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Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings
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Diffraction experiments with holographic gratings recorded in SiO2 nanoparticle-polymer composites have
been carried out with slow neutrons. The influence of parameters such as nanoparticle concentration, grating
thickness, and grating spacing on the neutron-optical properties of such materials has been tested. Decay of the
grating structure along the sample depth due to disturbance of the recording process becomes an issue at grating
thicknesses of about 100 microns and larger. This limits the achievable diffraction efficiency for neutrons. As a
solution to this problem, the Pendellösung interference effect in holographic gratings has been exploited to reach
a diffraction efficiency of 83% for very cold neutrons.
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I. INTRODUCTION

Neutron optics [1] is governed by the one-particle
Schrödinger equation that contains the neutron-optical
potential—equivalent to the neutron refractive index n for the
incident wavelength λ. As in light optics, a basic example is
diffraction by a one-dimensional sinusoidal grating character-
ized by the periodically modulated refractive index

n(x) = n + �n cos

(
2π

�
x

)
. (1)

Here, n, �n, and � are the homogeneous refractive index
of the grating material, the refractive-index modulation, and
the grating spacing, respectively. Depending on its diffraction
efficiency—or reflectivity—diffraction gratings for neutrons
can, in principle, be used for various purposes such as
wavelength filters, guides, mirrors, or beam splitters for
matter-wave interferometry with neutrons.

Mach-Zehnder-type perfect-crystal neutron interferometers
for thermal neutrons [2] have played an important role in
investigations of fundamental physics [3–10]. The Mach-
Zehnder geometry for neutrons was also implemented using
artificial structures, such as Ni gratings in reflection geometry
combined with mirrors [11], or thin transmission phase
gratings—sputter etched in quartz glass—for very cold neutron
interferometry [12,13]. Further, multilayer mirrors have been
employed for cold neutron interferometry [14]. Phase and
absorption gratings fabricated by photolithography have been
used for neutron phase imaging and tomography [15].

Artificial grating structures can also be produced by exploit-
ing the light-induced change of the refractive index for light
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in nonlinear optical materials—the photorefractive effect. The
phenomenon has been studied intensively since its discovery in
1966 [16]. It was realized only in 1990 [17,18] that its analog
for neutrons exists: The light-induced change of the refractive
index for neutrons in materials—the photo-neutron-refractive
effect—has been exploited for producing diffraction gratings
for neutrons by structuring suitable recording materials using
holography [19]. Upon illumination with a spatial light pattern,
a neutron refractive-index change occurs that is proportional
to the change of the coherent scattering length density. In the
case in which only one isotope is present, the latter quantity is
the product of the coherent scattering length bc of the isotope
and its corresponding number density ρ. In holography, signal
and reference light beams are superposed at the position of a
recording material. If the superposition results in a sinusoidal
light intensity pattern—modulating ρ in the x direction
due to a spatially inhomogeneous photopolymerization
process, say—neutron diffraction gratings are recorded. For
neutrons, the corresponding refractive-index modulation
reads as �n = λ2bc�ρ/(2π ). The quantity bc�ρ is referred
to as coherent scattering length density modulation. Since
diffraction of neutrons by such gratings essentially constitutes
a readout of the hologram, it is convenient to adopt Kogelnik’s
two-wave coupling theory for Bragg diffraction of light by
holographic volume phase gratings [20] to write the diffraction
efficiency for neutrons in the symmetric Laue geometry
(transmission geometry) as

η = ν2 sin2
√

ν2 + ξ 2

ν2 + ξ 2
, (2)

with

ν = λ d0 bc�ρ

2 cos θ
and ξ = πd0(θB − θ )

�
. (3)
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Here, d0, θ , and θB are the thickness of the grating, the angle of
incidence, and the Bragg angle (as defined by λ = 2� sin θB),
respectively. Note that Eq. (2) is equivalent to the expression
for the reflectivity of thick crystals in Laue geometry derived
from dynamical diffraction theory [1], as was discussed in
Ref. [21]. Our goal is to adjust the tunable parameters
d0, bc,�ρ, and � so that suitable peak values of η (η ≡ ηP for
θ = θB) and widths of the reflectivity or rocking curve desired
for a particular application are reached. For instance, three of
these gratings in Laue geometry can be used for setting up a
Mach-Zehnder-type neutron interferometer [22,23], by tuning
the parameters so that ηP = 50% (beam splitters) for the first
and the last grating and ηP = 100% (mirror) for the second
grating, respectively.

