a brief derivation
and the final result. In general, one finds N2 expressions for
the Green tensor GTE,TM(q,iω,z,z′), depending on which of
the N layers the two coordinates z and z′ are in, but for the
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Casimir force on the two ideal conductors, Eq. (21) shows that
we fortunately only need four of those terms, namely the ones
for which z and z′ both coincide with one of the coordinates
z1 (boundary of layer 1) and z2 (boundary of layer N ) of the
ideal conductors.

Here we focus on the Casimir force on two ideal conductors
separated by three slabs of matter with linear gain and loss,
which are spatially homogeneous in the layers 1, 2, and 3 (see
Fig. 1). Following the method outlined in Appendix B, we find
the four relevant expressions for the Green functions, both for
TE and TM polarizations. We give two of them: For z,z′ both
in layer 1, we find

GTE,TM(q,iω,z,z′) = μ0μ1(iω) ITE,TM
11

× e−Q1|z−z′ | + r
TE,TM
1+ e−Q1|z+z′ |

2Q1
, (28)

while for z in layer 1 and z′ in layer 3 we obtain

GTE,TM(q,iω,z,z′) = μ0μ1(iω) ITE,TM
13

× t
TE,TM
1/3 eQ1ze−Q3z

′

2Q1
, (29)

where ITE
ij = 1 and ITM

ij =
√

εi εj

μiμj
. Also, the reflection and

transmission amplitudes r
TE,TM
1+ and t

TE,TM
1/3 can be calculated

with the recursive relations (B6) and (B7). The other two Green
functions can be found analogously, for both polarizations.
From Eq. (19), we then find the effective action for the
amplifying three-layer magnetodielectric medium,

Seff = h̄

∫
dωd2q
(2π )3

{
ln

[(
1 + rTM

2,−e−2Q1d1
)(

1 + rTM
2,+e−2Q3d3

)
− (

e−2Q1d1 + rTM
2,−

)(
e−2Q3d3 + rTM

2,+
)
e−2Q2d2

]
+ (TM → TE)

}
. (30)

One can check that in the absence of amplification, our
expression (30) tends to a known result for lossy media [2,66].
In the limit where the two perfect conductors are brought to
infinity (i.e., d1,d3 → ∞), Eq. (30) reduces to

Seff = h̄

∫
dωd2q
(2π )3

{
ln

[(
1 − rTM

2,+rTM
2,−

)
e−2Q2d2

]
+ (TM → TE)

}
. (31)

This is the generalized Lifshitz formula for the Casimir
energy density for amplifying media, in the specific three-layer
geometry where two semi-infinite media with permittivities
and permeabilities ε1, μ1 and ε3, μ3 are separated by a medium
of permittivity ε2 and permeability μ2.

The most realistic special case of Eq. (31) is the one
where the two semi-infinite media are lossy rather than
amplifying, and gain occurs for some frequencies in the middle
layer.

V. NUMERICAL RESULTS

A. Numerical results for fully amplifying media

In our numerical investigations, we first choose homoge-
neous single-resonance Lorentz-oscillator models [67] both

−0.002

0

0.002

ε I
(ω

) ,
μ

I(
ω
)

0.2 0.5 1 2
ω/ω0

−2

0

2

4

ε R
(ω

),
μ

R
(ω

)

FIG. 2. (Color online) Frequency dispersion of the real (upper
panel) and imaginary (lower panel) parts of the electric permittivity
and the magnetic permeability, with (real) frequencies on a log
scale. The media are assumed to be single-resonance media with
resonance frequency ω0 and with ε(ω) = μ(ω) of the form described
by Eq. (32). Parameters for the loss material (dotted curve) are
ωp(e,m)/ω0 = 0.9, γ(e,m)/ω0 = 0.001, and for the gain materials the
parameters are similar to the loss material but with ωp(e,m)/ω0 =
0.9 (dot-dashed curves), and ωp(e,m)/ω0 = 0.5 (dashed curves). Note
that there are frequency regions where the refractive index becomes
negative.

for the electric permittivity ε(ω) and for the magnetic perme-
ability μ(ω). For simplicity we also assume that the electric
and magnetic responses are the same,

ε(ω) = μ(ω) = 1 − ω2
p

ω2
0 − ω2 − iγ ω

, (32)

where ωp is the coupling frequency, ω0 is the transverse
resonance frequency, and γ is the amplification parameter.
The minus sign in front of the second term in Eq. (32)
accounts for optical gain that arises from population inversion
in the medium, and it differs from the usual positive sign for
passive systems, consisting, for example, of two-level systems
in their ground states. The model (32) is an example of a
fully amplifying medium (introduced in Sec. IV B), since
εI(ω),μI(ω) < 0 for all positive frequencies, as depicted in
Fig. 2.

