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Interaction of strongly chirped pulses with two-level atoms
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We study the effect of ultrachirped pulses on the population inversion of two-level atoms. Ultrachirped pulses
are defined as those for which the frequency chirp is of the order of the transition frequency of the two-level
atom. When the chirp is large enough, the resonance may be crossed twice, for positive and negative frequencies.
In fact the decomposition of the field into amplitude and phase factors, and the corresponding definition of
the instantaneous frequency, are not unique. The interaction pictures for different decomposition are strictly
equivalent, but only as long as approximations are not applied. The domain of validity of the formal rotating
wave approximation is dramatically enhanced by a suitable choice, the so-called analytic signal representation.
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I. INTRODUCTION

Taking the parameters of a system to extreme values beyond
their standard domain is a common and fruitful exercise in
physics. It frequently discloses different regimes, properties,
or qualitative changes in the system behavior. Appropriate
modifications in the theoretical or experimental treatments or
plainly new tools may also be required, and often the new
physics found leads to unexpected applications. Examples of
much current interest in atomic, molecular, and optical science
are ultracold temperatures, or ultrashort and ultrastrong field-
matter interactions. In this paper we want to put forward and
examine the limit of ultrachirped pulses. By an “ultrachirped
pulse” we mean one where the instantaneous frequency change
is of the order of the transition frequency of a two-level (actual
or artificial) atom. We shall describe in particular linearly
chirped pulses that excite the resonance twice, at positive
and negative instantaneous frequencies, as derived from the
common decomposition of the field into amplitude and phase
factors.

Except for monochromatic, constant-intensity fields, the
choice of amplitude and phase to describe the field is not
unique, and it affects the definition of the Rabi frequency
�R(t), instantaneous frequency ω(t), and detuning �(t). This
leads to different interaction pictures and different accuracies
for the corresponding rotating wave approximations (RWA), a
widespread simplification to treat radiation-matter interaction
neglecting rapidly oscillating terms. Its validity has been
analyzed for different applications [1], and the deviations
from exact results are currently of much interest due to the
increasing ability to manipulate interaction parameter values
in different physical settings, and to produce strong couplings
and/or ultrashort pulses. We demonstrate that a particular
amplitude-phase partition, the one provided by the analytic
signal theory, enhances significantly the domain of validity
of the RWA with respect to the most common (quadrature
model) partition. To make the paper self-contained we shall
first review briefly in the following subsections the elements
of interaction pictures for time dependent parameters and of
analytic signal theory. Section II is devoted to the popula-
tion inversion induced by the linearly ultrachirped Gaussian
pulse.

A. General formulation of intermediate pictures

Interaction pictures (IP) or “representations” [2], intermedi-
ate between the Schrödinger and Heisenberg pictures, may be
most generally formulated in terms of a unitary operator U0(t)
[2], which defines, from the Schrödinger picture state ψS(t),
the IP state ψI (t) = U

†
0 (t)ψS(t). ψI (t) evolves according to

the dynamical equation ih̄∂tψI (t) = HI (t)ψI (t), where

HI (t) = U
†
0 (t)H ′(t)U0(t), (1)

H ′(t) = H (t) − H0(t), (2)

H0(t) = ih̄U̇0U
†
0 . (3)

H (t) is the Schrödinger picture Hamiltonian and the dot
denotes derivative with respect to t . In this general formulation
the primary object is the unitary operator U0(t), and H0(t) is
“derived” as the Hamiltonian for which U0(t) is an evolution
operator. In many textbooks the emphasis is the opposite: the
starting point is a splitting of the Hamiltonian H (t) = H0(t) +
H ′(t), and then U0(t) is defined as the evolution operator
of H0(t) [3]. Quite frequently H0(t) is time-independent and
U0(t) = e−iH0t/h̄, as in typical applications of time-dependent
perturbation theory, but we stress that this is only a particular
case and by no means necessary.