Various material classes have been investigated for holo-
graphic production of neutron-diffractive elements. Diffrac-
tion gratings recorded in deuterated polymethylmethacrylate
[22,23] exhibit high reflectivity, but the recorded patterns are
not stable and—due to continuing polymerization processes—
change their diffraction properties within weeks. Stability on
a time scale of years is highly desirable for neutron-optical
devices. Holographic polymer-dispersed liquid crystals [24]
have also been considered. The best reflectivity that has been
reached so far is about 3% at a wavelength of 2 nm. Recently,
another material class was found suitable for producing
neutron-optical devices: nanoparticle-polymer composites.
Inorganic nanoparticles embedded in a photopolymer matrix
have been investigated intensively [25–31]. In these materials,
the refractive-index modulation bc�ρ can be tuned by the
species of nanoparticles and their concentration. Furthermore,
including nanoparticles in the polymer matrix increases the
mechanical stability; i.e., shrinkage—typical for polymeriza-
tion processes—is strongly reduced [25]. Moreover, it was
shown that relatively thick gratings can be produced without
serious problems that might be expected to occur because
of light scattering during the recording process [32]. Only
recently, the feasibility of a beam splitter for neutrons at a
wavelength of 2 nm has been demonstrated using holographic
diffraction gratings recorded in such materials [33].

In this paper we present a detailed description and further
results of neutron diffraction experiments with holographic
SiO2 nanoparticle-polymer gratings that have led to the recent
achievements [33]. Various gratings differing in nanoparticle
concentration, grating thickness d0, and grating spacing � have
been tested with neutron wavelengths in the range of 1.7 nm to
3.76 nm. The Pendellösung interference effect [1,34] allows
further increase of the neutron reflectivity by tilting gratings
of limited thickness around an axis parallel to the grating
vector [35]. A reflectivity of up to 83% has been reached for
a neutron wavelength of 3.76 nm without significant loss of
intensity to higher diffraction orders.

II. GRATING PREPARATION

The SiO2 nanoparticles used for the present investigation
have an average core diameter of about 13 nm. They are
produced by liquid-phase synthesis and dissolved in a methyl
isobutyl ketone (toluene) solution. The SiO2 sol is dispersed to
methacrylate monomer whose refractive index for light is 1.59

in the solid phase at 589 nm. At this wavelength the refractive
index of the surface-treated SiO2 nanoparticles is 1.46 .

As radical photoinitiator, 1 wt. % titanocene (Irgacure784,
Ciba) is added to enable the monomer to photopolymerize
at wavelengths shorter than 550 nm. The mixed syrup is
cast on a glass plate and is dried. Spacers are arranged
around the sample before it is covered with another glass
plate to obtain film samples ready for being structured by a
spatial light-intensity pattern. At this stage of the preparation,
the photoinitiator, the monomer, and the nanoparticles are
homogeneously distributed in the sample material.

Next, two expanded, mutually coherent and s-polarized
laser beams of equal intensities and a wavelength of 532 nm
are superposed to create a spatial sinusoidal light-intensity
pattern at the sample position. In the present case, the
beam diameter was about 1 cm. Via the photoinitiator, the
pattern induces polymerization in the bright sample regions,
a process that consumes monomers that migrate from dark
to bright regions [27]. As a consequence of the growing
monomer-concentration gradient, nanoparticles diffuse from
bright to dark regions, resulting in an approximately si-
nusoidal nanoparticle-concentration pattern. This forms the
hologram—the diffraction grating. Subsequent homogeneous
illumination ensures that the material is fully polymerized
so that the nanoparticle density-modulation remains stable.
Periodic testing of older samples stored under ambient
conditions shows that those samples have not changed their
light-diffraction properties for at least 6 years. Further details
on the sample preparation technique can be found in Ref. [26].

