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Stark interaction of identical particles with the vacuum electromagnetic field as quantum Poisson
process suppressing collective spontaneous emission
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The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with
a photon-free vacuum electromagnetic field has been obtained with allowance for terms of second order in
the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary
transformation of the system quantum state. It has been shown that in the Markov approximation the effective
Hamiltonian terms of first order in the coupling constant are represented by the quantum Wiener process, whereas
terms of second order are expressed by the quantum Poisson process. During the course of the investigation, it
was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the
collective spontaneous decay of the ensemble of an appreciably high number of identical particles. Fundamental
effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles
and superradiance suppression in the collective decaying process of an excited ensemble with a determined number
of particles.
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I. INTRODUCTION

The dynamics of excited atoms in a resonant broadband
electromagnetic field is can be described by the following
ideas. Atom interaction with a photon-free vacuum electro-
magnetic field will give rise to both the spontaneous transition
from the excited to the ground state, with the photon being
emitted, and a Lamb shift of atomic levels [1]. The spontaneous
decay of an excited state sets the conditions for excited
level broadening, and is effectively described by a two-level
quantum particle model [2]. An ensemble of identical excited
two-level quantum particles localized in a small volume
radiates a coherent electromagnetic pulse with the time delay.
The pulse intensity is proportional to the square of the particle
number, and the pulse duration is inversely proportional to the
particle number. As the number of particles in an ensemble
increases, the pulse duration and its time delay decrease,
with an enhanced intensity. Nowadays, this phenomenon,
discovered by Dicke [3], is known as superradiance and is
the subject of comprehensive investigations [2–4]. Various
complicated theoretical considerations, such as propagation
effects in extended samples, boundaries, geometry (shape) and
nonhomogeneity of the samples, inhomogeneous linewidth
broadening, radiation pattern and polarization of superradi-
ance, fluctuations in the delay time and in other parameters of
superradiant pulses from shot to shot, etc., have been verified
experimentally. It is common knowledge that there is good
agreement between superradiance theory and experiments.
Nevertheless, all observational results obtained in the course
of experimentations are certain to be related only to a narrow
area of atomic densities. With an increase of atomic density,
superradiance is not observed, which is supposed to be caused
by the destruction of atomic coherence and noncollective
spontaneous emission. Analogously, the conventional quan-
tum superradiance theories describe relatively low atomic
densities.
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This paper represents an attempt to consider the quantum
superradiance theory relative to the growth of atomic density.
Special attention has been given to the fact that the increase in
atomic density gives rise to the growth of the Stark interaction
of collectively decaying atoms with vacuum. To the best of our
knowledge, the Stark interaction of atoms with vacuum has not
been taken into account in quantum superradiance theories as
the Stark interaction of an ordinary single atom is small in
comparison with the relevant Rabi energy defining the rate of
quantum transition from the excited level to the ground level.
In this context, the Stark interaction is a term of second order
(as the Lamb shift), whereas the relevant Rabi energy is a term
of first order in the expansion in the powers of coupling with
a vacuum field.

The present paper focuses on the case where the low
intensity of the Stark interaction with a vacuum field, which
is characteristic of an ordinary atom, becomes high enough
for an N-atom ensemble, as the Stark interaction ensemble
operator is proportional to the number of atoms N. Therefore,
the Stark interaction with a vacuum field is enhanced in the
ensemble of identical atoms and can prove to be significant
in the process of collective decay if the number of atoms is
high enough. As a consequence, the collective spontaneous
emission (superradiance) can be fully suppressed and the
ensemble of excited atoms stops emitting if the number of
atoms coincides with the critical number of atoms established
in the paper. On the one hand, the result obtained offers a
different treatment of the optimum conditions for superra-
diance observation, while, on the other hand, it presents a
unique fundamental effect—the stabilization of an ensemble
of excited atoms against the collective spontaneous decay.
To some extent, this very stabilization effect is an apparent
contradiction with superradiance.

Earlier investigations did not deal with the Stark interac-
tion while solving superradiance and collective spontaneous
emission problems. The present paper is devoted to analyzing
the Stark interaction role played in the collective spontaneous
emission in terms of the simplest model of the collective decay
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of the atomic ensemble localized in a small volume, the size of
which is far smaller than the associated emission wavelength.
Here, the generalization of the Dicke model on account of the
Stark interaction has been proposed in this work. The resulting
simple analytical formulas describing temporal dependence of
various quantum state populations (fully excited state, single
excited W state) and intensity profiles of the superradiance
pulse from the number of ensemble atoms have been derived.
The formulas bear a strong resemblance to the well-known
Dicke forumals, but with only one exception—the presence
of an additional non-Langevin factor, which is equal to unity
in neglecting the Stark interaction and is equal to zero at a
certain number of ensemble atoms, on account of the Stark
interaction.

For instance, the W state decays exponentially with time
t exp{−γω21Nat} at a rate proportional to the ensemble
atom number Na [3,4], with no allowance for the Stark
interaction. Here, γω21 = 2ω3

21d
2
21/(3h̄c3) is the conventional

constant of the electrodipole atomic decay (on no account
of photon polarization) expressed through the transition
frequency ω21 and its dipole moment d21 [3,4]. Account-
ing for the Stark interaction, the W-state decay is also
exponential exp{−γω21γnLNat}, according to the present
investigation. However, there has emerged an additional
non-Langevin term γnL = 2[1 − cos(NaηSt)]/(NaηSt)2, ηSt =
γ |�1|ω21h̄/d2

12, which is equal to zero at the ensemble
atom number Na , satisfying the condition NaηSt = 2πn,
n = 1,2, . . ., where �1 is a conventional parameter of optical
resonance theory [5] characterizing the Stark interaction of the
atom in the ground state. One can appreciate the value �1 with
the help of the familiar presentation |�1| ∼ d2

�1/(h̄�), where
� � ω21 is the frequency detuning from the quasiresonance
atomic level with the transition dipole moment d�1 [5]. Then
the non-Langevin factor γnL is defined by the value NaηSt ∼
Naγω21/�. It is necessary to take the quantity �/(γω21)
as being no less than 10 for an optimum estimation, since
the frequency detuning � from the quasiresonance atomic
level must be greater than the homogeneous width γω21 of
the quasiresonant level. Then the critical number of excited
atoms can appear to be of the order of 100. For a wave band
λ ∼ 0.5–10 μm (from the middle visible range to the middle
infrared range), it corresponds to an atomic density of the
order of 1018–1014 atoms/cm3. Thus, appropriate requirements
for the experimental research of the discovered effect differ
from those for superradiance [4]. For the discovered effect to
be observed, it is necessary to involve the atomic ensemble
with a greater atomic density than that for a supperradiance
observation.

The suppression of superradiance described in the present
paper does not contradict the well-known experimental
data [4], and gives a unique interpretation for the existence
of the optimal range of atomic densities for the superradince
to be observed. As a rule, the superradiance is observed
in extended samples with high Fresnel numbers. For these
cases, the superradiant effect is revealed on the background
of noncoherent losses and noncollective relaxation. As the
atomic density increases, the superradiant effect exceeds the
noncoherent losses and noncollective relaxation, as a result
of which superradiance is observed in an experimental way.
A further rise in atomic density results in the disappearance

of superradiance, which was conventionally attributed to the
growth of the noncollective relaxation destroying the system
coherence. It does not sound convincing because all effects,
such as the superradiant effect (on no account of the Stark
interaction) and coherent relaxation are proportional to the
atomic density, might not influence greatly the interrelation
between each other. In addition, coherence relaxation due to
dephasing does not affect the rates of quantum transitions at
all. Supposing that superradiance is suppressed by the Stark
interaction, the enhancement of the noncoherent relaxation
becomes obvious, thus causing the disappearance of superradi-
ance in extended samples while the atomic density is increased.

To analyze the impact of the Stark interaction on the
dynamics of an identical atom ensemble much effort should
be made. First, it is due to fact that even the low-intensity
Stark interaction of a single atom is enhancing, and for a
sufficient number of ensemble atoms it becomes significantly
high. The average value of the Stark interaction with a vacuum
photon-free field is equal to zero. This is only the term of first
order of the perturbation series, though. Evidently, to obtain
the additional non-Langevin factor γnL in the above form, it
is necessary to summarize all terms of the perturbation series,
although it is not known so far how to realize this summation
in terms of traditional techniques [6–8]. In addition, a rigorous
account of the Stark interaction and its estimation requires
that a general atom model having an arbitrary number of
levels rather than a two-level model is analyzed, in contrast
to all previous investigations of superradiance, dating back to
Dicke’s work [3]. Therefore, for the simplest Dicke model, the
account of the Stark interaction leads to the involvement of
rigorous mathematical methods of quantum theory.

