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Bose-Einstein condensation and heat capacity of two-dimensional spin-polarized atomic hydrogen
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The static fluctuation approximation (SFA) is used to study the condensate fraction and the specific heat
capacity of finite two-dimensional spin-polarized atomic hydrogen. It is found that Bose-Einstein condensation
occurs in this system. The transition temperature at different densities decreases as the number of particles of
the system increases. At low density, a sharp peak in the specific heat capacity is observed at the transition
temperature. On the other hand, as the density of the system increases, the transition temperature becomes no
longer well-defined, and a hump is observed in the specific heat capacity around the transition temperature. A
qualitative comparison of our results to published results for finite Bose systems shows good agreement.
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I. INTRODUCTION

It is an experimental fact that spin-polarized atomic hy-
drogen gas condenses in two dimensions [1–3]. Specifically,
it condenses on the surface of liquid 4He to form a two-
dimensional Bose system [4,5]. In strictly infinite two dimen-
sions, it is well known that no Bose-Einstein condensation
(BEC) occurs—unlike the case for a finite two-dimensional
Bose gas [6–8]. A complete understanding of finite systems
remains a challenge [9].

Two-dimensional Bose systems have risen to prominence
in condensed-matter physics, especially following the obser-
vation of local coherence in hydrogen atoms adsorbed on a
liquid-helium surface [3,10]. The hydrogen atoms adsorbed on
liquid helium exhibit two-dimensional quantum degeneracy.
The hydrogen atom has a small mass and a small S-wave
scattering length; these properties affect the behavior of the
system quite substantially. The small mass means that BEC
occurs at a higher temperature for a given density number,
compared to alkali atomic systems.

The properties of a system are dependent on its dimen-
sionality. BEC occurs in three-dimensional spin-polarized
atomic hydrogen, but in a uniform two-dimensional system,
the thermal fluctuations at any finite temperature destroy
the long-range order, which is a characteristic feature of
most phase transitions. It has been shown that the theory of
BEC used successfully in three dimensions is not valid for
two-dimensional atomic gases [11,12], where the long-range
order is absent. The Bose gas confined to low dimensions
exhibits properties different from those in three dimensions.
Since the transition temperature increases with decreasing
system dimension [13], it has been suggested that BEC
may be achieved more favorably in low-dimensional systems.
Therefore, Bose systems in low dimensions have been a subject
of intense interest, both experimentally and theoretically. BEC
of a charged Bose gas confined in two dimensions may help
us to better understand high-temperature superconductivity
[14,15]. Many high-temperature superconducting materials
have a layered structure. It is expected that bipolarons are
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restricted to planes. Therefore, some models have explained
high-temperature superconductivity in terms of BEC of bipo-
larons [14,15].

A homogeneous Bose gas in two dimensions is expected
to undergo a phase transition at finite temperatures. Below
the critical temperature, the gas is a superfluid. The super-
fluid phase is characterized by the existence of a so-called
quasicondensate. The quasicondensate has been observed
in spin-polarized hydrogen gas, and in an ideal Bose gas
[3,16]. Kane and Kadanoff [17] were the first to propose
that long-range order does not appear in two-dimensional
Bose systems. They predicted that, if a phase transition exists
in two dimensions, it will have a different character from
that in three dimensions. Theoretically, in a low-dimensional
Bose gas, BEC cannot take place in a homogeneous one- or
two-dimensional system at nonzero temperature, according to
the Mermin-Wagner-Hohenberg theorem [18,19], which states
that long-wavelength thermal fluctuations destroy long-range
order in two dimensions. This theorem is valid only in
the thermodynamic limit; it is not valid in finite systems.
Therefore, under certain conditions (where the phase is
coherent over a distance of the order of the size of the system),
BEC in finite low-dimensional Bose gas does occur.