In Fig. 2, the upper panel depicts the real parts εR(ω),μR(ω).
The important thing to notice is that for frequencies (ω2

0 −
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AMOOGHORBAN, WUBS, MORTENSEN, AND KHEIRANDISH PHYSICAL REVIEW A 84, 013806 (2011)

0
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−
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c3
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FIG. 3. (Color online) Casimir force FC per unit area on two
perfectly conducting plates, as a function of their separation, for
different fully amplifying and lossy dispersive materials between the
plates. The parameters are identical to those used in Fig. 2. The solid
curve corresponds to a vacuum. The force is given in units of h̄ω4

0/c
3

and the separation is given in units of c/ω0. The inset shows ε = μ

at imaginary frequencies.

ω2
p)1/2 <∼ ω < ω0 both εR(ω) and μR(ω) are negative for

amplifying media, whereas for passive media they are negative
in the region ω0 � ω <∼ (ω2

0 + ω2
p)1/2. Thus, our model with

ε(ω) = μ(ω) describes negative refraction, and in particular
the perfect-lens situation n(ω) = −1 occurs, or at least
Re[n(ω)] = −1. The lower panel of Fig. 2 depicts the different
signs of εI(ω),μI(ω) for lossy and for fully amplifying media.
The requirement that ε(ω) and μ(ω) have no simple zeros
in the upper half of the frequency plane does not restrict
any parameters of Lorentz-oscillator models describing loss,
but for the fully amplifying model (32) we must require
ωp < ω0 [61]. This requirement is usually met, since for
natural materials the permeability of the medium typically
equals unity and γe  ωp e  ω0e [57].

In Figure 3, we compare the Casimir force on two perfect
planar conductors as described by Eq. (22) for lossy and for
fully amplifying homogeneous media, as well as for a vacuum,
all as functions of plate separation d. The inset 3 shows the
real-valued ε(iω), which is indeed monotonically decreasing
as discussed in Sec. IV B, here from εstatic = 1 + ω2

p/ω
2
0 down

to unity for lossy media. For amplifying media, ε(iω) is indeed
monotonically increasing, from εstatic = 1 − ω2

p/ω
2
0 toward

unity. For some amplifying negative-index geometries, the
Casimir force was found to be repulsive [33], but Fig. 3
illustrates our finding of Sec. IV B for a single homogeneous
layer: attractive Casimir forces for all plate separations for
all homogeneous fully amplifying Kramers-Kronig media,
including the media where for some frequencies there is
negative refraction. More specifically, it is easily verified
that the bounds of Eq. (26) hold in Fig. 3: the attraction
for fully amplifying media is always stronger than for plates
separated by a vacuum but weaker than 1/nstatic times the
free-space value. Likewise, the analogous bounds on FC

in Eq. (27) for passive media are also seen to hold in
Fig. 3.

−2

−1

0

1

2

3

ε(
ω
),
μ
(ω

)

0.01 0.1 1 10
ω/ωg

0

εR(ω), μR(ω)

εI(ω), μI(ω)

FIG. 4. (Color online) The real and imaginary parts of the electric
permittivity and the magnetic permeability in real frequency for the
mixed-type gain material with electromagnetic parameters described
by Eq. (33): ωl

0/ω
g
0 = 1.5, ω

g
p/ω

g
0 = 0.85, ωl

p/ω
g
0 = 1.8, γ g/ω

g
0 =

0.01, and γ l/ω
g
0 = 10.