B. Interaction pictures for a two-level atom

We shall assume a semiclassical description of the in-
teraction between a laser electric field linearly polarized in
x direction, E(t) = E(t )̂x, and a two-level atom. Hereafter
we shall refer to E(t) = E0(t) cos[θ (t)] as “the field.” In the
electric dipole approximation, and for the general case where
the transition frequency ω0(t) may depend on time, the exact
Hamiltonian of the atom in the Schrödinger picture is

He(t) = h̄ω0(t)

2
[|2〉〈2| − |1〉〈1|]

+ h̄�R(t)

2
[(|2〉〈1| + |1〉〈2|)(eiθ(t) + e−iθ(t))], (4)

where |1〉 is the ground state and |2〉 the excited state of the
isolated two-level atom, θ (t) = ∫ t

0 ω(t ′)dt ′, and ω(t) = θ̇ (t) is
the instantaneous frequency. �R = �R(t) = cE0(t) is the Rabi
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frequency with c a real constant, the component of the dipole
moment in the polarization direction divided by h̄. Note that
the definitions of ω(t) and �R are not unique, as emphasized
below. It is usually convenient to write the phase as θ (t) =
ωLt + ϕ(t), taking ωL as a constant, the carrier frequency, so
that ω(t) = ωL + ϕ̇(t).

The laser-adapted interaction picture, also called in this
context rotating frame, based on defining

H0(t) = HL(t) = h̄ω(t)

2
(|2〉〈2| − |1〉〈1|) (5)

and

U0(t) = e−i
∫ t

0 HL(t ′)dt ′/h̄

= e−iθ(t)/2|2〉〈2| + eiθ(t)/2|1〉〈1|, (6)

produces the IP Hamiltonian1

HI (t) = h̄

2

( −�(t) (1 + e−2iθ(t))�R(t)
(1 + e2iθ(t))�R(t) �(t)

)
,

(7)

where we use the vector basis |1〉 = (
1
0 ), |2〉 = (

0
1 ), and

�(t) ≡ ω0(t) − ω(t) (8)

is the detuning between the transition frequency and the
instantaneous frequency. If ω0(t) does not depend on time
and ω0 = ωL, as we shall assume hereafter,

�(t) = −ϕ̇(t). (9)

Applying now a RWA to get rid of the counter-rotating
terms we end up with

HI,RWA(t) = h̄

2

(−�(t) �R(t)
�R(t) �(t)

)
. (10)

This is a “formal” RWA applied blindly at this point, without
analyzing the frequency content of the neglected phase factors
e±2iθ , to be distinguished from a more accurate treatment in
which the phase factor is Fourier analyzed and filtered. The
term “RWA” refers here to this crude, formal approach which,
as we shall see, will be valid or not depending on the field
partition chosen.

C. Phase and instantaneous frequency of a signal

We summarize here some relevant elements of signal theory
[5]. A general real signal can be written in the form

s(t) = a(t) cos θ (t), (11)

where a(t) is the amplitude and θ (t) the phase. This decom-
position of s(t), however, is not unique. In other words, we
may find different amplitude and phase functions a′ and θ ′
satisfying s(t) = a′(t) cos θ ′(t).

It is customary to define a corresponding complex signal,

Z(t) = A(t)ei	(t), (12)

1This was termed, with a different notation “quasi-interaction
picture” in [4]. In fact, according to the definition of IP given above,
it is a perfectly canonical one.

with real part s(t),

Z(t) = s(t) + isi(t), (13)

and imaginary part si(t) defined in different ways. For a given
complex signal the instantaneous frequency is defined as the
derivative of the phase, ω(t) = 	̇(t), so it depends on the
imaginary part chosen.

Moments of the signal may be defined as 〈tn〉 =∫
s2tndt/

∫
s2dt , and the variance is σ 2

t = 〈t2〉 − 〈t〉2. This
extends to complex signals as well changing s2 → |Z|2. In
frequency space, spectral moments are defined similarly in
terms of the spectrum of s(t),

S(ω) = 1√
2π

∫ ∞

−∞
s(t)e−iωtdt, (14)

and the bandwidth σω is defined as the root of the variance.
For a real signal S(−ω) = S∗(ω), and |S(ω)|2 is symmetric
about the origin, so 〈ω〉 = 0. It is also possible to extend the
spectrum concept to the complex signal, or to parts of it, and
break this symmetry.

1. The quadrature signal

From Eq. (11), it is natural to write the complex signal as

sq(t) = a(t)eiθ(t), (15)

which is called the quadrature (model) signal. As Eq. (11) is
not unique, the quadrature signal is not unique either. Sq(ω) is
the corresponding spectrum.

2. The analytic signal

The analytic signal is a peculiar complex signal chosen as

sa(t) = 2√
2π

∫ ∞

0
S(ω)eiωtdω. (16)

The imaginary part sa,i(t) is the Hilbert transform of the real
signal s(t). sa(t) can also be written in terms of its amplitude
Aa(t) = (s2 + s2

a,i)
1/2 and its polar phase θa(t) as

sa(t) = Aa(t)eiθa (t). (17)

One of the advantages of the analytic signal is that it puts the
low frequencies in the amplitude and the high frequencies in
the phase factor eiθa (t) [5]. If the spectrum of the amplitude is of
finite support, the support of the spectrum of the phase factor
does not overlap and this makes the pair [Aa(t),θa(t)] unique.
The spectrum of sa(t) is Sa(ω) = 2S(ω) = Sq(ω) + S∗

q (−ω) if
ω > 0 and zero otherwise.