Samples were prepared so that two of a particular pair differ
from each other only in a single parameter—concentration of
nanoparticles (20 vol. % or 34 vol. %), thickness (from about
50 to 240 microns), or grating spacing (0.5 or 1 micron)—to
separate its corresponding effect on the reflectivity.

III. EXPERIMENTS

Neutron diffraction experiments were carried out at the
instruments SANS I of the SINQ spallation source at the Paul
Scherrer Institut (PSI) in Villigen, Switzerland and PF2 of
the Institut Laue-Langevin (ILL) in Grenoble, France. The
measurement principle is sketched in Fig. 1. As mentioned
above, the gratings were analyzed in Laue geometry. Tilted
to the angle ζ around an axis parallel to the grating vector
(in order to adjust the effective thickness), the incident angle
θ was varied to measure rocking curves in the vicinity
of θB .

At SANS I of SINQ, the wavelength distribution of the
neutrons �λ/λ, as incident from a velocity selector, is typically
10%. The collimation slit width and distance were chosen so
that the typical beam divergence was better than 0.06◦. Mea-
surements were carried out with various samples for 1.7 nm
and 2 nm incident neutron wavelengths. At PF2 of the ILL,
very cold neutrons with a broad wavelength distribution in
the range of about 3 to 6 nm are available [36]. A neutron
mirror—a Ti/Ni mirror in this case—is necessary to redirect
the incident neutron beam to make use of the full collimation
length and to obtain a narrower wavelength distribution. Here,
the divergence of the beam was better than 0.1◦. In both
setups, 2D detectors were used. Depending on available flux,
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FIG. 1. (Color online) Sketch illustrating the measurement prin-
ciple.

collimation, and specific sample, typical measurement times
per setting of the incident angle θ range from a couple of
minutes to 1.5 hours. The neutron beam was typically 2 mm
wide and at most 1 cm high. For a more complete description
of the beamlines see, e.g., Refs. [37] and [38]. Since the grating
spacing � is large compared to the wavelength of the incident
neutrons, θB ∼ λ/(2�) is of the order of 0.1◦. Depending on
the spatial resolution of the detector system, a distance of
some meters has to be maintained between the grating and
the detector. The spatial resolution of the detectors was 7.5 ×
7.5 mm2 and 2.5 × 2.5 mm2 for the experiments at SANS I
and PF2, respectively. A typical diffraction pattern measured
at SANS I is shown in Fig. 1.

We define the (relative) diffraction efficiency or reflectivity
of the ±1st diffraction order as

η±1 = I±1

I0 + I+1 + I−1
, (4)

where I0 and I±1 are the measured intensities of the 0th and
±1st diffraction orders, respectively. For each incident angle,
the sum over all 2D-detector pixels in each separated spot

(see Fig. 1)—associated to one diffraction order—was calcu-
lated and the resulting intensities (corrected for background)
plugged into Eq. (4). Second-order diffraction was neglected
in the analysis as well as in the data plots of Sec. IV wherever
its contribution is marginal, which was the case for almost all
the measurements. Where necessary, second-order diffraction
efficiencies η±2 were calculated in a similar way as η±1, but
adding also the intensities I±2 in the denominator.

Note that one of the assumptions to arrive at Eq. (2) is two-
wave coupling; i.e., only two waves are propagating through
the sample at a particular incident angle θ . This is not always
the case, as will be seen from the overlapping ±1st diffraction
orders in some of the data plots. However, as long as diffraction
efficiencies for the ±1st diffraction orders are rather small,
one can neglect the additional peak for either case and use
a two-wave coupling theory for the analysis of the rocking
curves.