B. Numerical results for homogeneous medium with
both gain and loss

The fully amplifying media studied in Secs. IV B and
V A do not occur in nature but give insight in the effect
of amplification on Casimir forces. Real amplifying media
are typically amplifying in a limited frequency interval and
lossy elsewhere. Therefore, we now study the effect of gain
in a limited frequency interval on the Casimir force, but
we still assume ε(ω) = μ(ω) for simplicity. We modify the
single-resonance model (32) for fully amplifying media by
adding a loss term,

ε(ω) = 1 −
(
ω

g
p
)2(

ω
g
0

)2 − ω2 − iωγ g
+

(
ωl

p

)2

(
ωl

0

)2 − ω2 − iωγ l
. (33)

By our choice of parameters, we describe a medium with gain
around ω

g
0 and loss elsewhere, as seen in Fig. 4.

In Figure 5, we show the corresponding Casimir force for
this medium, as calculated with Eq. (22). More precisely, the
figure depicts the difference of the Casimir force with respect to
the free-space value, such that a positive value corresponds to a
more strongly attractive Casimir force than for free space. For
lossy media, we know that this will result in a curve entirely
below the horizontal axis, while for fully amplifying media
only positive curves would result, as seen in the figure. For the
medium (33) with both gain and loss and with ε(ω) = μ(ω), it
follows from the inset of Fig. 5 that n(iω) is not monotonically
increasing or decreasing but shows more complex behavior:
For low frequencies, the curve decreases as for a purely lossy
medium. After going through a minimum, the curve increases
for a while as fully amplifying media would do monotonically,
and then finally it decreases again.

In the main panel of Fig. 5, showing the Casimir force
as a function of distance, we see similar behavior: For low
frequencies the curve is negative and the force is attractive
but weaker than for free space, reminding us of a purely
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FIG. 5. (Color online) The difference of the Casimir force with
respect to the vacuum value, for several dispersive media: lossy, fully
amplifying [Eq. (32)], and mixed type [Eq. (33)]. Scaling of the
force and of the distance, and parameters for the fully amplifying
(dot-dashed) and for lossy media (dotted curves), are similar to those
in Fig. 2; parameters for mixed type (dashed curves) are the same as
in Fig. 4. The solid curve corresponds to vacuum. The inset shows
the corresponding ω dispersion of ε(iω) = μ(iω) for a mixed-type
gain medium.

lossy medium. For intermediate distances, the force is more
attractive than for free space, as we have seen for fully
amplifying media in Secs. IV B and V A. Finally, for large
distances—but this is not clearly visible in the main graph—FC

again becomes weaker than F vac
C , again reminding us of a lossy

medium.
These observations agree with the known fact that at

long distances, the main contribution to the Casimir force
comes from the low-frequency region, while the force at short
distances depends on the high-frequency behavior [26]. This
fact follows from the frequency-integral representation (22)
of the force. From Fig. 3 for the fully amplifying media this
relation was not evident, but in Fig. 5 it is: Gain at a finite
frequency interval around ω

g
0 may lead to Casimir forces that

are more attractive than in free space for a finite interval of
plate separations, roughly around a separation d = λ

g
0/(2π ),

in terms of the resonance wavelength λ
g
0 = 2πc/ω

g
0. For

closer or more distant separations, the lossy character of the
gain-and-loss medium dominates the Casimir force, so that
F vac

C < FC < 0. As for the fully amplifying media, we do not
find Casimir repulsion for homogeneous media with both gain
and loss.

VI. CANONICAL QUANTIZATION OF
ELECTROMAGNETIC FIELD IN AMPLIFYING

MEDIUM

In the previous sections, we made a shortcut from the
Lagrangian via the partition function and Green tensor to
calculate the Casimir force for amplifying media. To find
the Casimir force, we did not need to perform explicitly a
canonical quantization for amplifying media based on our
Lagrangian. The reason to do this here is to make contact
with other approaches and to provide an underlying canonical

theory for the phenomenological quantum electrodynamics for
amplifying media that was developed in recent years [35–39].