The results shown in the paper have been obtained on the
basis of the derived effective Hamiltonian with the related non-
Langevin quantum stochastic differential equation (QSDE).
The Stark interaction is shown to be presented by the quantum
Poisson process, which is responsible for the non-Langevin
type of the QSDE. Therefore, the superradiance allowing for
the Stark interaction with an electromagnetic vacuum is to be
referred to as non-Langevin superradiance, in contrast to the
Dicke superradiance [2–4], which is of Langevin type.

The effective Hamiltonian picture allows to account for
all energy levels of collectively decaying atoms and making
the above-mentioned numerical estimation of the number of
atoms, at which the collective spontaneous decay comes to a
halt. The representation of the Stark interaction as a quantum
Poisson process as being analogous to the one considered
for a single quantum particle in Ref. [9] has provided the
effective summation of the mentioned perturbation series due
to the Hudson-Parthasarathy algebra [10] for increments of
the quantum stochastic processes in the photon-free vacuum
electromagnetic field.

The derivation of master equations can be made by
various methods (see Refs. [6–8]), whereas the QSDE method
[5,7,9–14] is not only the most elegant and straightforward,
but is also an integral element of a mathematically correct
description of the open systems of a particular class. (The
spontaneously emitting excited atoms give an important
example of open systems). The paper emphasizes the important
role played by the effective Hamiltonian picture of an open
system for a consistent analysis of the system dynamics.
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Conventionally, the derivation of the master equation by the
QSDE method was based on the Hamiltonian in the rotating
frame approximation [11–13]. Such a Hamiltonian presented
the initial electrodipole interaction Hamiltonian without fast
oscillating terms in the Dirac picture. The indirect application
of the QSDE method to the initial electrodipole interaction
Hamiltonian gives rise to an unexpected and contradictory
observational result [15]. The relaxation went missing in that
case as if the two-level excited atom had not undergone any
radiative decay. Thus, in the QSDE method, the problem of an
effective Hamiltonian arises. The basic assumptions regarding
the interaction of an open system with its environment must not
be applied to any Hamiltonian (including any general and exact
Hamiltonian) but to an effective Hamiltonian. The systematic
principle of the effective Hamiltonian derivation as well as its
applicability has been formulated in the present paper. Such
an approach allows making a straightforward derivation of not
only the rotating frame approximation Hamiltonian but to that
of a basic term describing the Stark interaction of quantum
particles with a broadband quantized electromagnetic field
responsible for the non-Langevin type of superradiance. The
very same approach imposes restrictions on further application
of the master equation in the process of investigating an open
system dynamics, which were neglected in several previous
works, leading to incorrect results.

Our consideration of the Stark interaction can prove to
be useful for solving other similar problems in which it is
necessary to take into account the operator represented by the
quantum Poisson process.

The paper is organized as follows. In Sec. II the unitary
Hamiltonian transformation, together with the perturbation
theory, is used to derive the effective Hamiltonian and to
introduce the effective Hamiltonian picture. In Sec. III the
QSDE notion is involved for the Markov approximation, and
the non-Langevin evolution operator is derived for a photon-
free quantized electromagnetic field. Section IV is devoted to
the derivation of the master equation and its representation in
the Lindblad form. Section V considers the spontaneous decay
of a singly excited ensemble that is symmetrical over particle
permutation. Section VI is concerned with the peculiarities of
the non-Langevin collective spontaneous decay of the fully
excited ensemble, and the introduction of critical values at
which the atomic ensemble emission is fully suppressed.
Section VII considers the effective Hamiltonian picture and
the QSDE as the basis of a systematic investigation of open
systems, including physical systems containing fast and slow
subsystems.

II. EFFECTIVE HAMILTONIAN PICTURE
OF THE PROBLEM

Let us consider an ensemble of Na identical motionless
atoms interacting with a quantized broadband electromagnetic
field. The atoms are localized near a point �r = 0 in a
small volume, the size of which is much smaller than the
characteristic wavelength of an electromagnetic field. An
initial Hamiltonian of such a system in an electrodipole
approximation

H Ini = HA + HF + H Int (1)

consists of the sum of the Hamiltonian HA of isolated atoms,
the electromagnetic field Hamiltonian HF , and an interaction
operator of atoms with an electromagnetic field H Int,

HA =
∑
i,j

Ej |Ej 〉(i)〈Ej |(i), HF =
∑

�q
h̄ω�qb

†
�qb�q,

H Int =
∑

�q
��q(b†�q + b�q)

∑
i,kj

dkj |Ek〉(i)〈Ej |(i), (2)

∑
j

|Ej 〉(i)〈Ej |(i) = 1(i), 〈Ej |(i)|Ek〉(i) = δjk,

where |Ej 〉 and 〈Ej | are the ket and bra vectors describing
atomic quantum nondegenerate state of energy Ej , and
dkj = 〈Ek|d|Ej 〉 is the matrix element of the atomic dipole
moment operator d = ∑

kj dkj |Ek〉〈Ej |. Atomic states are
characterized by a definite parity, so that 〈Ek|d|Ek〉 = 0.
The upper index of the state vectors designates the state
space of an ith atom; the sum is over all ensemble atoms.
Annihilation and creation operators of photons with wave
vector �q and frequency ω�q are given by b�q and b

†
�q , [b�q,b

†
�q′] =

δ�q �q′, ω�q = qc. The atomic coupling with a conventional
three-dimensional electromagnetic field is characterized by the
value ��q = (2πh̄qc/�3)1/2, with �3 as the quantization volume.
The recoil effects and polarization photon states are neglected.
The dipole-dipole interaction of identical atoms is neglected,
analogous to the conventional theory of superradiance [2–4].
The justification of the electrodipole approximation for a single
two-level atom can be found in Ref. [1].

The state vector |�(t)〉 of the system containing atoms and
a quantized electromagnetic field in the interaction (Dirac)
picture obeys the Schrödinger equation

ih̄
d

dt
|�(t)〉 = H Int(t)|�(t)〉,

|�(t)〉 = exp[i(HA + HF )t/h̄]|�〉,
H Int(t) = exp[i(HA + HF )t/h̄]H Int exp[−i(HA + HF )t/h̄]

=
∑

�q
�ω�q (b†�qe

iω�q t + b�qe−iω�q t )

×
∑
i,kj

dkj |Ek〉(i)〈Ej |(i)eiωkj t ,

ωkj = (Ek − Ej )/h̄, (3)

where |�〉 is the system state vector in the Schrödinger picture.
According to unitary symmetry of quantum theory, let us

make a unitary transformation,

|�̃(t)〉 = U (t)|�(t)〉. (4)

The transition from vector |�(t)〉 toward vector (4) is
accompanied with the Hamiltonian change

H̃ Int(t) ≡ T[H Int(t)] = U (t)H Int(t)U †(t) − ih̄U (t)
d

dt
U †(t).

(5)

Here, the description of the quantum system is expressed
with the help of the Schrödinger equation with a transformed
Hamiltonian (5):

ih̄
d

dt
|�̃(t)〉 = H̃ Int(t)|�̃(t)〉. (6)
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Consider a unitary operator U (t) in terms of the Hermitian
operator

U (t) = e−iS(t), S†(t) = S(t), (7)

in order to use the Baker-Hausdorff formula for an arbitrary
operator O,

e−iSOeiS = O + (−i)

1!
[S,O] + (−i)2

2!
[S,[S,O]]

+ (−i)3

3!
{[S,[S,O]]} + · · · .

A transformed Hamiltonian (5) and operator S(t) are
expanded in a series of the coupling constant

S(t) = S(1)(t) + S(2)(t) + · · · , H̃ Int(t) = H̃ Int(1)(t)

+ H̃ Int(2)(t) + · · · , (8)

where the upper index signifies the expansion order of the
coupling constant. Substituting (7) and (8) into (5) with an
account of the Baker-Hausdorff formula and equating the
expression of the same order, we have

H̃ Int(1)(t) = H Int(t) + h̄ d S(1)(t)/dt, (9)

H̃ Int(2)(t) = − i

2
[S(1)(t),H Int(t)] − i

2
[S(1)(t),H̃ Int(1)(t)]

+ h̄
dS(2)(t)

dt
. (10)

Expansion (8) and formulas (9) and (10) define the unitary
transformations (4)–(8) in a unique way by requiring the
absence of fast time-varying factors in the relevant terms in
the interaction picture. We characterize this transformation
as the transition to an effective Hamiltonian picture. The
latter, which is similar to Heisenberg and Dirac (interaction)
pictures, is closed because the repetitive (or nth fold) unitary
transformations T leave an effective Hamiltonian “fixed,”
H̃ Int(t) = T{H̃ Int(t)}, since it is a fixed point of sequential
identical unitary transformations T.