IV. MEASUREMENT RESULTS

In Figs. 2 and 3(a), rocking curves for various samples
are plotted. For each rocking curve, least-squares fits of the
Kogelnik theory, additionally assuming exponential decay of
�n along the z direction, i.e., �n(z) = �ne−αg0 z, were made
(solid lines). Here, z is the sample depth—the distance as
measured from the sample front surface in the direction of
the grating thickness. The inverse of the parameter αg0 is the
sample depth at which �n has decreased to 1/e of its value
at the front surface. Such a behavior was described by Uchida
[39]. It can, for instance, occur because of holographic light
scattering [40–42] that smears out the recording light-intensity
pattern within thick nanoparticle-polymer gratings [32]. In
each plot of Figs. 2 and 3(a), parameters for the corresponding
grating are given. Fixed parameters are given by relations
using “=”, while we use “∼” for fitted parameters in the
plots throughout the rest of the paper. Estimations of relative

η

θ [deg]

η

θ [deg]

η

(g)

(h)

(b) (c)(a)

(d) (e) (f)

θ [deg]

θ [deg]

FIG. 2. (Color online) Cold neutron data (SANS I): (a)–(f) Rocking curves of various gratings measured at λ = 1.7 nm. (g), (h) Rocking
curves of two samples corresponding to plots shown in (a) and (e) tilted to 58◦ and 64◦, respectively. ( , −1st order; , +1st order).
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FIG. 3. (Color online) Very cold neutron data (PF2): (a) Rocking curves of sample grating with 20 vol. %, � = 0.5 μm [see also Figs. 2(e)
and 2(h)] for various tilt angles ( , −1st order; , +1st order). (b) Peak reflectivity ηP ( ) as determined from the rocking curves on the left
versus ζ compared with theory (solid line).

errors for the fitted parameters are typically some percent.
For very large values of 1/αg0 in comparison to d0, the data
are well described by the Kogelnik theory alone. Thus, the
exact value of αg0 is insignificant. We write 〈bc�ρ〉 for the
coherent scattering length density modulation averaged over
the thickness d0 as

〈bc�ρ〉 = bc�ρ

d0

∫ d0

0
e−αg0 zdz = bc�ρ

αg0d0
(1 − e−αg0 d0 ). (5)

In Figs. 2 and 3(a), 〈bc�ρ〉 is given in units of μm−2 by the
value in brackets next to the value for bc�ρ.

A. Nanoparticle concentration

From previous studies in light optics, it is expected that one
can reach a maximum of �n by optimizing the concentration
of nanoparticles in the sample material [26,28]. After reaching
a maximum, �n decreases for further increasing nanoparticle
concentration because counter-diffusion of monomers and
nanoparticles cannot be improved further by adding even
more nanoparticles. In Figs. 2(a) and 2(d), the rocking curves
for gratings with essentially equal sample parameters, except
for nanoparticle concentrations of 20 vol. % and 34 vol. %,
respectively, are shown. For light optics, a value of 34 vol. %
of SiO2 nanoparticles yielded the highest values of �n

for gratings thinner than 100 μm [26]. By comparison of
Figs. 2(a) and 2(d), one can see that—although showing a
slight increase of bc�ρ for 34 vol. %—the estimates of bc�ρ

as obtained from the fits differ only by about 9%. From the
light optical investigations, the possibility of a rather flat or
even nonmonotonous dependency of �n on the nanoparticle
concentration in the range between 20 vol. % and 34 vol.
%—with a maximum at 25 vol. %, say—cannot be ruled out.
More experiments must be carried out to see whether variation
of the nanoparticle concentration still leaves the scope to

further optimize �n by such means. Note that in the cases
shown in Figs. 2(a) and 2(d), 1/αg0 is of the order of several
millimeters—much larger than the grating thickness. As has
also been confirmed by measurements with light (not shown),
decay of �n is not a problem for rather thin SiO2 gratings
(d0 � 60 μm).