The starting point is the Lagrangian (1), with the vector
potential A, and the continua of polarization operators Xω

and Yω as canonical fields with the following canonically
conjugate fields:

−ε0E(x,t) = δL
δȦ(x,t)

= ε0Ȧ(x,t), (34a)

Qω(x,t) = δL
δẊω(x,t)

= f (ω,x)A(x,t) + sgn[εI(ω)]Ẋω(x,t), (34b)

�ω(x,t) = δL
δẎω(x,t)

= g(ω,x)∇ × A(x,t)

+sgn[μI(ω)]Ẏω(x,t). (34c)

Here we find −ε0E as the canonical conjugate to the vector po-
tential, as in Refs. [37–39,49–51]. Apart from the subtlety with
the sign functions in Eqs. (34) that discriminate between the
frequency intervals where there is gain and loss, the canonical
quantization of the fields can proceed in a standard fashion
by demanding equal-time commutation relations among the
variables and their conjugates,

[Ai(x,t), − ε0Ej (x′,t)] = ih̄ δij δ
⊥(x − x′), (35a)

[Xω,i(x,t),Qω′,j (x′,t)] = ih̄ δij

× δ(ω − ω′)δ3(x − x′), (35b)
[Yω,i(x,t),�ω′,j (x′,t)] = ih̄ δij

× δ(ω − ω′)δ3(x − x′), (35c)

and all other equal-time commutators vanish. Using the
Lagrangian (1) and the expression for the canonical conjugate
variables in (34), we obtain the Hamiltonian density

H = 1

2
ε0E2(x,t) + B2(x,t)

2μ0

+ 1

2

∫ ∞

0
dω sgn[εI(ω)]

{
Ẋ2

ω(x,t) + ω2X2
ω(x,t)

}
+ 1

2

∫ ∞

0
dω sgn[μI(ω)]

{
Ẏ2

ω(x,t) + ω2Y2
ω(x,t)

}
. (36)

Maxwell’s equations can now be obtained from the Heisenberg
equations of motion for the vector potential and the transverse
electric field and from the commutation relation (35),

Ȧ(x,t) = −E(x,t), (37a)

ε0Ė(x,t) = ∇ × ∇ × A(x,t)

μ0
− ∇ × M(x,t) − Ṗ(x,t).

(37b)

Using the definitions D = ε0E + P and H = B/μ0 − M for
the displacement field and the magnetic field strength, respec-
tively, Eqs. (37) result in Ḋ(x,t) = ∇ × H(x,t) and Ḃ(x,t) =
−∇ × E(x,t), as expected. In a similar fashion, the Heisenberg
equation of motion for the dynamical variables Xω and Yω

leads to

Ẍω(x,t) = −ω2Xω(x,t) + sgn[εI(ω)]f (x,ω)E(x,t), (38a)

Ÿω(x,t) = −ω2Yω(x,t) + sgn[μI(ω)]g(x,ω)B(x,t), (38b)
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with formal solution

Xω(x,t) =
(

Ẋω(x,0)
sin ωt

ω
+ Xω(x,0) cos ωt

)
+ f (x,ω)sgn[εI(ω)]

×
∫ t

0
dt ′

sin ω(t − t ′)
ω

E(x,t ′), (39)

and likewise for Yω(x,t). To facilitate the calculations, let us
introduce the following annihilation operators

dj (x,ω,t) = 1√
2h̄ω

[ωXω,j (x,t) + i Qω,j (x,t)], (40a)

bj (x,ω,t) = 1√
2h̄ω

[ωYω,j (x,t) + i �ω,j (x,t)], (40b)

where j = 1,2,3 labels three orthogonal spatial direc-
tions. Their commutation relations follow immediately from
Eq. (35),

[dj (x,ω,t),d†
j ′ (x′,ω′,t)] = δjj ′ δ(ω − ω′)δ(x − x′), (41a)

[bj (x,ω,t),b†j ′ (x′,ω′,t)] = δjj ′ δ(ω − ω′)δ(x − x′). (41b)

Now by inverting the relations (40) and substituting the result
into Eqs. (3), the polarization and magnetization fields of the
magnetodielectric medium can be written in terms of creation
and annihilation operators as

P(x,t) = ε0

∫ ∞

0
dt ′ χe(x,t − t ′)E(x,t ′) + PN(x,t), (42a)

M(x,t) = 1

μ0

∫ ∞

0
dt ′χm(x,t − t ′)B(x,t ′) + MN(x,t), (42b)

with susceptibilities χm,e as defined in Eq. (15). The fields
PN(x,t) and MN(x,t) are the electric and magnetic polarization
noise densities associated with absorption and amplification.
As in the phenomenological method, we can separate the noise
operators into positive- and negative-frequency parts PN =
PN(+) + PN(−) with PN(−) = [PN(+)]† and analogously for MN,
where