Note that the unitary transition to an effective Hamiltonian
picture can be made in the Schrödinger picture as well. Then
the basic transformation formulas will be the following:

|�̃〉 = U |�〉, H̃ = UH IniU † − ih̄U
d

dt
U †,

ih̄
d

dt
|�̃〉 = H̃ |�̃〉, U = e−iS, S† = S,

S = S(1) + S(2) + · · · , H̃ = H̃ (0) + H̃ (1) + H̃ (2) + · · · ,
H̃ (0) = HA + HF , H̃ (1) = H Int − i[S(1),H̃ (0)] + h̄ dS(1)/dt,

H̃ (2) = − i

2
[S(1),H Int] − i

2
[S(1),H̃ (1)]

− i[S(2),H̃ (0)] + h̄
dS(2)

dt
. (11)

Here, the key principle of term determination in a trans-
formed Hamiltonian H̃ is the presence of appropriate fast
time-varying factors in the relevant terms (escaping due to
the transition to the interaction picture) in nondiagonal matrix
elements of an effective Hamiltonian. The above-mentioned

Hamiltonian pictures are equivalent to each other in view of
the relation H̃ (0) = HA + HF . The unitary transformation

exp[i(HA + HF )t/h̄]H̃ exp[−i(HA + HF )t/h̄]

= H̃ Int(t) + HA + HF ,

exp[i(HA + HF )t/h̄]e−iS exp[−i(HA + HF )t/h̄] = e−iS(t),

realizes the indicated equivalence.
An effective Hamiltonian (5), (6), (8)–(10) [and (11)] is

diagonal in the absence of any resonance. Resonant conditions
of an atom-field interaction reduce an effective Hamiltonian
(5) and the Schrödinger equation (6) to the closed system of
an equation describing the interaction of an electromagnetic
field with resonant atomic levels alone.

The peculiarities of unitary transformations (4)–(8) and (11)
for the case of quantum particle interactions with classical
electromagnetic fields are described in Ref. [5]. For the
quantum electromagnetic field, the method was used in the
author’s works [5,16,17] for different conditions other than
those considered in the present paper. In these works the
conception of the relevant terms and the elimination of
fast time-varying factors from them are illustrated with a
great number of examples. The analogous method was used
by Van Vleck [18] and described in textbooks [19–21]. In
nonlinear optics the unitary transformation of the quantum
states of the system under investigation has been practically
applied, beginning with Takatsutji’s works [22]. The method of
specifying the unitary transformation in Refs. [18–22] differs
from the above stated one. To the best of our knowledge,
the “closure” property of an effective Hamiltonian picture has
not been discussed up to now. The mathematical background
for the perturbation theory for ordinary differential equations
based on the transformation method similar to the above stated
ones was developed in Ref. [23].

Assume that the electromagnetic field does not have any
photons. Atoms can populate either a ground (lower) energy
level |E1〉 or an excited (upper) energy level |E2〉, thus forming
an optically allowed transition E2 → E1. The interaction with
the electromagnetic field causes transitions from the excited
level to the ground one only. The characteristic frequency
of the electromagnetic field of such processes is determined
by the frequency ω21 of the indicated transition E2 → E1,
ω21 = (E2 − E1)/h̄. Therefore, a resonant interaction arises
between atoms and the electromagnetic field. For the resonant
interaction, the operator H Int(t) in the interaction picture only
has the following slow time-varying terms which determine
H̃ Int(1)(t):

H̃ Int(1)(t) =
∑
i,�q

��qb
†
�qd12e

i(ω�q−ω21)t |E1〉(i)〈E2|(i)

+
∑
i,�q

��qb�qd21e
−i(ω�q−ω21)t |E2〉(i)〈E1|(i). (12)

This equation allows to write down an equation for the
operator S(1)(t) following from Eq. (9) and containing fast
time-varying terms with factors e±i(ω�q+ω21)t eliminated from
H̃ Int(1)(t). We solve this equation by making a conventional
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assumption that the “atom-field” interaction is switched on
adiabatically, and we find the operator S(1)(t) in the form

S(1)(t) = i
∑

�q
��qb

†
�q
∑
i,kj

′|Ek〉(i)〈Ej |(i) e
i(ω�q+ωkj )t dkj

h̄(ω�q + ωkj )

− i
∑

�q
��qb�q

∑
i,kj

′|Ek〉(i)〈Ej |(i) e
−i(ω�q−ωkj )t dkj

h̄(ω�q − ωkj )
.

(13)

Formula (13) contains both resonant and nonresonant atomic
states. The prime sign in the sum means the absence of resonant
denominators ω�q − ω21.

Substituting S(1)(t) and H̃ (1)(t) into (10) and retaining only
slow time-varying terms in the commutators, we obtain H̃ Int(2)

in the form

H̃ Int(2)(t) =
∑

�q
��qb

†
�q
∑

�q ′
��q ′b�q ′e−i(ω�q′ −ω�q )t

×
∑
i,k

1
2 [�k(ω�q) + �k(ω�q ′ )]|Ek〉(i)〈Ek|(i)

+
∑

�q
�2

�q
∑
i,kj

|dkj |2
h̄(ωkj − ω�q)

|Ek〉(i)〈Ek|(i)

−
∑

�q
�2

�q
∑

i 
=i ′,kj

′|Ek〉(i)〈Ej |(i)|Ej 〉(i ′)〈Ek|(i ′)

× |dkj |2
h̄(ω�q − ωkj )

, (14)

where the conventional parameters of the optical resonance
theory are introduced [5],

�k(ω) =
∑

j

|dkj |2
h̄

(
1

ωkj + ω
+ 1

ωkj − ω

)
.

The rest of the terms in formula (10) [after separating
H̃ Int(2)(t) in the form (14)] define the operator S(2)(t). However,
the operator S(2)(t) is not required and omitted in the following.

The operator (14) is the sum of three operators,

H̃ Int(2)(t) = H Stark(t) + H Lamb + V Ex,

H Stark(t) =
∑

�q
��qb

†
�q
∑

�q ′
��q ′b�q ′e−i(ω�q′ −ω�q )t

×
∑
i,k

1

2
[�k(ω�q) + �k(ω�q ′)]|Ek〉(i)〈Ek|(i),

H Lamb =
∑

�q
�2

�q
∑
i,kj

|dkj |2
h̄(ωkj − ω�q)

|Ek〉(i)〈Ek|(i),

V Ex = −
∑

�q
�2

�q
∑

i 
=i ′,kj

′|Ek〉(i)〈Ej |(i)|Ej 〉(i ′)〈Ek|(i ′)

× |dkj |2
h̄(ω�q − ωkj )

.

The first one, H Lamb, is regarded as the Lamb operator.
It describes the Lamb level shifts of a single atom [1].
The second operator, H Stark(t), is referred to as the Stark

interaction operator. The third operator, V Ex(t), describes
the interaction between atoms of dipole-dipole type with an
excitation exchange.

The Lamb operator is diagonal and can be eliminated by a
unitary transformation,

| ˜̃�(t)〉 = exp(iH Lambt/h̄)|�̃(t)〉,ih̄ d

dt
| ˜̃�(t)〉 = ˜̃H

Int
(t)|(t)〉,

˜̃H
Int

(t) = exp(iH Lambt/h̄)H̃ Int(t) exp(−iH Lambt/h̄)

− ih̄ exp(iH Lambt/h̄)
d

dt
exp(−iH Lambt/h̄)

= exp(iH Lambt/h̄)H̃ Int(t) exp(−iH Lambt/h̄) − H Lamb,

H̃ Int(t) = H̃ Int(1)(t) + H̃ Int(2)(t).

We now rewrite the effective Hamiltonian in terms of
resonant and nonresonant atomic levels, and present it as the
sum of four operators,

˜̃H
Int

(t) =
∑
i,�q

��qb
†
�qd12e

i(ω�q−ω′
21)t |E1〉(i) 〈E2|(i)

+
∑
i,�q

��qb�qd21e
−i(ω�q−ω′

21)t |E2〉(i) 〈E1|(i)

+
∑

�q
��qb

†
�q
∑

�q ′
��q ′b�q ′e−i(ω�q′−ω�q )t

×
∑
i,k

1
2 [�k(ω�q) + �k(ω�q ′)] |Ek〉(i) 〈Ek|(i) + V (t)

= H Int−TL(t) + H Nonres(t) + V TL−Ex + V Nonres.

The first one, H Int−TL(t), describes two resonant atomic
levels and transitions between them due to the interaction with
the electromagnetic field,

H Int−TL(t) =
∑
i,�q

��qb
†
�qd12e

i(ω�q−ω′
21)t |E1〉(i) 〈E2|(i)

+
∑
i,�q

��qb�qd21e
−i(ω�q−ω′

21)t |E2〉(i) 〈E1|(i)

+
∑

�q
��qb+

�q
∑

�q ′
��q ′b�q ′e−i(ω�q′−ω�q )t

×
∑

i,
k=1,2

1
2 [�k(ω�q) + �k(ω�q ′)] |Ek〉(i) 〈Ek|(i).