In the semiclassical treatment of the thermodynamic prop-
erties of a Bose gas trapped in d dimensions, BEC is not
possible [20,21], whereas a quantum-mechanical treatment
shows that BEC can occur in low-dimensional systems [20].
A quantum-mechanical analysis shows that the condensate
fraction at fixed temperature and number of bosons depends
on the trapping potential used [20]. Mean-field theory has
been used to study the possibility of BEC occurring in trapped
Bose particles [22]. The results of this study show that there
is a phase transition at some critical temperature, but this is
not a transition to BEC. Hard-core bosons in a finite two-
dimensional harmonic-oscillator potential has been studied by
the path-integral quantum Monte Carlo method [23]. A hump
in the heat capacity occurs around the transition temperature.
In this study, the effect of the hard-core radius on the transition
temperature and on the condensate fraction has been examined;
both decrease when the hard-core radius increases. The grand
partition function and heat capacity of a finite number of
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confined bosons have been calculated [24,25]. A peak in the
heat capacity in two and three dimensions has been observed.
The peak in the heat capacity is taken as an indication of BEC.
Also, the functional renormalization method has been used to
compute the superfluid density and the condensate density as
functions of the temperature for ultracold bosonic atoms in
two-dimensional systems. The condensate density vanishes in
the infinite-volume limit; for a finite volume, a nonvanishing
condensate is observed [26].

This work sets out to study BEC and the heat capacity for a
finite number of particles in a two-dimensional spin-polarized
atomic hydrogen gas within a quantum framework called the
static fluctuation approximation (SFA) [27,28]. This technique
has been applied successfully to the three-dimensional spin-
polarized atomic hydrogen gas [28]. The good results obtained
motivate us to shed further light on the two-dimensional case.
The basic input to SFA is the single-particle wave function,
which is well defined for the confined two-dimensional spin-
polarized atomic hydrogen gas. This has encouraged us to start
with this system rather than confined alkali atomic systems.

The rest of this paper is organized as follows. In Sec. II, we
introduce the system and SFA. The results and discussion are
presented in Sec. III, followed by some concluding remarks in
Sec. IV.

II. THEORETICAL FRAMEWORK

The finite trapped atomic gases and spin-polarized atomic
hydrogen have been studied theoretically using different
many-body theories: self-consistent mean-field theory [22],
quantum Monte Carlo method [23,29], diffusion Monte Carlo
[30], variational approach [31], T-matrix theory [32], classical
field simulation technique [33], and other theories. A typical
theoretical work is interested in calculating the transition
temperature, the condensate fraction, and thermodynamic
properties. It has been found theoretically that, below the
transition temperature, an appreciable number of particles
occupy the ground state. This occupation is still under study:
Does it represent BEC or quasicondensation?

A. SFA formalism

In this work we shall use the SFA approach [34] to
study spin-polarized atomic hydrogen in two dimensions. This
technique has already been used to study several many-body
systems, ranging from weakly to strongly interacting systems.
This includes a study of the classical two-dimensional Ising
model [35]; one-, two-, and three-dimensional Ising model
[36]; the strongly interacting systems, liquid helium-4 [37]
and liquid helium-3 [38]; 3He-He II mixtures [39]; hot
nuclear matter [40]; three-dimensional spin-polarized atomic
hydrogen [41]; and several other systems.

The SFA technique is relatively simple, compared to
other many-body approaches, and it is applicable—at least in
principle—to any many-body system, although it works better
in dilute and weakly interacting systems. The idea of this
technique is to replace the square of the local-field operator
with its mean value. The physical meaning of this is that the
quantum-mechanical spectrum of this operator is replaced with

a distribution around its mean value. The basic assumption of
SFA is that the Hamiltonian of the system can be written as
a linear combination of the local-field operator Êk and the
occupation operator n̂(k):

Ĥ =
∑

�k
Êkn̂(k);

the local-field operator commutes with creation and annihila-
tion operators.

The Hamiltonian describing the system is, in second
quantization,

Ĥ =
∫

�̂+(�r)
−h̄2

2m
∇2�̂(�r)d�r + 1

2

∫
�̂+(�r1)�̂+(�r2)

×V (|�r1 − �r2|)�̂(�r2)�̂(�r1)d�r1d�r2. (1)

The pairwise bare central potential V (|�r1 − �r2|) used here
is the Silvera potential [42]. The field operator �̂(�r) is given in
terms of annihilation operators b�k and the single-particle wave
functions ψ�k(�r) by

�̂(�r) =
∑

�k
ψ�k(�r)b�k. (2)

For a confined spin-polarized atomic hydrogen system, the
single-particle wave functions ψ(�r) are those of a particle in a
two-dimensional box. The first term in the Hamiltonian is