PN(+)(x,t) =
∫ ∞

0
dω

√
h̄ε0|εI(ω)|

π
{di(x,ω,0)
[εI(ω)]

+ d
†
i (x,ω,0)
[−εI(ω)]}e−iωt , (43a)

MN(+)(x,t) =
∫ ∞

0
dω

√
h̄
∣∣μ−1

I (ω)
∣∣

πμ0
{bi(x,ω,0)
[μI(ω)]

+ b
†
i (x,ω,0)
[−μI(ω)]}e−iωt , (43b)

In fact, these equations are the starting point in Refs. [37–39]
to the phenomenological quantization of the electromagnetic
field in amplifying magnetodielectric media.

If we now take the time derivative of Eq. (37) and use
Eq. (42), this yields the frequency-domain wave equation for
the positive-frequency part of the vector potential

∇ × [μ−1(x,ω)∇ × A(+)(x,ω)] − ω2

c2
ε(x,ω)A(+)(x,ω)

= −iμ0ωPN(+)(x) + μ0∇ × MN(+)(x,ω). (44)

This equation can be solved as

A(+)(x,t) = 1

2π

∫ ∞

0
dω

∫
d3x′ G(x,x′,ω) ·

× [−iωPN(+)(x′,ω)

+∇ × MN(+)(x′,ω)] e−iωt , (45)

where the Green tensor G(x,x′,ω) is the solution of Eq. (14).
The equations (43) and (45) and the commutation relations

are the same as obtained from the phenomenological method
[35–39]. Therefore, with our Lagrangian (1) and the canonical
quantization performed here, we formulated a microscopic
basis for the phenomenological quantization of the electro-
magnetic field in amplifying magnetodielectric media.

VII. CONCLUSIONS AND DISCUSSION

The electromagnetic field in an amplifying magnetodielec-
tric medium was quantized with a path-integral technique.
We determined correlation functions of different fields and
found electric and magnetic susceptibilities of the amplifying
medium that are consistent with causality. We determined the
Green functions in amplifying planar multilayer magnetodi-
electrics and used this to calculate the Casimir energy and
force in such media.

The calculations show that the form of the Casimir force as
a functional of the dielectric functions ε(x,ω), μ(x,ω) does not
change significantly as compared to passive media, but some
caution is needed, especially regarding the signs of wave-
vector components in amplifying negative-index materials in
the direction normal to the planes.

Here we studied systems that have both gain and a negative
index, and to that end we assumed ε(ω) = μ(ω) in our
numerical calculations, not because this would be simple to
realize in experiments but rather to gain insight. The concept
was introduced of fully amplifying media, that is, amplifying
at all frequencies. The advantage of our approach is that our
optical functions ε(ω),μ(ω) are defined at all frequencies and
are causal. For two conductors separated by a homogeneous
passive medium, we find that the Casimir force satisfies the
bounds of Eq. (27), so that it is always attractive and less so
than if the medium were replaced by vacuum. On the other
hand, for a homogeneous fully amplifying medium, we find
the bounds (26) that the Casimir force is finite and always
more attractive than in vacuum.

Both bounds are remarkable insofar that both the fully
amplifying and the passive media with ε(ω) = μ(ω) may have
negative refraction in a large frequency interval, whereas for
some other planar geometries it was reported that negative
refraction may lead to Casimir forces that may become
repulsive [33], and also that gain would lead to repulsive
Casimir forces [32,33]. This is not a contradiction, however,
but rather shows that negative refractive indices or gain do not
automatically imply a sign change of the Casimir force and
that the sign of the force strongly depends on the geometry
also for amplifying and negative-index materials.

The bounds (26) and (27) for homogeneous fully amplify-
ing and passive media have in common that the force is bound
by the free-space Casimir force on the one side and by the
free-space Casimir force divided by the static refractive index
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nstatic on the other. It does not matter whether for microwaves
or optical frequencies the medium has a negative refractive
index, as long as the static refractive index stays the same. In
that sense, the Casimir force has little to do with optics, both for
passive and for amplifying media. Reference [26] also stresses
the importance of the low-frequency behavior, and here we
found an illustrative example also for amplifying systems.