The second operator, H Nonres(t), characterizes the Stark
interaction of nonresonant levels,

H Nonres(t) =
∑

�q
��qb

†
�q
∑

�q ′
��q ′b�q ′e−i(ω�q′−ω�q )t

×
∑

i,
k 
=1,2

1

2
[�k(ω�q) + �k(ω�q ′ )] |Ek〉(i) 〈Ek|(i).

The third and fourth operators, V T L−Ex and V Nonres,
represent terms of the atom-atom interaction operator V . The
interaction between the resonant atomic states |E1〉 and |E2〉
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is described by V TL−Ex,

V TL−Ex = −
∑

�q
�2

�q
∑
i 
=i ′

|E1〉(i) 〈E2|(i) |E2〉(i ′) 〈E1|(i ′)

× |d21|2
h̄(ω�q + ω21)

.

The rest of terms in V (after separating V T L−Ex) are designated
as V Nonres.

We denoted ω′
21 as the resonant transition frequency

allowing for the Lamb shifts,

ω′
21 = ω21 +

∑
�q

�2
�q
∑

j

|d2j |2
h̄2(ω2j − ω�q)

−
∑

�q
�2

�q
∑

j

|d1j |2
h̄2(ω1j − ω�q)

.

Furthermore, the prime at the resonant transition frequency
will be omitted.

The accepted assumption related to allowed level popula-
tions and quantum transitions permits developing the above
stated theory based only on the operator H Int−TL(t) + V TL−Ex.

Thus, the dynamics of the ensemble of identical atoms in the
photon-free electromagnetic field is reduced to the dynamics
of the ensemble of two-level identical atoms and the quantized
electromagnetic field presented by the state vector |�TL+F (t)〉,
obeying the equations

ih̄
d

dt
|�TL+F (t)〉 = {H Tr(t) + H St(t) + V TL−Ex}|�TL+F (t)〉,

(15)

H Tr(t) =
∑

�q
��qb

†
�qd12e

i(ω�q−ω21)tR−

+
∑

�q
��qb�qd21e

−i(ω�q−ω21)tR+,

H St(t) =
∑

�q
��qb

†
�q
∑

�q ′
��q ′b�q ′e−i(ω�q′−ω�q )t

×
{
�+(ω�q,ω�q ′ )

Na

2
+ �−(ω�q,ω�q ′ )R3

}
,

V TL−Ex = −
∑

�q

�2
�q |d21|2

h̄(ω�q + ω21)
(R−R+ + R+R− − Na).

The Stark interaction parameters �±(ω,ω′) were
involved as in

�±(ω,ω′) = 1
2 {�2(ω) + �2(ω′) ± [�1(ω) + �1(ω′)]}.

The operators R± and R3 take the form

R3 = 1

2

∑
i

(|E2〉(i)〈E2|(i) − |E1〉(i)〈E1|(i)),

R− =
∑

i

|E1〉(i)〈E2|(i), R+ =
∑

i

|E2〉(i)〈E1|(i),

and obey the commutation relation of the su(2) algebra

[R3,R±] = ±R±, [R+,R−] = 2R3.

We will consider the initial states of two-level atoms
|�TL

0 〉 and electromagnetic field |�F
0 〉 to be noncorrelated

with each other, |�TL+F
0 〉 = |�TL

0 〉 ⊗ |�F
0 〉. The field states

corresponding to different wave vectors are also noncorrelated
and are photon-free:〈

�F
0

∣∣b†�qb�q ′
∣∣�F

0

〉 = 0,
〈
�F

0

∣∣b�qb
†
�q ′
∣∣�F

0

〉 = δ�q �q ′ , (16)〈
�F

0

∣∣b�qb�q ′
∣∣�F

0

〉 = 〈
�F

0

∣∣b†�qb†�q ′
∣∣�F

0

〉 = 0. (17)

Besides, 〈�F
0 |b�q |�F

0 〉 = 〈�F
0 |b†�q |�F

0 〉 = 0. Thus, the electro-
magnetic field involved is a photon-free bath.

The solution to Eq. (15) is presented with the help of the
evolution operator U (t) (I is a unity operator):

|�TL+F (t)〉 = U (t)
∣∣�TL+F

0

〉
, U (0) = I,

(18)

ih̄
d

dt
U (t) = [H Tr(t) + H St(t) + V TL−Ex]U (t).

Equations (15)–(18) represent the basis of analyzing col-
lective spontaneous emission with allowance for the Stark
interaction by any known method.

III. THE MARKOV APPROXIMATION AND THE RELATED
QUANTUM STOCHASTIC DIFFERENTIAL EQUATION

FOR THE SYSTEM EVOLUTION OPERATOR

Now, let us express the main equations (15)–(18) in a
form suitable for further application of the QSDE method.
First, we will write Eqs. (15)–(18) in a dimensionless form.
The resonant transition frequency ω21 will serve as the
characteristic frequency, and the value of ω−1

21 will be treated
as the characteristic time. The value of d12 will be considered
to be real. We introduce the dimensionless time τ = ω21t and
frequencies ν = ω�q/ω21, ν′ = ω�q′/ω21. The wave vector �q is
presented with the help of the unity vector �n, �q = �nνω21/c.
We replace the summation with an integration,

∑
�q

→
(

�ω21

2πc

)3 ∫ ∞

0
4πν2 dν

∫
d��n
4π

.

We will denote by
∫

d��n ≡ ∫
d��q as the integration over var-

ious wave-vector orientations. The following dimensionless
values and operators are introduced:

|�TL+F (τ )〉 ≡ ∣∣�TL+F
(
τω−1

21

)〉
, bν = μ

√
�3

π
√

2

(ω21

c

)3/2

× ν

∫
d��n
4π

b�nνω21/c, U (τ ) ≡ U
(
τω−1

21

)
,

H Tr(τ ) = 1√
2π

∫ ∞

0
dν b+

ν ei(ν−1)τ χ (ν)R−

+ 1√
2π

∫ ∞

0
dν bνe

−i(ν−1)τ χ (ν)R+, (19)

H St(τ ) = 1

2π

∫ ∞

0
dν b†νe

i(ν−1)τ
∫ ∞

0
dν ′ bν ′e−i(ν ′−1)τ

×
{
η+(ν,ν ′)

Na

2
+ η−(ν,ν ′)R3

}
, (20)

V = −κ

2
(R−R+ + R+R− − Na),
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χ (ν) =
√

2ω21d12

μc3/2
√

h̄
ν, η±(ν,ν ′) = χ (ν)χ (ν ′)

�±(ω21ν,ω21ν
′)

d2
12/(h̄ω21)

,

κ =
∑

�q

�2
�q |d21|2

h̄2(ω�q + ω21)ω21
.

The correction parameter μ was introduced for the follow-
ing reason. The value μ = 1 corresponds to the replacement
of the integration over a quantization cube to a solid sphere in
the sequence of transformations

[b�q,b
†
�q ′ ] = δ�q �q ′ = 1

�3

∫
d�r ei(�q−�q ′)�r ,

[∫
d��q
4π

b�q,
∫

d��q ′

4π
b
†
�q ′

]

= 1

�3

∫
d��q
4π

∫
d��q ′

4π

∫
d�r ei(�q−�q ′)�r

= 1

�3

∫
4πr2 dr

∫
d��q
4π

eiqr cos θ

×
∫

d��q ′

4π
e−iq ′r cos θ ′

= 1

�3

∫
4π dr

1

i2q
(eiqr − e−iqr )

× 1

i2q ′ (e
iq ′r − e−iq ′r ) → 1

�3

2π2

qq ′

×δ(q − q ′), � → ∞, q > 0, q ′ > 0.

Parameter χ will be seen to determine the rate of the
Langevin spontaneous decay at η± = 0, whereas parameters
η± tend to define the non-Langevin factor of spontaneous
emission suppression. In Sec. V we will obtain the spontaneous
decay rate for a singly excited atomic ensemble, which, for the
case of a single particle, will differ from the conventional rate
for the Langevin spontaneous emission [1] by a numerical
factor. The value μ = √

3 corrects this divergence. For all
applications of the QSDE to spontaneous emission (e.g.,
Refs. [11–14]) parameter χ was treated as a phenomenological
one. (However, a detailed examination of this divergence is
not the subject of the present paper.) The above-mentioned
divergence does not distort the theory if we think the values χ

and η± to be phenomenological parameters according to the
QSDE theory of the Langevin spontaneous emission.