B. Grating thickness

Next, consider Figs. 2(b) and 2(e). The two gratings used
here only differ in thickness. It is expected that possible
disturbances that lead to decay of �n along the sample depth
are observed only in samples that are considerably thicker
than 100 μm [32], i.e., for the data shown in Fig. 2(b).
As can be seen in the plots, this is not confirmed by the
neutron measurements. The small value of 1/αg0 ∼ 59 μm,
i.e., that �n drops to �n/e at about half the sample thickness
of only 115 μm [Fig. 2(e)], is an obstacle for tuning ηP

for a particular application, since it sets a rather low limit
for d0. This value of 1/αg0 has also been confirmed by
hologram readout with light (not shown). The result may be
attributed to the rather small grating spacing (� = 0.5 μm),
which has been demonstrated to have negative effects on �n

[25,26,28]. On the other hand, comparing rocking curves for
gratings that again only differ in thickness but have � = 1 μm
[see Figs. 2(a) and 2(f)], one can see that the problem of
decaying �n already at smaller thicknesses persists: While
decay is reduced dramatically for d0 ∼ 56 μm, it is clearly
present for d0 ∼ 91 μm. As will be explained in Sec. V,
a work-around to this problem is provided by making use
of the Pendellösung interference effect. Note also that in
Fig. 2(f), small contributions of the ±2nd diffraction orders
are plotted.
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C. Grating spacing

As already mentioned above, it has been demonstrated
using light that �n can be improved by increasing �

[25,26,28]. This behavior is also observed with neutrons
comparing Figs. 2(e) and 2(f) for d0 � 100 μm (20 vol. %) or
Figs. 2(c) and 2(d) for d0 � 60 μm (34 vol. %). In both cases,
〈bc�ρ〉 roughly doubles for larger � independent of the very
different values for 1/αg0 of either pair. Again one can see that
larger values of � cannot prevent decay of �n. It has been
argued that formation of long monomer chains that reach far
into dark regions could disturb the holographic recording at
small grating spacings [28]. Despite these facts, increasing
the grating spacing is not a good option for producing
neutron mirrors or beam splitters. It has two major drawbacks:
(i) θB decreases and (ii) gratings with large � do not exhibit
two-wave regime diffraction (cf. Fig. 1 in [33]).

V. HIGH REFLECTIVITY VIA THE PENDELLÖSUNG
EFFECT

Shull [34] demonstrated the Pendellösung interference
effect for neutrons, which is predicted by dynamical diffraction
theory [1]. The effect, which is also known in x-ray physics
and light optics, arises due to the interfering components of
the wave function within crystals or—more general—periodic
structures. It results in an oscillation of the neutron flux
between reflected and transmitted beams. The relevance of
the Pendellösung effect for neutron diffraction in holographic
gratings has been pointed out in Ref. [21]. There, based on
Kogelnik’s theory, the expression for the oscillation of the
first-order diffraction efficiency at the Bragg position was
written as

ηP = sin2

(
πd

�K

)
. (6)

Here, �K is called the Pendellösung period or extinction length
and is—in our case—given by

�K = 2π cos θB

λ bc�ρ
(7)

for holographic gratings. As becomes clear from the re-
sults shown in Fig. 2, �K ranges from 0.6 to 3.7 mm
for holographic nanoparticle-polymer gratings at the used
wavelengths. The oscillation of intensity between reflected
and transmitted neutron beams has been observed by variation
of the incident wavelength [34] and by tilting the sample
around an axis parallel to the grating vector, so that es-
sentially its effective thickness d, appearing in Eq. (6), is
increased [35].

Also for the experiments described in the following, the
reflectivity was enhanced by tilting (tilt angle ζ , see Fig. 1).
For holographic gratings, tilting actually brings about the
solution to the problem posed by decay of �n in the z

direction: Whenever increasing the grating thickness by simply
using thicker spacers between the two glass plates is not
an option due to problems resulting from unwanted light
scattering in the recording process, one can increase the
effective thickness of a thin grating by tilting. The decay
parameter αg0 as well as the thickness scale with the tilt angle
ζ ; i.e., αg = αg0 cos ζ and d = d0/ cos ζ . Consequently, the

exponent and the denominator on the right-hand side of Eq. (5)
and, therefore, 〈bc�ρ〉 are kept constant. Thus, one should be
able to raise the grating thickness, and thereby ηP , beyond
the limit set by decay without much influencing the other
parameters.