T̂ =
∫

�̂+(�r)
−h̄2

2m
∇2�̂(�r)d�r =

∑
kxky

h̄2

2m

(
k2
x + k2

y

)
b+

kxky
bkxky

,

(3)

where kx = nπ
l

, ky = pπ

l
are the quantized linear momenta,

and the indexes n and p are integer numbers which run from 1
to ∞. Here we shall consider the system to be distributed in a
square sheet of side l. The interacting term in the Hamiltonian
is calculated to be

V̂ =
∑

�k1,�k2,�k3,�k4

V (k1,k2,k3,k4)b+
�k1
b+

�k2
b�k3

b�k4
. (4)

The quantized linear momentum is �k1 =
(k1x = n1π

l
,k1y = p1π

l
). The matrix elements of the potential

V (k1,k2,k3,k4) are given by

V (k1,k2,k3,k4) = 8

l4

∫ l

0

∫ l

0

∫ l

0

∫ l

0
sin(k1xx1) sin(k1yy1)

× sin[k2x(x1 − x)] sin[k2y(y1 − y)]V (x,y)

× sin[k3x(x1 − x)] sin[k3y(y1 − y)]

× sin(k4xx1) sin(k4yy1)dxdx1dydy1. (5)

To proceed further, we follow the technique developed
earlier [27,28]; the underlying physics is also explained there.
The local-field operator describing a finite spin-polarized
atomic hydrogen system is

Êk = h̄2k2

2m
+

∑
�k1

V (k1,k)n̂k1 . (6)
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V (k1,k) is calculated to be

V (k1,k) = 16

l4

∫ l

0

∫ l

0

∫ l

0

∫ l

0
{sin(k1xx1) sin(k1yy1) sin[kx(x1 − x)] sin[ky(y1 − y)]V (x,y)

× sin[k1x(x1 − x)] sin[k1y(y1 − y)] sin(kxx1) sin(kyy1)dxdx1dydy1}
+16

l4

∫ l

0

∫ l

0

∫ l

0

∫ l

0
{sin2(kxx1) sin2(kyy1) sin2[k1x(x1 − x)] sin2[k1y(y1 − y)]V (x,y)dxdx1dydy1}. (7)

The distribution function of particles, n(k) = 〈n̂k〉, is
determined to be [27]

n(k) = 〈n̂k〉 = 1

2

[
1

exp[β(〈Êk〉 + ϕk − μ)] − 1

+ 1

exp[β(〈Êk〉 − ϕk − μ)] − 1

]
, (8)

where β ≡ 1
kBT

, kB being Boltzmann’s constant. The chemical
potential μ is evaluated from the condition that the total
number of particles N is constant:

N =
∑

�k
n(k), (9)

and the fluctuations φk in the local-field operator are deter-
mined from the equation

η(k)ϕ2
k =

∑
�k1

V (k1,k)
〈
	n̂k	n̂k1

〉
. (10)

The function η(k) is given by [27]

η(k) = 1

2ϕk

[
1

exp[β(〈Êk〉 + ϕk − μ)] − 1

− 1

exp[β(〈Êk〉 − ϕk − μ)] − 1

]
, (11)

and the pair correlation function 〈	n̂k	n̂k1〉 is determined to
be [27]

〈
	n̂k	n̂k1

〉
c
= η(k)

∑
�k2

V (k2,k)
〈
	n̂k2	n̂k1

〉
, (12)

the index c denoting the true correlations (�k1 �= �k) in-
volved. The quadratic fluctuations in the occupation numbers
〈	n̂k	n̂k〉 = 〈	n̂2

k〉 are evaluated to be [27]

〈(	n̂k)2〉 = 〈n̂k〉(1 + 〈n̂k〉) + 2η(k)
∑
�k1

V (�k1,�k)〈	n̂k1	n̂k〉c.

(13)

The closed set of nonlinear equations, (6) and (8)–(11), can
be solved numerically along the previous lines [27,28]. In our
calculations, the natural system of units is used, h̄ = m = 1,
m being the atomic mass of hydrogen.