Now we can write down the dimensionless form of the main
equations as

d

dτ
|�TL+F (τ )〉 = −i(H Tr(τ ) + H St(τ )+)|�TL+F (τ )〉,

(21)
d

dτ
U (τ ) = −i(H Tr(τ ) + H St(τ ) + V )U (τ ), U (0) = I,

(22)

〈
�F

0

∣∣ b†νbν ′
∣∣�F

0

〉 = 〈
�F

0

∣∣ bνbν ′
∣∣�F

0

〉 = 〈
�F

0

∣∣ b†νb†ν ′
∣∣�F

0

〉 = 0,〈
�F

0

∣∣ bνb
†
ν ′

∣∣�F
0

〉 = δ(ν − ν ′).

For an ordinary atom, the Stark interaction parameters
η±(ν,ν′) are small compared with parameters χ (ν) determin-
ing the Rabi frequency as seen from

η±(ν,ν ′) = χ (ν)χ (ν ′)
�±(ω�q,ω�q ′ )

d2
21/(h̄ω21)

.

Then, η± � χ � 1 as �± ∼ d2
12/(ω21h̄) and χ � 1 for

the expansion (8) to be reasonable. However, the relation
�± � d2

12/(ω21h̄) can be true if the anomalous smallness
of the resonant transition dipole moment is possible due to
any reason. As a result, one can expect the values to be
η± ∼ 1. Several models of two-photon transitions [9] are
also characterized by η± ∼ 1. Moreover, the Stark interaction
parameter η+ is contained in (20), together with the number
of atoms in ensemble Na as the multiplicand. Therefore, the
Stark interaction parameters η± can make an impact on the
atomic dynamics in the case of Na � 1, or under some special
conditions mentioned above. Therefore, the value η+Na will
be considered to be of order of a unit, while χ � 1.

Finally, we present the formal solution to Schrödinger
equation (22) for the evolution operator U (τ ) in terms of the
←
T exponent

U (τ ) = I + (−i)
∫ τ

0
[H Tr(τ ′) + H St(τ ′) + V ]dτ ′

+ (−i)2
∫ τ

0

∫ τ ′

0
[H Tr(τ ′) + H St(τ ′) + V ]

× [H Tr(τ ′′) + H St(τ ′′) + V ]dτ ′ dτ ′′ + · · ·
= ←

T exp

(
−i

∫ τ

0
[H Tr(τ ′) + H St(τ ′) + V ]dτ ′

)
. (23)

Now we will introduce quantum stochastic processes and
make unique basic assumptions characterizing the QSDE
method.

b(τ ) = 1√
2π

∫ ∞

−∞
dν e−i(ν−1)τ bν,

b†(τ ) = 1√
2π

∫ ∞

−∞
dν ei(ν−1)τ b†ν,

B(τ ) =
∫ τ

0
dτ ′ b(τ ′), B†(τ ) =

∫ τ

0
dτ ′ b†(τ ′),

�(τ ) =
∫ τ

0
dτ ′ b†(τ ′)b(τ ′), (24)

supposing that the integration limits in b(τ ) range from −∞ to
+∞, rather than from 0 to +∞. This noteworthy assumption
leads to the following relations:

[b(τ ),b†(τ ′)] = δ(τ − τ ′), [B(τ ),B†(τ )] = τ,

[B(τ1),B†(τ2)] =
∫ τ1

0
dτ ′

∫ τ2

0
dτ ′′ δ(τ ′ − τ ′′) = min(τ1,τ2).

Assume that the parameters of the direct transition χ (ν)
and the Stark level shifts η±(ν,ν ′) are not affected by the
frequency ω,

ν = 1, χ (ν) = const = χ (1) ≡ χ,
(25)

η±(ν,ν ′) = const = η±(1,1) ≡ η±.
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The values introduced in (24) as well as assumptions (25)
allow writing the interaction operators (19) and (20) in the
form

H Tr(τ )dτ = χR+ dB(τ ) + χR− dB†(τ ), (26)

H St(τ )dτ =
(

η+
Na

2
+ η−R3

)
d�(τ ), (27)

dB(τ ) = B(τ + dτ ) − B(τ ),

dB†(τ ) = B†(τ + dτ ) − B†(τ ), (28)

d�(τ ) = �(τ + dτ ) − �(τ ).

The applied approximations are the Markov conditions,
namely, the dynamics of the electromagnetic broadband field
(16) and (17) is determined by the field state at a point
time and is not affected by the field state of the previous
moments of time [1,11,13,14]. The approximations were
used in all previous works [11–17] with no account of the
Stark interaction. Conditions (25), along with the correction
parameter μ = √

3 in the definition of χ , provide the correct
value of the spontaneous decay rate through the resonant
atomic transition characteristics (with no allowance for photon
polarization).

For the Markov conditions, Eqs. (21)–(23) have proved to
be mathematically incorrect [11,13]. It is evident from the
detailed consideration of integrals contained in formula (23).
We will consider these integrals to be taken in the Ito form:

∫ τ

0
ϕ(τ ′)dB†(τ ′) = lim

N→∞

N∑
i=1

ϕ(τi−1)[B†(τi) − B+(τi−1)],

where the limit is taken as the mean-square one [11,13,14].
Here, 0 < τ1 < τ2 < · · · < τN−1 < τ , with τ0 = 0 and τN =
τ , and the maximum of the time intervals τi − τi−1 tends
to zero, with the number of time interval N tending to
infinity. The values ϕ(τ ) are nonanticipating, i.e., statistically
independent of the subsequent behavior of B(τ ) and B†(τ ). In
the mathematical way, it is expressed as

[ϕ(τ ),dB(τ )] = [ϕ(τ ),dB†(τ )] = [ϕ(τ ),d�(τ )] = 0.

The Ito quantum stochastic differential equation

dϕ(τ ) = α(ϕ(τ ),τ )dB(τ ) + β(ϕ(τ ),t)dB†(τ )

+ ε(ϕ(τ ),τ )d�(τ ) + γ (ϕ(τ ),τ )dτ

is the equation for which the integral relation is true,

ϕ(τ ) − ϕ(0) =
∫ τ

0
α(τ ′)dB(τ ′) +

∫ τ

0
β(τ ′)dB†(τ ′)

+
∫ τ

0
ε(τ ′)d�(τ ′) +

∫ τ

0
γ (τ ′)dτ ′,

where the stochastic integrals are interpreted in terms of the
Ito form. The differentials dϕ(τ ), dB(τ ), dB†(τ ), and d�(τ )
are referred to as the Ito differentials, or the Ito increments.

Hudson and Parthasarathy [10] (see also Refs. [24] and
[25]) concluded that the Ito differentials (28) satisfy the below
stated algebra:

d�(τ )d�(τ ) = d�(τ ), d�(τ )dB†(τ ) = dB†(τ ),

dB(τ )d�(τ ) = dB(τ ), dB(τ )dB†(τ ) = dτ,

d�(τ )dB(τ ) = d�(τ )dτ = dB†(τ )d�(τ )

= dB†(τ )dτ = dB(τ )dτ = 0. (29)

The operators B(τ ), B†(τ ), and �(τ ) define the Wiener
quantum process Q(τ ) and the Poisson quantum process N (τ )
according to [24,25]

Q(τ ) = B(τ ) + B†(τ ), N (τ ) = �(τ ) + i(B†(τ ) − B(τ )).

The operators dB(τ ), dB†(τ ), and d�(τ ) are the increments
of annihilation, creation, and counting processes determining
the Wiener quantum process Q(τ ) and the Poisson quantum
process N (τ ). Furthermore, we will think of the Wiener
quantum processes as the operators B(τ ) and B†(τ ) [or dB(τ )
and dB†(τ )], and the Poisson quantum process as �(τ ) [or
d�(τ )], which does not lead to any misunderstanding.

The Hudson-Parthasarathy algebra (29) allows us to provide
a correct mathematical expression for the evolution operator
equation. Consider the Ito differential dU (τ ):

dU (τ ) ≡ U (τ + dτ ) − U (τ ).

If Eq. (23) is taken in the form

U (τ )

= lim
N→∞

exp

(
H Tr(τN−1) + H St(τN−1) + V

i
(τN − τN−1)

)

× · · · exp

(
H Tr(τ0) + H St(τ0) + V

i
(τ1 − τ0)

)
,

then

dU (τ ) =
{

exp

[
−i

(
χR+ dB(τ ) + χR− dB†(τ )

+
(

η+
Na

2
+ η−R3

)
d�(τ ) + V dτ

)]
− 1

}
U (τ ).

This expression shows the unitary property of the evolution
operator and the Ito differentiation rule,

d[U (τ )U †(τ )] = [dU (τ )]U †(τ ) + U (τ )dU †(τ )

+ [dU (τ )][dU †(τ )].