Some observables have divergent values in models of
linear amplification, especially for geometries with round-trip
gain. Our simple geometry of perfect conductors separated
by a single amplifying medium will even exhibit round-trip
gain for all frequencies for which there is amplification.
Nevertheless, we find that the Casimir force on the conductors
is finite, bounded by the inequalities of Eq. (26). This could
be explained by the fact that the Casimir force is a vacuum
force, so that there are no photons present that are amplified
indefinitely.

Casimir forces in amplifying media are only beginning
to be explored, and we considered only linear amplification.
This is not always a realistic model, especially for geometries
where the linear-amplification model predicts round-trip gain.
It is an open challenge to calculate Casimir forces in the
presence of media with nonlinear amplification, for example,
with parametric amplification. A possible route could be
to generalize the Lagrangian for passive nonlinear media
of Ref. [68] to gain media, and the result would be a
generalization of our Lagrangian of Eq. (1) to nonlinearly
amplifying media.

Finally, we carried out a canonical quantization of the
electromagnetic field in an arbitrary linear amplifying and/or
passive medium and showed that the resulting field operators
satisfy the macroscopic Maxwell equations for an arbitrary
linearly amplifying and/or passive medium. The resulting the-
ory is valid for all linear, inhomogeneous, amplifying, and/or
passive magnetodielectric media with dielectric functions that
satisfy the Kramers–Kronig relations. The postulates of the
phenomenological theory [35–39] that serve as its starting
point were here derived by canonical quantization.
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APPENDIX A: GENERATING FUNCTION IN PRESENCE
OF DIRICHLET AND NEUMANN BOUNDARY

CONDITIONS

Here we calculate the generating function for two perfectly
conducting plates surrounding an amplifying planar multilayer
system. We are brief, as most of the calculation is identical to
the case of lossy media; see Ref. [48], for example.

We can consider TE and TM polarized waves separately. On
the two plates (labeled by α) they satisfy Dirichlet or Neumann
boundary conditions, respectively:

ϕTM|Sα
= 0, α = 1,2, (A1a)

∂nϕTE|Sα
= 0, α = 1,2, (A1b)

on each surface Sα , where ∂n is the normal derivative of the
surface Sα pointing into the space between the two plates.
To obtain the partition function in four-dimensional (4D)
Euclidean space from the Lagrangian (1), we made a Wick
rotation so that the signature of space-time changes from
Minkowski to Euclidean.

In the 4D Euclidean space, the plates are parameterized
by X1(x,z1,it) and X2(x,z2,it), where x = (x,y). The Dirich-
let or Neumann boundary conditions corresponding to the
constraints (A1) can be imposed by inserting δ functions
which can be expressed in terms of auxiliary fields ψα(Xα)
as follows [47,69]:

δ[ϕ(Xα)] =
∫

D[ψα(Xα)]ei
∫

dXαψ(Xα)ϕ(Xα), (A2a)

δ[∂nϕ(Xα)] =
∫

D[ψα(Xα)]ei
∫

dXαψ(Xα)∂nϕ(Xα ). (A2b)

Using Eqs. (A2), the partition function (5) in Euclidean
space can be written as

ZTM = Z−1
0

∫
D[ϕ]

2∏
a=1

δ[ϕ(Xα)]e−SE,TM[ϕ], (A3a)

ZTE = Z−1
0

∫
D[ϕ]

2∏
a=1

δ[∂nϕ(Xα)]e−SE,TE[ϕ], (A3b)

where the Euclidean actions SE,TM/TE(ϕ) are defined as

SE,TM[ϕ] =
∫

d4x

{
L[ϕ(x)]

+ϕ(x)
2∑

α=1

∫
dX δ(X − Xα)ψα(x)

}
, (A4a)

SE,TE[ϕ] =
∫

d4x

{
L[ϕ(x)]

+ϕ(x)
2∑

α=1

∫
dX δ(X − Xα)∂nψα(x)

}
. (A4b)

By comparing Eqs. (A4) and (11), we can rewrite Eqs. (A3)
as

ZTM =
∫ 2∏

α=1

D[ψα(x)]

×Z

(
2∑

α=1

∫
dX δ(X − Xα)ψα(X )

)
, (A5a)