B. Numerical scheme

The closed set of nonlinear equations is solved numerically
by an iterative method. Initially, we consider the system to be
ideal; and the occupation number, n(k), is determined by

n(k) = 〈n̂k〉 = 1

exp
[
β
(

h̄2k2

2m
− μ

)] − 1
. (14)

The fixed-point method is used to determine the chemical
potential from Eq. (9). Numerically, it is impossible to satisfy
the condition N − ∑

�k n(k) = 0 exactly. Through the iteration
process, however, we consider the required condition to be
satisfied if

N −
∑

�k
n(k) � 0.001N. (15)

This process is then stopped.
In the second step, we calculate n(k) and 〈Êk〉 according to

the mean-field approximation, by considering the fluctuations
in the local-field operator to be zero. The output from the first
step for n(k) is used as an input to calculate the expectation
value of the local-field operator in Eq. (16). The modified n(k)
is then calculated based on the new energy spectrum:

〈n̂k〉 = 1

exp[β(〈Êk〉 − μ)] − 1
. (16)

The modified chemical potential is calculated according to
Eq (15). The output distribution, n(k), is reused as an input
to recalculate the expectation value of the local-field operator.
The function

f (k) = |n(k)input − n(k)output|
n(k)output

, (17)

which measures the error in the number of particles in different
states, is calculated in each iteration. The iteration process
is stopped when the maximum value of f (k) in all states is
<0.001.

In the third step, the output evaluated by the mean-field
approximation is plugged as an input into SFA. How do
we estimate the initial values of the fluctuations in the
local-field operator? To have justified physical values for these
fluctuations, we consider the system, to start with, at very low
temperatures. Accordingly, we can consider all the particles
to be accumulating in the ground state, and the local-field
operator can be approximated as

Êk = h̄2k2

2m
+ V (1,k)n̂1. (18)

The quadratic fluctuations in this field operator are〈
	Ê2

k

〉 = φ2
k = V (1,k)2

〈
	n̂2

1

〉
, (19)
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with 〈	n̂2
k〉 calculated initially from the first term in Eq. (13).

The occupation functions n(k) given in Eq. (8) are calculated
based on these fluctuations, and the modified chemical
potential is evaluated from Eq. (15). The other functions, η(k),
〈	n̂k	n̂k1〉c, the modified 〈	n̂2

k〉, and the modified ϕk , are then
calculated. The output from the first iteration is reused as an
input in the second iteration. At the end of each iteration, the
output fluctuations are compared to the input:

g(k) = |φ(k)input − φ(k)output|
φ(k)output

. (20)

The iteration process is stopped when the maximum value
of g(k) in all states is <0.001.

When we calculate these functions at very low temperature
T , we use them as input data at higher temperature T + 	T .
Also, for T + 2	T , the output data for T + 	T is used as
input data, and so on, until the required temperature has been
attained.

III. RESULTS AND DISCUSSION

In this work, we have calculated the number of particles
in the ground state within SFA. Does this number represent a
quasicondensate or a true condensate? SFA does not provide
an answer to this question. Here, we have used the phrase
“condensate fraction” to represent the number of particles in
the ground state relative to the total number of particles in the
system.

The condensate fraction and specific heat capacity Cv/NkB

for a finite number of particles in two-dimensional spin-
polarized atomic hydrogen have been computed as functions
of the temperature at different number densities: 1 × 10−10,
1 × 10−8, and 1 × 10−6 Å−2. The bare interaction used in our
computations is the Silvera triplet-state potential.

The results obtained for the condensate fraction are pre-
sented in Figs. 1–3, and those for the specific heat capacity
in Figs. 4–6. The condensate fraction at number density
1 × 10−10 Å−2 for various particle numbers is shown in

FIG. 1. The condensate fraction of two-dimensional finite-
number spin-polarized atomic hydrogen at number density 1 ×
10−10 Å−2.

FIG. 2. The condensate fraction of two-dimensional finite-
number spin-polarized atomic hydrogen at number density 1 ×
10−8 Å−2.

Fig. 1. The transition temperature of the system at this
density is ∼ 0.35μK, regardless of the number of particles.
For very dilute systems, the number of particles in the
system does not play any role in determining the transition
temperature.