Expanding the exponent in series and applying the Hudson-
Parthasarathy algebra (29), we obtain the Ito equation for the
evolution operator,

dU (τ ) = A0 dτ U (τ ) + A+ dB(τ )U (τ ) + A− dB†(τ )U (τ )

+A� d�(τ )U (τ ) − iV dτ U (τ ), (30)

dU †(τ ) = U †(τ )A†
0 dτ + U †(τ )dB†(τ )A†

+ + U †(τ )dB(τ )A†
−

+U †(τ )d�(τ )A†
� + iU †(τ )V dτ,

A0 =χ2R+

×exp
[ − i

(
η+ Na

2 + η−R3
)] −1 + i

(
η+ Na

2 +η−R3
)

(
η+ Na

2 + η−R3
)2 R−,

A− = exp
[−i

(
η+ Na

2 + η−R3
)]−1

η+ Na

2 + η−R3
χR−,
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A+ = χR+
exp

[−i
(
η+ Na

2 + η−R3
)] − 1

η+ Na

2 + η−R3
,

A� = exp

[
−i

(
η+

Na

2
+ η−R3

)]
− 1.

The operators

exp
[−i

(
η+ Na

2 + η−R3
)] − 1 + i

(
η+ Na

2 + η−R3
)

(
η+ Na

2 + η−R3
)2 ,

exp
[−i

(
η+ Na

2 + η−R3
)] − 1

η+ Na

2 + η−R3

are interpreted as the Taylor series of the corresponding
functions of x: (η+ Na

2 + η−R3) → x, with subsequent reverse
substitution x → (η+ Na

2 + η−R3).
In absence of the Stark interaction η± = 0 for a single

quantum particle Na = 1, V = 0, Eq. (30) coincides with
the familiar case and describes the Langevin atomic relax-
ation [13]. The Langevin relaxation type is determined by
the Langevin (or Wiener) form of the quantum stochastic
differential equation defined by the Wiener quantum processes
dB(t) and dB†(t) alone, in the absence of the Poisson quantum
process d�(t). Dependence of the evolution operator on
d�(t) is a sign of the non-Langevin (or non-Wiener) process
manifestation. At η+ = 0 and Na = 1, Eq. (30) coincides with
the non-Langevin equation derived in Ref. [9].

IV. MASTER EQUATION FOR THE ATOMIC ENSEMBLE
DENSITY MATRIX

The master equation for the density matrix of atomic
ensemble and electromagnetic field ρ(τ ) = U (τ )|�T L+F

0 〉
〈�T L+F

0 |U+(τ ) is derived from the quantum stochastic differ-
ential equation for the evolution operator (30) by calculating
the increment

dρ(τ ) = ρ(τ + dτ ) − ρ(τ )

= dU (τ )
∣∣�T L+F

0

〉 〈
�T L+F

0

∣∣U †(τ ) + U (τ )
∣∣�T L+F

0

〉
× 〈

�T L+F
0

∣∣ dU †(τ ) + dU (τ )
∣∣�T L+F

0

〉
× 〈

�T L+F
0

∣∣ dU †(τ ).

The use of the Hudson-Parthasarathy algebra gives rise to

dρ(τ )

= −i[V,ρ(τ )]dτ + A0 dτ ρ(τ ) + A+ dB(τ )ρ(τ )

+A− dB†(τ )ρ(τ ) + A� d�(τ )ρ(τ )

+ ρ(τ )A†
0 dτ + ρ(τ )dB+(τ )A†

+ + ρ(τ )dB(τ )A†
−

+ ρ(τ )d�(τ )A†
� + A+ dB(τ )ρ(τ )dB†(τ )A†

+
+A+ dB(τ )ρ(τ )dB(τ )A†

− + A+ dB(τ )ρ(τ )d�(τ )A†
�

+A− dB†(τ )ρ(τ )dB†(τ )A†
+ + A− dB†(τ )ρ(t)dB(τ )A†

−
+A− dB†(τ )ρ(τ )d�(τ )A†

� + A� d�(τ )ρ(τ )dB†(τ )A†
+

+A� d�(τ )ρ(τ )dB(τ )A†
− + A� d�(τ )ρ(τ )d�(τ )A†

�.

The master equation for the atomic ensemble only
ρT L(τ ) = TrF ρ(τ ) on account of the relations

TrF [ρ(τ )dB(τ )] = TrF [ρ(τ )dB†(τ )] = TrF [ρ(τ )d�(τ )] = 0

is derived in the form

dρT L

dτ
= −i[V,ρT L] + χ2aNL

− (η+,η−,R3)R−ρT L

×R+aNL
+ (η+,η−,R3) − χ2

2

{
R+

[
aNL

0 (η+,η−,R3)

− iaNL
s (η+,η−,R3)]R−ρT L

+ ρT LR+
[
aNL

0 (η+,η−,R3) + iaNL
s (η+,η−,R3)

]
R−

}
.

(31)

This equation describes the non-Langevin collective sponta-
neous decay of ensemble of identical two-level atoms in a
photon-free vacuum field. The non-Langevin operators are
involved,

aNL
0 (η+,η−,R3) = 2

1 − cos
(
η+ Na

2 + η−R3
)

(
η+ Na

2 + η−R3
)2 ,

aNL
s (η+,η−,R3) = 2

η+ Na

2 + η−R3 − sin
(
η+ Na

2 + η−R3
)

(
η+ Na

2 + η−R3
)2 ,

aNL
± (η+,η−,R3) = cos

(
η+ Na

2 + η−R3
) − 1

η+ Na

2 + η−R3

± i
sin

(
η+ Na

2 + η−R3
)

η+ Na

2 + η−R3
.

In the absence of the Stark interaction η± = 0, the non-
Langevin operators are proportional to the unity operator I ,

aNL
0 (η+,η−,R3) = I, aNL

s (η+,η−,R3) = 0,

aNL
± (η+,η−,R3) = ±iI,

and the master equation (31) agrees with the familiar master
equation describing collective Langevin atomic decay [13].

The non-Langevin operators obey the relation

aNL
+ (η+,η−,R3)aNL

− (η+,η−,R3) = aNL
0 (η+,η−,R3).

One can introduce the Lindblad operators

L− = aNL
− (η+,η−,R3)R−, L+ = R+aNL

+ (η+,η−,R3),

L+L− = R+aNL
0 (η+,η−,R3)R−,

and give the master equation of the Lindblad form [26]

dρT L

dτ
= χ2L−ρT LL+ − χ2

2
(L+L−ρT L + ρT LL+L−)

− i[(HNL−ST + V ),ρT L], (32)

where

HNL−ST = −χ2

2
R+aNL

s (η+,η+,R3)R−.

The operator HNL−ST defines the atomic-level shifts caused
by the Stark interaction. These same shifts do differ both from
the Lamb shifts included into the frequency ω21 and the Stark

013801-9



A. M. BASHAROV PHYSICAL REVIEW A 84, 013801 (2011)

shifts represented as 〈�F
0 |H Stark(t)|�F

0 〉, and equal to zero in a
photon-free electromagnetic field. For a single atom, this shift
was described in Ref. [9].

Note that the operator V also leads to level shifts due to
the excitation exchange in atom-atom interactions of dipole-
dipole type. Therefore, the operator V can be regarded as an
excitation-exchange operator. It provides the dephasing effect,
leading to coherence relaxation, but it does not affect the rates
of quantum transitions.

The next two sections will provide solutions to Eq. (32) for
the cases of singly and fully excited atomic ensembles.

V. NON-LANGEVIN DECAY OF SINGLY EXCITED
ATOMIC ENSEMBLE

Collective spontaneous emission of identical atoms in the
common vacuum field is not easy to be completely inves-
tigated. Even a two-atom system with originally factorized
different quantum states appears to be entangled as a result of
spontaneous decay [27–30]. The main reason for the system
behavior is due to the existence of the decoherence-free
subspace [31,32]. Below we will consider simpler cases of
collective spontaneous emission with the initial Dicke state [3].
For a singly excited atomic ensemble, these states will reduce
to W states [33], which are important in quantum information
processing.

Let the initial atomic ensemble state at τ = 0 be the
following:

|�T L
0 〉 = 1√

Na

{|E2〉(1)|E1〉(2) · · · |E1〉(Na ) + |E1〉(1)|E2〉(2)

· · · |E1〉(Na ) + · · · + |E1〉(1)|E1〉(2) · · · |E2〉(Na )}.
It is quite essential to make clear how the number of atoms Na

affects the non-Langevin decay rate. Let Na = 2r . Because of
the symmetry properties of |ET L

0 〉 with respect to permutations
of atoms, |�T L

0 〉 can be expressed by |r, − r + 1〉 of (Na +
1)-dimensional space of irreducible representation of su(2)
algebra,

R+ |r,m − 1〉 =
√

(r + m)(r − m + 1) |r,m〉 ,

R− |r,m〉 =
√

(r + m)(r − m + 1) |r,m − 1〉 ,

R3 |r,m〉 = m |r,m〉 , − r � m � r,

with the Casimir operator R2 = R+R− + R2
3 − R3 =

R−R+ + R2
3 + R3: R2|r,m〉 = r(r + 1)|r,m〉. The excitation

exchange operator V has the simplest form, V = −κ(r2 −
R2

3), for the irreducible representation space.
The equation for the density matrix ρT L

−r+1,−r+1, describing
the decay of a singly excited atomic ensemble, is derived from
(32),

dρT L
−r+1,−r+1

dt
= −4χ2r

1 − cos(rη+ − rη−)

(rη+ − rη−)2
ρT L

−r+1,−r+1.