ZTE =
∫ 2∏

α=1

D[ψα(x)]

×Z

(
2∑

α=1

∫
dX δ(X − Xα)∂nψα(X )

)
, (A5b)
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where the Z(. . .) in the two integrands are the generating
functionals of interacting fields defined in Eq. (11) with
imaginary time. From Eqs. (A5) and (13), the respective
partition functions can be written as

ZTM/TE =
∫ 2∏

α=1

D[ψα(Xα)]e−Seff,TM/TE(ψα), (A6)

where the effective actions Seff,TM and Seff,TE are given by

Seff,TM(ψ1,ψ2)

= 1

2

∑
α,β

∫∫
dXαdXβ ψα(Xα)G(Xα,Xβ)ψβ(Xβ), (A7a)

Seff,TE(ψ1,ψ2)

= 1

2

∑
α,β

∫∫
dXαdXβ ψα(Xα)

[
∂nα

∂nβ
G(Xα,Xβ)

]
ψβ(Xβ).

(A7b)

Here the Green function of the fields after Wick rotation is
denoted by the new font G. The partition functions defined by
Eq. (A6) are calculated straightforwardly, and the results are
given in Eqs. (20) and (21) in the main text.

APPENDIX B: GREEN TENSOR FOR PLANAR
MULTILAYER MAGNETODIELECTRIC MEDIA WITH

GAIN

For planar multilayer geometries as illustrated in Fig. 1,
the electric permittivity and magnetic permeability vary only
in the z direction, so we may introduce a transverse spatial
Fourier transform as

GEM(x − x′,z,z′,iω) =
∫

d2q eiq·(x−x′)GEM(q,z,z′,iω) (B1)

where q is a vector parallel to the conductor. Tomaš uses this to
arrive at the solution of Eq. (14) in lossy dielectric multilayers
[58]. The generalization to lossy magnetodielectric media can
be found in Refs. [70] and [65]. Here we briefly describe
the results of a further nontrivial generalization, namely to
magnetodielectrics with both loss and gain. In our notation we
follow Ref. [58].

The Green tensor GEM(q,z,z′,iω) assumes two different
forms, depending on whether z and z′ are located in the same
layer. For z′ in layer j , it is given by

GEM(q,z,z′,iω) = 1

ε0εj (iω)ω2
δ(z − z′)ẑẑ + μ0μj (iω)

2Qj

×
TM∑

σ=TE

ξσ

e−Qj dj

Dσ
j

× [
εσ >

j (q,iω; z)εσ <
j (−q,iω; z′)
(z − z′)

+ εσ <
j (q,iω; z)εσ >

j (−q,iω; z′)
(z′ − z)
]

for z in layer j (B2a)

GEM(q,z,z′,iω) = μ0μl(iω)

2Ql

TM∑
σ=TE

ξσ

tσl/j e
−(Qj dj +Ql dl )

Dσ
j

×
[
εσ >

l (q,iω; z)

D
+,σ
l/j

εσ <
j (−q,iω; z′)
(l − j )

+ εσ <
l (q,iω; z)

D
−,σ
l/j

εσ >
j (−q,iω; z′)
(j − l)

]
for z in layer l �= j (B2b)

where ξTE = −1, ξTM = 1, 
(z) is the usual unit step function,
and

εσ >
j (q,iω; z) = e+

σj (q)e−Qj (z−dj ) + rσ
j+e−

σj (q)eQj (z−dj ),

(B3a)

εσ <
j (q,iω; z) = e−

σj (q)eQj z + rσ
j−e+

σj (q)e−Qj z. (B3b)

Here σ stands for TE or TM, and e±
TEj = (q̂ × ẑ)j and e±

TMj =
−1
qj

(i|q|ẑ ± Qj q̂)j are the polarization vectors for TE and TM
polarized waves propagating in the positive-z and negative-z
directions, with qj ≡√

ω2εj (iω)μj (iω)/c2 and

Qj (q,iω) =
√

q2 + ω2εj (iω)μj (iω)/c2, (B4)

which can be expressed in terms of the magnitude of the z
component κj (q,ω) =√

ω2εj (ω)μj (ω)/c2 − q2 of the wave vector in
layer j as Qj (q,iω) = −iκj (iω).