The maximum possible deviation of a quadrature signal
from the analytic signal, at time t , is given by

|sa(t) − sq(t)| � 2√
2π

∫ 0

−∞
|Sq(ω)|dω. (18)

Another criterion of closeness is that∫
|sa(t) − sq(t)|2dt = 2

∫ 0

−∞
|Sq(ω)|2dω (19)

should be small, i.e., the spectrum of the quadrature signal
should be predominantly in the positive frequency domain [5].
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II. RWA WITH THE QUADRATURE AND THE ANALYTIC
SIGNALS FOR A LINEARLY CHIRPED GAUSSIAN

PULSE

We consider now an electric field with a Gaussian envelope
and a linear chirp,

E(t) = E0e
−at2

cos (ωLt + bt2), (20)

as the real signal, where E0(t) = E0e
−at2

is its amplitude with
maximum value E0, a is a positive constant, b a real chirp pa-
rameter, and ωL is the carrier frequency. Not to restrict the nu-
merical examples to a particular system or region of the spec-
trum, we shall from now on use dimensionless variables. We
define t̃ = a1/2t , ω̃ = ω/a1/2, and apply the same scaling to all
times and frequencies. Similarly, b̃ = b/a. From the definition
of the dimensionless Rabi frequency, �̃R = �R/a1/2, the di-
mensionless amplitude of the field is Ẽ0 = Ẽ0e

−t̃2
, where Ẽ0 =

cE0/a
1/2. Dimensionless Hamiltonians are defined as H̃ =

H/(a1/2h̄). To avoid a heavy notation we finally drop all the
tildes hereafter. The dimensionless version of Eq. (20) is thus

E(t) = E0e
−t2

cos (ωLt + bt2), (21)

see an example in Fig. 1.
The corresponding quadrature model signal is

Eq(t) = E0e
−t2

ei(ωLt+bt2), (22)

with amplitude E0q(t) = E0e
−t2

, phase θq(t) = ωLt + bt2, and
instantaneous frequency ωq(t) = ωL + 2bt corresponding to
a linear chirp. For this quadrature signal 〈t〉 = 0 and σ 2

tq =
〈t2〉 = ∫ |Eq(t)|2t2dt/

∫ |Eq(t)|2dt = 1/4.
The dimensionless interaction picture Hamiltonian in the

rotating wave approximation, Eq. (10), becomes

HI,RWA,q(t) = 1

2

(−�q(t) �Rq(t)
�Rq(t) �q(t)

)
, (23)

where �q(t) = −2bt if ω0 = ωL.
The analytic model signal provides instead the complex

field Ea(t) according to Eqs. (16) and (17),

Ea(t) = E0a(t)eiθa (t). (24)

The corresponding interaction picture is different from the
one using the quadrature model, and the RWA Hamiltonian,
Eq. (10), becomes

HI,RWA,a(t) = 1

2

(−�a(t) �Ra(t)
�Ra(t) �a(t)

)
, (25)

where �a(t) = ω0(t) − ωa(t), with ωa(t) = θ̇a(t).
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FIG. 1. Linearly chirped Gaussian pulse. Parameters: b = 2,E0 =
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FIG. 2. (Color online) (a) Phase of the analytic signal θa(t) from
−π to π . (b) The instantaneous frequency ωa(t) (solid red line)
following the linear form of ωq (t) = ωL + 2bt (blue line with dots)
in the central interval and tending asymptotically to zero. Parameters:
b = 2, E0 = 4

√
2, and ωL = 10

√
2.

To calculate Ea(t) we may use the relation [5]

E(ω) = 1
2 [Eq(ω) + E∗

q (−ω)], (26)

where E(ω) is the spectrum of E(t), and

Eq(ω) = 1√
2π

∫ ∞

−∞
Eq(t)e−iωtdt = E0e

−(ω−ωL)2/4(1−ib)

√
2(1 − ib)

.