(33)

The singly excited atomic ensemble decays exponentially
so that the population of excited state is given by

ρT L
−r+1,−r+1(τ ) = exp

{
−4χ2r

1 − cos(rη+ − rη−)

(rη+ − rη−)2
τ

}
.

For one atom r = 1/2 and η = (η+ − η−)/2, Eq. (32)
coincides with the master equation obtained in Ref. [9], al-
though non-Langeven spontaneous emission was investigated
in Ref. [9] on the basis of a simpler model.

If the Stark interaction is absent or negligibly small, η± = 0,
Eq. (32) describes the Langevin decay of the singly excited
atomic ensemble

ρT L
−r+1,−r+1(τ ) = exp{−2χ2rτ }.

Thus, the constant 2rχ2 may be regarded as the Langevin
decay rate of the singly excited atomic ensemble. It is directly
proportional to the number of ensemble atoms.

The Stark interaction of atoms with a vacuum photon-free
electromagnetic field produces a decrease of the spontaneous
emission rate of the atomic ensemble (in comparison with the
Langevin case) at any intensity of the Stark interaction. That is
the consequence of quantum interference of both spontaneous
transition from the excited level to the ground one, with one
photon being emitted, and virtual transitions with returning
to the excited level with no photon emission. As the number
of ensemble atoms increases, the total intensity of the Stark
interaction increases also. Despite the fact that the Langevin
spontaneous emission rate constantly increases as the number
of atoms rises, Na = 2r , there exists the critical value of the
number of atoms N cr

a = 4π/(η+ − η−) or parameter r ,

rcr = 2π/(η+ − η−), (34)

at which the spontaneous decay is completely suppressed and

ρT L
−r+1,−r+1(τ ) = ρT L

−r+1,−r+1(0) = const.

Let us note that the dimensionless combination of parameters
η+ − η− is determined by the value �1(ω), characterizing the
Stark shift of the ground level, so

N cr
a = 2π d2

12

χ2 |�1| ω21h̄
.

Reference [9] was devoted to analyzing phenomena where
the Stark interaction growth of a single quantum particle could
be expected to get substantial. With spontaneous emission
being the basic reason for decoherence producing mechanism
and hindering the quantum operations, the search for situations
where the Stark interaction cannot be neglected is of interest for
quantum information processing. However, it is not a subject
for discussion in the present paper.

It is important to emphasize that the quantum Poisson
process �(τ ) describing the Stark interaction acts as if it
were an original “interaction accumulator” according to the
relation d�(τ )d�(τ ) = d�(τ ). Instead of making a quantum
transition, with a photon emitting, a particle is involved in
perpetual virtual transitions and returns to an excited level with
no photon emission. It gives rise to stabilization of an excited
state. To calculate such an effect in a different way [6–8] other
than the quantum SDE method, it is necessary to summarize an
infinite series where only the first terms have been accounted
for previously. The same “interaction accumulator” effect has
been revealed in the photon counting while the radiating
particle is being continuously measured [12]. The summation
of the above-mentioned infinite series is automatically carried
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out in the QSDE method due to the Hudson-Partasarathy
algebra (29). It is the basic advantage of the QSDE method.

VI. NON-LANGEVIN DECAY OF FULLY EXCITED
ATOMIC ENSEMBLE

One more relatively simple case of spontaneous decay
of an excited atomic ensemble with the Stark interaction
manifestation is the spontaneous decay of fully excited two-
level particles. At τ = 0 the initial state of such an atomic
ensemble is

∣∣�T L
0

〉 = |E2〉(1) |E2〉(2) · · · |E2〉(Na ) .

The relaxation dynamics of this system is also given by Eq. (32)
in the case of state space spanned by vectors |r,m〉, Na = 2r ,
with the initial state |�T L

0 〉 = |r,r〉. For the diagonal matrix
elements, it is easy to obtain the equation from (32),

dρT L
mm

dt
= −2χ2gmm−1

1 − cos[rη+ + η−(m − 1)]

[rη+ + η−(m − 1)]2
ρT L

mm

+ 2χ2gm+1m

1 − cos(rη+ + η−m)

(rη+ + η−m)2
ρT L

m+1m+1, (35)

where

gmm−1 = 〈m|R+|m − 1〉〈m − 1|R−|m〉
= (r + m)(r − m + 1).

The decay of the excited atomic ensemble is of non-
Langevin type if the number of ensemble atoms is sufficiently
high. Here, we can also think of the existence of the critical
value of the number of atoms in the ensemble

rcr = 2π + η−
η+ + η−

∼= 2π

η+ + η−
, (36)

where ρT L
rr (τ ) = const = 1, and the atomic ensemble of fully

excited two-level atoms is not decayed as a result of the
excitation stabilization caused by the Stark interaction. It is a
curious notion that the critical value (36) is different from the
critical value (34) for the singly excited atomic ensemble, and
is defined by the Stark interaction parameter characterizing
the excited atomic level alone. It can be seen from the
corresponding expression given for the critical number of
atoms,

N cr
a = 2π d2

12

χ2 |�2| ω21h̄
.

Lastly, there are critical values mcr ∼= (2π − rη+)/η− of
atomic ensemble excitations when the collective spontaneous
emission of the fully excited atomic ensemble stops and the
ensemble is stabilized in the excited state with mcr + r excited
atoms, 0 � mcr + r � Na .

Depending on the meaning of the Stark interaction pa-
rameters η±, all the above indicated critical values “break”
the atomic ensemble dynamics into predetermined domains
where the non-Langevin factors exert various impacts on
the spontaneous emission rates, which can either increase or
decrease during the course of photon emission.

Now we will consider the average intensity of collective
spontaneous emission Ī (t), which is directly proportional to
energy losses of the atomic ensemble

Ī (t) = −α
d

dt
Tr(h̄ω21R3ρ

T L),

where the geometrical factor α is introduced and level shifts
are neglected. Then

Ī (t) = α

r∑
m=−r

h̄ω212χ2Gmm−1ρ
N
mm ≡ α′

r∑
m=−r

Gmm−1ρ
N
mm,

Gmm−1 = gmm−1
1 − cos[rη+ + η−(m − 1)]

[rη+ + η−(m − 1)]2
.

In the simplest case η− = 0, Eq. (35) coincides with the
basic equations of the conventional superradiance theory [4],
which allows us to apply the well-known analytical results to
a large number of excited atoms r � 1:

Ī (t) ≈ γ̄ r2 sech2[γ̄ r(t − tD)], γ̄ = 2χ2αh̄ω21
1 − cos(η+r)

(η+r)2
,

tD = (2γ̄ r)−1 ln 2γ̄ r. (37)

Here again one can introduce the critical value of the atom
number N cr

a (or parameter rcr = N cr
a /2), when the decay is

fully suppressed,

rcr = 2π/η+. (38)

At different values of the number of ensemble atoms, the
collective spontaneous emission for η− = 0 is similar to the
conventional (Langevin) superradiance [4]. For the conven-
tional superradiance, however, the larger is the number of
excited atoms, the shorter is the pulse duration and time delay
of superradiance. At the same time for the non-Langevin
superradiance described by formula (37), one can observe
an increase of superradiance duration and time delay as the
number of ensemble atoms rises due to the non-Langevin
factor [1 − cos(η+r)]/(η+r)2, renormalizing the rate γ̄ of the
collective spontaneous emission, and establishing the main
difference of the collective spontaneous emission from the
conventional case under the strong Stark interaction.