Here we arrive at a subtlety in the determination of the
Green tensor for active multilayer media: the z component of
the wave vector, κj (q,ω), is not always well defined for real
frequencies. The subtlety is that although the refractive index
has no branch points in the upper half of the plane, κj (q,ω) may
have branch points there [60]. If there are such branch points,
then κj (q,ω) loses its usual physical interpretation. We follow
Refs. [61] and [60] and only consider active media without
branch points where κj (ω) is meaningful for real frequencies.
In that case, the signs of Re[κj (ω)] and Im[κj (ω)] are identical
to those of Re[nj (ω)] and Im[nj (ω)], respectively, where nj

is refractive index of the j th layer (see Refs. [61] and [60]).
Other quantities in Eqs. (B2) that still need to be defined are

Dσ
j = 1 − rσ

j−rσ
j+e−2Qj dj , (B5a)

D
±,σ
l/j = 1 − rσ

l±rσ
ll∓1/j e

−2Qldl , (B5b)

where rσ
j− (rσ

j+ ) are the generalized coefficients for reflection
at the left (right) boundary of layer j , which can be calculated
with the aid of the recursive relations [65,70]

rTE
j ± =

(
μj±1

Qj±1
− μj

Qj

)
+

(
μj±1

Qj±1
+ μj

Qj

)
e−2Qj±1dj±1rTE

j±1±(
μj±1

Qj±1
+ μj

Qj

)
+

(
μj±1

Qj±1
− μj

Qj

)
e−2Qj±1dj±1rTE

j±1±
(B6a)

for TE-polarized light, and

rTM
j ± =

(
εj±1

Qj±1
− εj

Qj

)
+

(
εj±1

Qj±1
+ εj

Qj

)
e−2Qj±1dj±1rTM

j±1±(
εj±1

Qj±1
+ εj

Qj

)
+

(
εj±1

Qj±1
− εj

Qj

)
e−2Qj±1dj±1rTM

j±1±
(B6b)

for TM polarization. For a finite number of layers, there is
only a finite number of relations to be solved, since for the
leftmost and rightmost layers one should take r

TE,TM
1− = 0,

r
TE,TM
n+ = 0, and d1 = dn = 0. From the definition of the

Fresnel coefficients introduced, it follows that they satisfy

rσ
i/j/k = 1

Dσ
j

[
rσ
i/j + (

tσi/j t
σ
j/i − rσ

i/j r
σ
j/i

)
rσ
j/ke

−2Qj dj
]
, (B7)
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in the notation of Ref. [58].
We have hereby specified the rather complicated expression

for the Green tensor G of Eq. (B2), and we still need to
relate it to the Green tensors GTE,TM(q,z,z′,iω), in terms of
which the Casimir force is expressed in Eq. (21). By using the
ordinary coordinates according to the convention of Schwinger
et al. [3] and choosing (q̂,ẑ,q̂ × ẑ) −→ (x̂,ẑ, − ŷ) [8], the
transverse electric and transverse magnetic Green functions
satisfy[
− ∂

∂z

1

μ(iω,z)

∂

∂z
+ q2

μ(iω,z)
+ ω2ε(iω,z)

c2

]
GTE(q,z,z′,iω),

= μ0δ(z − z′), (B8a)[
− ∂

∂z

1

ε(iω,z)

∂

∂z
+ q2

ε(iω,z)
+ ω2μ(iω,z)

c2

]
GTM(q,z,z′,iω)

= μ0δ(z − z′). (B8b)

We checked with some lengthy but straightforward calcula-
tions that these Green functions GTE,TM(q,z,z′,iω) with z′ and
z in layers j and l respectively can be written very elegantly
in terms of G(q,z,z′,iω) as

Gyy(q,z,z′,iω) = GTE(q,z,z′,iω), (B9a)

Gzz(q,z,z′,iω)

= δlj

δ(z − z′)
ε0ε(iω,z)ω2

+ q2c2

ε(iω,z)ε(iω,z′)ω2

×GTM(q,z,z′,iω). (B9b)

It is important to point out what has been achieved here: By
the identifications (B9) we have found solutions for the scalar
Green functions GTE,TM that are defined by the equations (B8),
with boundary conditions that follow from the continuity of
Hx , Hy , and μHz, and of Ex , Ey , and εEz.
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