(27)
Then, from Eq. (16),

Ea(t) = E0

2
[e−ω2

L/4(1−ib)w(z) + e−ω2
L/4(1+ib)w(z∗)], (28)

where z = z(t) = t
√

1 − ib − iωL/(2
√

1 − ib) and w(z) =
e−z2

erfc(−iz) is the Faddeyeva or w function [6,7]. One can
verify that the real part of Ea(t) is equal to E(t), the amplitude
and phase being now defined as |Ea(t)| and Im[ln Ea(t)],
respectively.

From Eq. (19) [5], and for our Gaussian electric field,
Eq(t) ∼ Ea(t), at least in the central part of the pulse, for

ωL �
√

2σωq, (29)

where σωq = √
1 + b2 is the bandwidth of Eq(t).

We have defined θq(t) = ωLt + bt2 to have a linear chirp,
but θa(t) will have in principle a different form. When
Ea(t) ∼ Eq(t) in a central interval, θa(t) follows the quadratic
form of θq(t) there, but it becomes constant well before and
after, see Fig. 2(a). The “parabola” is in fact cut into pieces
corresponding to the principal branch of the logarithm, from
−π to π . Similarly, Fig. 2(b) shows that the instantaneous
frequency ωa(t) follows the linear form of ωq(t) = ωL + 2bt

in the central interval but it tends asymptotically to zero. The
details of the transition are discussed in the Appendix.

A. Population inversion

If the dynamics is performed exactly, different amplitude
and phase splittings of the field produce the same results. Only
the real field matters, and the interaction pictures, although
different, are all equivalent since they lead to the same
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Schrödinger dynamics and to the same populations. Applying
the RWA gives, however, different results.

Considering that the atom is initially in the ground state,
we have solved numerically (with MATHEMATICA NDSolve)
the system of two coupled differential equations for the wave
function amplitudes c1(t),c2(t), |ψ〉 = c1(t)|1〉 + c2(t)|2〉, i.e.,
generically we solve ih̄∂t |ψ〉 = H|ψ〉, where H may be
the exact Hamiltonian, Eq. (7), or the approximate ones in
Eqs. (23) and (25), using the boundary conditions c1(0) = 1,
c2(0) = 0.

The validity of the RWA is usually discussed for time-
independent frequencies and linked to assuming first the weak-
coupling condition [8,9],

ω0 � �R(t), (30)

and then a quasiresonance condition |�|/ω0 � 1. This later
condition is clearly violated out of resonance for ultrachirped
pulses. Nevertheless, if the condition in Eq. (30) is satisfied
and ωL is also large enough to satisfy the closeness condition
in Eq. (29), the populations of the excited state P2(t) = |c2(t)|2
driven by the two approximate Hamiltonians are equal to each
other and to the population driven by the exact Hamiltonian.
When Eq. (29) is not satisfied, however, the populations P2(t)
driven by these approximate Hamiltonians are different and the
range of validity of the RWA is much wider for the analytic
signal than for the quadrature, as we shall see.

The parameters of the system, considering that ω0(t) = ωL,
are E0, ωL, and b. For the values E0 = 200, b = 3500, and
ωL = 20000, see Fig. 3, the population is fully transferred
to the excited state according to the exact dynamics. We
then decrease ωL up to 700. Figures 3–5 show that in this
range of carrier frequencies, the population of the excited state
P2(t) with the analytic signal RWA follows the exact results,
while the quadrature RWA fails. At ωL = 700, see Fig. 5, the
quadrature RWA model predicts full inversion, whereas the
analytic RWA model and the exact results give a complete
population return.

This behavior shows up that the condition in Eq. (30) for
the quadrature RWA is much more strict than for the analytic
signal RWA. To reach the agreement between the quadrature
RWA and the exact dynamics we have to set ωL = 20000, 100
times greater than the maximum of �Rq(t), �Rq(0) = 200,
whereas the analytic signal RWA still follows the exact results
when ωL = 700, only 3.5 times greater than the maximum,
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FIG. 3. (Color online) Population of the excited state for the exact
dynamics and for the RWA approximations with the quadrature signal
and the analytic signal. The carrier frequency is large enough so that
the three lines essentially coincide. Parameters: b = 3500, E0 = 200,
and ωL = 20000.
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FIG. 4. (Color online) Population of the excited state for (a) the
exact dynamics (b) the Hamiltonian in the RWA for the quadrature
signal (blue line with dots) and the analytic signal (solid red line).
Compare to the previous figure. As ωL decreases, only the analytic
signal RWA follows the exact dynamics. Parameters: b = 3500, E0 =
200, and ωL = 5000.