To define the minimal number of atoms at which the
superradiance suppression is expected to happen, it is to be
noted that the maximal value of parameter �2 is typical for
atoms with the appropriate quasiresonance level |Eq〉, with
the latter being E2 < Eq and the value |Eq − E2 − h̄ω21|
being estimated as minimally feasible. The choice of such
atoms needs a more detailed study. It is necessary to add
that the value |Eq − E2 − h̄ω21| represents the detuning of the
central frequency of quantum noise source (in resonance with
the transition E2 → E1) from the frequency of the transition
Eq → E2. This same detuning must be far greater than the
homogeneous width h̄γ ωq2 of the quasiresonance level |Eq〉
due to expansion (11). Neglecting polarization, one can obtain
γωq2 = 2ω3

21d
2
q2/(3h̄c3) for the homogeneous level width,

where dq2 is the dipole moment of the transition Eq → E2.
Then the following estimation is given as

N cr
a = 2π

∣∣Eq − E2 − h̄ω21

∣∣ /(h̄γ ωq2) ∼ 2π · 10 ∼ 102.
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For the parameter �1 of the ground level, a similar
quasiresonance level may not exist, so that the inequality
|�1| � |�2| was considered to be true. Therefore, the critical
number of resonant atoms, at which the atomic ensemble with
a small excitation number gets stabilized with respect to the
collective spontaneous decay, will be much greater than the
above indicated estimation for N cr

a .
On condition |�1| � |�2|, the approximate equality η+ ≈

η− = η is usual, so that mcr ∼= 2π/η − r = N cr
a − r , N cr

a �2r .
The presented theory has been developed for atoms in a

small volume but not for extended media, which is why it is
not possible to offer a rigorous description of a superradiant
effect with allowance for the Stark interaction in extended
media. To the best of our knowledge, the non-Langevin QSDE
method for extended medium is known to be nonexistent.
Nevertheless, the results obtained can be taken into account
for extended media also. Even though excited atoms become
stabilized with respect to the collective spontaneous decay, the
noncollective decay typical of extended media returns excited
atoms to the ground state, which can be regarded as the co-
herence relaxation impact on superradiance destruction in the
conventional experiments. The experiments investigating the
superradiance destruction, while atomic density is enhancing,
are not known to the author. If research of this kind were done,
the superradiance duration dependence from atomic density
should be studied in the framework of the critical parameters to
make an indirect experimental verification in extended media.
According to Eq. (37), the superradiance duration increase
must be observed as the atomic density enhances.

The critical densities of resonant atoms for the extended
media of length L = 102 cm will be estimated for the
superradiance wavelength λ21 = 3.41 μm. The superradiance
suppression takes place at the critical density of resonant
atoms ncr

a = N cr
a /(Lλ2

21) ∼ 107 cm−3 in the case of atoms
with a maximally feasible value of �2. This value is as
much as 103 times less than the density range of sodium
vapor (109–1010 cm−3), where the superradiance was spotted
in experiment [34] at the indicated wavelength (transition
5S-4P). For the sodium atom, however, the above-mentioned
estimation is not relevant since the sodium atom does not
possess the quasiresonance level |Eq〉 with minimally feasible
detuning |Eq − E2 − h̄ω21|. In the absence of knowledge
of �2 (for the 5S state), use will be made of η± through
the Lamb shift δωLamb as both parameters define the terms
derived from the commutation of creation and annihilation
operators of resonant photons. Assuming η± ∼ 2πδωLamb/ω21

and applying the typical Lamb shift value of the order of one
GHz, we obtain N cr

a ∼ 105 which provides for the critical
density of resonant atoms ncr

a ∼ 1010 cm−3, i.e., the value
of sodium vapor density beyond the limit of which the
superradiance was not registered in experiment [34].

Emphasis is to be placed on the fact that for extended media
the above values are of rough approximation in view of the idea
that the theory of the non-Langevin superradiance in extended
media needs to be developed.

The derived regularities of collective spontaneous emission
of an identical atom ensemble can serve as a starting point
for further detailed investigations with allowance for different
atomic excitation distributions, different atomic positions,
inhomogeneous level broadening, etc. In the present paper our

aim was to attract the reader’s attention to the phenomenon of
the enhancement of the Stark interaction with vacuum while
increasing the particle number in the atomic ensemble. As
a result, the Stark interaction, in turn, gives rise to radical
changes in the collective spontaneous emission, invoking its
suppression and stabilization of the excited atomic ensemble.

VII. CONCLUSION

The main difference in the present investigation from pre-
vious works devoted to spontaneous emission is the allowance
for the Stark interaction with a vacuum electromagnetic field.
In the absence of such an interaction, spontaneous emission
is of Langevin type and is defined by the quantum Wiener
process. Then, the higher is the interaction intensity with a field
and/or the particle number in the atomic ensemble, the higher
is the spontaneous emission rate. The Stark interaction is
described by the quantum Poisson process, which determines
the non-Langevin type of spontaneous emission. The role
played by the Stark interaction increases as the number of
atoms taking part in the collective spontaneous emission rises.
The enhancement of the Stark interaction intensity and particle
number in the atomic ensemble gives rise to a nonlinear
decrease of the spontaneous emission rate as compared to
the Langevin decay. It has been found that there is a set
of critical values for the number of ensemble atoms taking
part in collective spontaneous emission when the spontaneous
emission is fully suppressed and the atomic ensemble is
stabilized in an excited state.

One more distinctive feature of the present work is the
formulation of the effective Hamiltonian picture along with
the QSDE for the evolution operator. This approach allows
deriving the atomic master equation in a straightforward and
elegant manner owing to both an effective Hamiltonian picture
and the Hudson-Partasarathy algebra (29) for the increment of
the quantum stochastic processes.

The research done in the field of spontaneous emission
has provided an example of the analysis of an open system
in the Markov approximation in terms of combining the
effective Hamiltonian of the open system and QSDE for
the evolution operator. The QDSEs are formulated in the
framework of the factorization of the initial state of the
open system and its environment, independence of different
environment modes [Eqs. (16) and (17)], and the homogeneous
interaction (15) combined with the definitions of quantum
stochastic processes in the Markov approximation [Eq. (25)].
All these requirements laid down above are related not to the
initial Hamiltonian and state vector but to the transformed,
or effective, Hamiltonian and transformed initial state vector
[Eqs. (5) and (4)]. As a result, the master equation in the
Lindblad form has been derived for the atomic ensemble.
The Lindblad operator has been shown to consist of the
non-Langevin operators such as aNL

± . The master equation con-
tains no parameter � = ω� − ω21 characterizing the feasible
detuning of the central frequency ω� of a broadband quantized
electromagnetic field from the resonant transition frequency
ω21 in view of singular conditions (16) and (17), and the
uncertainty equation for the evolution operator. Involvement
of such a parameter and analysis of the case when it becomes
large enough, e.g., compared with the spontaneous emission
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rate, are impossible due to the basic requirement for the
effective Hamiltonian, i.e., the lack of fast time-varying terms
in the interaction picture. The allowance for a parameter
similar to � means that at a transition to the transformed
Hamiltonian, not all fast time-varying terms in the interaction
picture are excluded, so this Hamiltonian cannot be regarded
as the effective Hamiltonian. Therefore, in such circumstances
one should transform the Hamiltonian so that all fast time-
varying terms, including the ones related to the parameter
�, are to be excluded. Only such a Hamiltonian can be
thought of as the effective Hamiltonian. This requirement
differs from those of previous works [18–22] describing the
unitary transformation for the Hamiltonian simplification.
Attention has been attracted to the stated principle obedience
in Ref. [17], where the dispersive limit for the master
equation for atoms in the low Q-cavity (with losses) was
considered.

The dispersive limit means that the detuning � = ωc − ω21

from the resonance of the cavity mode frequency ωc is great
in comparison with the detuning-free quantum transition rate.
The effective Hamiltonians for small and large values of the pa-
rameter � have proved to be different from each other and not
correlated to each other by the limiting transition as � grows.
Each master equation being obtained from its corresponding
effective Hamiltonian is also different from each other and not
related to each other by the limiting transition. Thus, the above
stated principle of the absence of fast time-varying factors in
the relevant terms defines the unique effective Hamiltonian
for each physical condition, as in the example of the strong
resonant interaction of the cavity mode with atoms or its
dispersive limit. Each effective Hamiltonian in the Markov
approximation determines its own QSDE and associated
quantum noise sources, as well as the master equation. The
transition to the effective Hamiltonian picture unambiguously

allows representing the external broadband field as a series of
independent quantum noise sources. It is a distinctive feature of
a unqiue approach toward the investigation of open systems,
the notions of which were developed in Refs. [5,16,17,27].
The present paper provides an essential development in this
approach. Now the quantum Poisson process and the terms
of second order in the coupling with the environment have
been introduced into the effective Hamiltonian and its QSDE.
The approach can be successfully applied to the formulation
and solution to unqiue problems in the field of nonlinear and
quantum optics and open system theory, in particular, allowing
for various two-quantum radiating processes.

In addition, the above stated principle of the absence of
fast time-varying factors in the relevant terms should be taken
into account in the process of investigating the dynamics of
open systems started from the Lindblad-type master equation.
The Lindblad-type master equation is the general form of
dissipative dynamics controlled by the continuous quantum
dynamic semigroup [26]. However, there is no apparent
restriction to the fast time-varying terms in the Lindblad-
type master equation. Assuming the existence of fast and
slow subsystems in the open system being described by the
Lindblad-type master equation, it is necessary to obtain unique
Lindblad operators by the above stated approach.

The different effects of collective spontaneous emission
suppression presented in the current paper may appear to
be useful in quantum information processing, providing the
decoherence-free excited atomic states.
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