As the number density of the system increases, the role of
the number of particles starts to assert itself. In Figs. 2 and 3,
the transition temperature increases as the number of particles
decreases. Also, for a large number of particles, 1 × 105 in
Fig. 2, and 1 × 105, 1 × 107 in Fig. 3, there exists a well-
defined transition temperature, whereas for small numbers
of particles, the condensate fraction decreases monotonically
with temperature at low temperatures, and becomes constant
at higher temperatures. Thus, the transition temperature, if
present, is not well defined as we shall also see in specific
heat capacity calculations. These results agree with those

FIG. 3. The condensate fraction of two-dimensional finite-
number spin-polarized atomic hydrogen at number density 1 ×
10−6 Å−2.
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FIG. 4. The specific heat capacity of two-dimensional finite-
number spin-polarized atomic hydrogen at number density 1 ×
10−10 Å−2.

obtained for a Bose gas trapped in a two-dimensional quadratic
potential [20].

From Figs. 1–3, it is observed that as the number density
increases at a constant number of particles (meaning that the
dimension of the box decreases), the transition temperature
increases. This result is consistent with published results: In
the thermodynamic limit, BEC cannot take place in two-
dimensional Bose gases [22]. To probe the effect of the
system dimension on the transition temperature, we have
determined the transition temperature in Figs. 1–3 at the
number of particles N = 1 × 105. The results are close to 0.35,
4.3, and 220 μK at a number density 1 × 10−10, 1 × 10−8,
and 1 × 10−6, respectively. These results show that, as the
dimension of the box increases, the transition temperature
decreases and might go to zero as the dimension goes to
infinity.

FIG. 5. The specific heat capacity of two-dimensional finite-
number spin-polarized atomic hydrogen at number density 1 ×
10−8 Å−2.

FIG. 6. The specific heat capacity of two-dimensional finite-
number spin-polarized atomic hydrogen at number density 1 ×
10−6 Å−2.

Our results are qualitatively consistent with those ob-
tained by the path-integral quantum Monte Carlo method for
hard-core bosons in a two-dimensional isotropic harmonic-
oscillator potential [23], where the condensate fraction appears
abruptly on increasing the number of particles of the system.
The results show that, as the number of particles of the
system increases, the transition temperature decreases and may
vanish in the thermodynamic limit. This agrees with results
observed by Mullin using mean-field theory [22], where he
concludes that there is no BEC in a two-dimensional Bose
gas in the thermodynamic limit. He finds that, below the
transition temperature, the Bose-Einstein condensed state is
not a consistent solution of the equations in the thermodynamic
limit. In our work, the chemical potential has been calculated
self-consistently from Eq. (8).

In Figs. 4–6, the specific heat capacity of the system is
shown. In the ideal Bose gas, the heat capacity increases
smoothly with temperature; this behavior changes drastically
for the interacting system at low densities. For the dilute
system, Fig. 4 shows a sharp peak in the heat capacity
at the transition temperature, which is consistent with the
condensate-fraction results, where the phase changes from
the condensed state to the normal state. In Fig. 5, where
the number density is 1 × 10−8 Å−2, there is a hump
around the not-well-defined transition temperature, which
indicates that there is an appreciable number of particles in
both ground and excited states in this region. Figure 6 shows
that the specific heat capacity increases monotonically with
temperature towards the classical value. In dense systems, the
condensate fraction decreases rapidly with temperature, which
means that the number of particles in the excited state grows
rapidly.

The specific heat capacity varies smoothly with temperature
at high number density; and there is no cusp at number density
1 × 10−6 Å−2. This may imply that no BEC occurs at high
number density. The cusp in the specific heat is considered
to be an indication of BEC, even though the relation between
coherence of the quantum state of the condensate and the
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presence of this peak remains elusive. The position of the
peaks, as shown in Figs. 5 and 6, shifts to higher temperature
as the number of particles increases. This result is consistent
with the results obtained in [24,25].

IV. CONCLUSIONS

SFA has been applied successfully to a finite interact-
ing two-dimensional spin-polarized atomic hydrogen system.
Bose-Einstein condensation can occur in such a system. The
transition temperature in the dilute system is dependent on the
number of particles and goes to zero in the thermodynamic

limit. A cusp occurs in the specific heat capacity at the
transition temperature. The peak becomes broad as the number
density of the system increases; at a high number density, no
cusp appears.
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