�Ra(0) = 200.08. For ωL ≈ 600 (figure not shown), a small
discrepancy appears between the populations of the exact and
analytic RWA model which increases with decreasing ωL.

There is, according to the construction of the pulse and
the condition ωL = ω0, a resonance region at t = 0. The
early excitation at negative times in Figs. 4 and 5 is due
to the crossing of an additional resonance region where the
instantaneous frequency becomes, in the quadrature model,
−ω0, see Fig. 6. Using as before ω0 = ωL, we have that
ωL = |ωL + 2bt | has solutions t = 0, corresponding to the
nominal resonance of the pulse, and also

t = tr := −ωL/b. (31)

As shown in Figs. 4 and 5, the quadrature RWA does not
notice this “negative-frequency” (NF) resonance, since the
negative instantaneous frequency corresponds in fact to a large
quadrature detuning �q = 2ω0 at tr . Instead, the instantaneous
frequency for the analytic signal is positive at tr and gives
�a = 0, see Fig. 6. The condition for the NF resonance to
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FIG. 5. (Color online) Population of the excited state for (a) exact
dynamics; (b) RWA for the quadrature signal (blue line with dots) and
the analytic signal (solid red line). Parameters: b = 3500, E0 = 200,
ωL = 700.
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FIG. 6. (Color online) Instantaneous frequencies ωq (t) = ωL +
2bt (blue line with dots) and ωa(t) (solid red line). Parameters: b =
3500, E0 = 200, and ωL = 5000. The dashed line is at ωL. The arrows
indicate the early, and nominal resonance regions for the pulse, when
ωa = ωL.

occur out of the pulse (therefore having no consequence) is
that |tr | � 3σt , i.e.,

ωL � 3b/2. (32)

This is independent of the magnitude of the interaction.
Since the difference between the single-resonance condition
in Eq. (32) and the closeness condition in Eq. (29) is just a
numerical factor, when b � 1, the separation of analytic and
quadrature approximate RWA dynamics is associated with the
occurrence of this early NF resonance within the pulse. Figure
7 depicts an example of an ultrachirped real signal capable
of inducing a double resonance. The passage through zero
instantaneous frequency is evident as a gap in the lower envelop
and nearby slow oscillations.

The complete population return shown in Fig. 5 is stable
for b between b = 2000 to b = 4000. Since varying b amounts
to shifting the NF resonance, this provides “windows” of
excitation of controllable duration, potentially useful for
optical gating, with switching times much shorter than the
pulse duration.

B. Adiabatic approximation

It is interesting to complement the above results by
examining the validity of the adiabatic approximation. The
condition for the states evolving with the Hamiltonians in
Eqs. (23) and (25) to behave adiabatically following the
instantaneous eigenstates is

|�d (t)| � 1
2 |�Ad (t)|, (33)

where the subscript d = q,a refers to the amplitude-
phase decomposition, quadrature or analytic signal, �d (t) =√
�2

Rd + �2
d is an effective Rabi frequency, the instan-

taneous energies for the Hamiltonians in Eqs. (23) and

2 1 0 1 2
5
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5

t

E

FIG. 7. Ultrachirped signal. The arrows indicate the resonance
regions where ωL = ωa . Parameters: b = 30, E0 = 5, and ωL = 40.
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FIG. 8. (Color online) ln |Ea(t)| (red triangles) is essentially equal
to ln |g2(t)| (dashed blue line) in the central interval, and to ln |g1(t)|
(green solid line) in the asymptotic regions. Parameters: b = 2, E0 =
4
√

2, and ωL = 10
√

2.

(25) are Ed±(t) = ±�d (t)/2, and �Ad (t) = [�Rd�̇d (t) −
�d (t)�̇Rd (t)]/�2

d (t).
In our numerical example, according to Eq. (29), ωL =

20000 is large enough to make the analytic and the quadrature
signal models very similar. For this ωL the adiabaticity
condition is satisfied both for Eq(t) and for Ea(t). As we
diminish ωL, however, the adiabaticity condition is still
satisfied for Eq(t), but not for Ea(t). This is quite evident,
e.g., in Fig. 4, note the smooth curve of the quadrature signal
model versus the coherent transients of the exact results or the
analytic signal model [10,11].