As a proof of principle, two of the sample gratings,
namely the ones with rocking curves plotted in Figs. 2(a)
and 2(e), were tilted to ζ = 58◦ and ζ = 64◦, respectively.
The results are shown in Figs. 2(g) and 2(h). As expected,
the reflectivity compared to the measurements at ζ = 0◦ is
increased according to Eq. (6). With effective thickness d

and decay parameter αg calculated from the corresponding
values at ζ = 0◦ and the actual tilting angle ζ , the results for
〈bc�ρ〉 as obtained from the fits (solid lines) are in reasonable
accordance with the values given in Figs. 2(a) and 2(e). In the
second case an incident wavelength of λ = 2 nm was used
to further increase �n and demonstrate the feasibility of a
beam splitter for cold neutrons. These data have already been
presented in Ref. [33].

Since our aim is the design of neutron-optical elements for
long wavelengths, we chose one of the samples to be tested
with very cold neutrons.

In Fig. 3(a), rocking curves for the same grating as used in
Figs. 2(e) and 2(h) at λ = 3.76 nm and four different angles
ζ are shown. The values for d and αg given in the plots were
calculated from the fitting result d0 ∼ 119 μm (for ζ = 0◦)
and the actual tilt angles ζ . One can see that 〈bc�ρ〉 remains
approximately constant, as suggested above in this section. The
highest peak reflectivity reached is about 83%. In Fig. 3(b),
ηP as extracted from the fits in Fig. 3(a) is plotted versus the
tilt angle ζ together with a theory curve (solid line) according
to Eq. (6). The qualitative agreement is obvious. Even higher
reflectivity or demonstration of a full Pendellösung oscillation
could not be reached due to the small sample height, which
limits the measured intensities for large ζ .

VI. SUMMARY AND DISCUSSION

Following recent achievements [33], it has been demon-
strated here that nanoparticle-polymer composites are a
promising material class for realization of holographic gratings
as versatile optical devices for slow neutron applications.
The influences of material parameters such as nanoparticle
concentration, grating spacing, and thickness on neutron
diffraction have been tested. Decay of the refractive-index
modulation �n along the grating depth due to unwanted
holographic light scattering plays a role already at sample
thicknesses of about 100 microns. However, it has been shown
here that the difficulty to obtain larger thicknesses can be
overcome by exploiting the Pendellösung interference effect.
This was done by tilting the grating around an axis parallel
to the grating vector to increase the effective thickness of
the gratings [35]. With this method, high peak reflectivity of
83% has been reached for a neutron wavelength of 3.76 nm.
Tilting might also be useful for fine-tuning the reflectivity of
holographic gratings in light optics applications.

For large tilt angles, the sample area (1 cm diameter)
as seen from the incident direction appears very small in
height. This strongly reduces the height of the observed
diffraction spots and, therefore, the measured intensities.
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This problem can easily be overcome by expanding the
recording laser beam to 2–3 cm as has been done, e.g., in
Ref. [23]. Also, the nanoparticle-polymer composites that
were used for the present experiments contain hydrogen,
which has large incoherent scattering and absorption cross
sections for neutrons. In future measurements, the signal-
to-noise ratio can be improved by substitution of 1H by
2H, as is done for polymethylmethacrylate gratings and
with samples in many other neutron scattering experiments.
Moreover, to further improve the gratings, quartz glass plates
can be used as sample containers. For applications in light
optics, the possibility of even removing the glass plates after
recording of the holograms (“free standing films”) has been
considered [43], which could also be an option for neutron
diffraction.

The sensitivity needed to measure physical effects that
become manifest in small lateral deflections could be provided
by tilting of holographic gratings. For instance, mounting
two suitably tilted gratings in a row, setting both to the

Bragg position, and slightly varying the angle of incidence
for the second grating with a prism results in a convolution
of the individual rocking curves. This resulting rocking curve
exhibits a very narrow so-called central peak that has been
shown to reach a width of the order 10−3 arcseconds [44,45]
using perfect crystals and thermal neutrons. Implementing
such a setup for very cold neutrons—as might be possible with
holographic gratings—could bring about new possibilities for
fundamental physics experiments, such as the search for the
neutron electric charge [46–48].
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