III. DISCUSSION AND CONCLUSIONS

In this paper we have explored the consequences of going
beyond common excitation regimes of a two-level quantum
system, in particular we have seen that for ultrachirped fields
the resonance condition may be satisfied twice, for positive
and negative quadrature instantaneous frequencies along the
linear chirp. The formal rotating wave approximation is more
robust by using analytic signal theory for the complex signal
and the corresponding interaction picture. The reason is that
the analytic signal reinterprets the chirp, assigning positive
frequencies to the pulse region with negative frequencies in
the quadrature model. It may be conjectured that the analytic
signal is the optimal choice with respect to the rotating
wave approximation, as it tends to put the higher frequency
components into the phase factor, but no proof exists.

Numerical examples demonstrate that the necessary di-
mensional parameters to see double resonances are within
reach in the microwave domain with the current technology of
pulse generators. A dimensional realization of the parameters
of Fig. 5 could be as follows: ωL = 2π × 1.019 GHz,
a = (2π )2 × 0.21 × 1013 Hz2, b = (2π )2 × 7.4 × 1015 Hz2,
which gives σtq ≈ 54 ns, and σωq ≈ 2π × 5.1 GHz.

While this work has been essentially a curiosity-driven
exploration, applications may be envisioned in state deter-
mination, optical gating and interferometry, since the timing
of the resonance regions can be controlled. Specific fields we
consider for future work are: circuit quantum electrodynam-
ics, in which the two-level system and its interactions are
highly tunable and potentially time dependent, and also cold
atoms in counterpropagating laser beams inducing a Raman
transition [12].
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APPENDIX: ASYMPTOTIC VALUES OF THE PHASE OF
THE ANALYTIC SIGNAL

For a linearly chirped Gaussian pulse the phase θa(t) =
Im[ln Ea(t)] of the analytic signal (28) tends to a constant,
see Fig. 2. z = z(t) = t

√
1 − ib − iωL/(2

√
1 − ib) is a linear

function of t , so as |t | increases z(t) becomes larger in
modulus and asymptotic expressions of the w may be used.
The asymptotic behavior of Ea(t) for large |z| and Im[z(t)] > 0
is

Ea(t) ∼ E0

2

[
ie−ω2

L/4(1−ib)

√
πz(t)

+ ie−ω2
L/4(1+ib)

√
πz∗(t)

+ 2e−ω2
L/4(1+ib)e−(z∗)2(t)

]
, (A1)

whereas for Im[z(t)] < 0 [13],

Ea(t) ∼ E0

2

[
ie−ω2

L/4(1−ib)

√
πz(t)

+ ie−ω2
L/4(1+ib)

√
πz∗(t)

+ 2e−ω2
L/4(1−ib)e−z2(t)

]
. (A2)

Then,

θa(t) ∼ arctan

{
F (t) ± 2e−t2

sin [θq(t)]

2e−t2 cos [θq(t)]

}
+ 2πn, (A3)

where the negative and positive signs correspond to Im(z) > 0
and Im(z) < 0, respectively, n = 0,1,2, . . . and

F (t) = 2(1 + b2)1/4
[
t cos α + (

bt + ωL

2

)
sin α

]
√

π
[
t2 + (

bt + ωL

2

)2]
× e−ω2

L/4(1+b2), (A4)

with

α = bω2
L

4(1 + b2)
+ 1

2
arctan b. (A5)

Independently of the signs ± in Eq. (A3), when t → ±∞, the
argument of the arctangent tends to +∞ or to −∞. Therefore,
the asymptotic expansion for the phase of the analytic signal
will be

θa(t) ∼ ±π

2
+ 2πn. (A6)

For n = 0, the phase remains inside the principal branch of
the ln |Ea(t)|, see Fig. 2. As the phase reaches these constant
values, ωa(t) → 0 when t → ±∞.

To identify the transition between the central pulse and
asymptotic regimes let us compare different terms with the
full expression. Defining

g1(t) = E0

2

[
ie−ω2

L/4(1−ib)

√
πz(t)

+ ie−ω2
L/4(1+ib)

√
πz∗(t)

]
, (A7)

g2(t) =
{
E0e

−ω2
L/4(1+ib)e−(z∗)2(t) Im[z(t)] > 0

E0e
−ω2

L/4(1−ib)e−z2(t) Im[z(t)] < 0
(A8)

and comparing ln |Ea(t)| with ln |g1(t)| and ln |g2(t)|, we see
that (A8) dominates during the central interval, and (A7) in
the outer time regions, see Fig. 8. Transition regions with
interferences occur near the times when ln |g1(t)| and ln |g2(t)|
are equal. For the parameters b = 2, E0 = 4

√
2, and ωL =

10
√

2, see Fig. 8, these instants are t1 = −3.862 and t2 =
3.596, so the pulse is essentially within the central interval,
see Fig. 1.
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