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Pythagorean coupling: Complete population transfer in a four-state system
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Complete population transfer in a four-coupled-modes system is analyzed from a geometrical point of view.
An analytical solution of the dynamics is written by the use of two distinct frequencies, the generalization of
the single Rabi frequency of the two-state dynamics. We also present its visualization on two separate Bloch
spheres with two independent torque equations. With this scheme we analytically derive the requirements for
complete population transfer in a four-state quantum system. Interestingly, the solutions are found to be linked
to fundamental number theory, whereas complete population transfer occurs only if the ratios between coupling
coefficients exactly match a set of Pythagorean triples.
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Complete population transfer from one state to another
is a subject of extensive research for a variety of classical
and quantum systems. Coherent manipulation of population
of states in atomic and molecular quantum systems [1–3],
spin control in nuclear magnetic resonances [4], quantum
information processing [5,6], and directional optical waveg-
uide technology [7] are only a few examples where complete
population transfer between states is desired.

In general, solutions of time-dependent dynamical coupled
equations are difficult to obtain analytically, and even for the
simplest case of a two-state coupled system, realized by a
spin- 1

2 particle or a two-state atomic system, only a handful
of analytical solutions is known. For example, in the well-
known solution for a two-state system with a constant coupling
field [1], complete population transfer between two orthogonal
states occurs only when the frequency of an external driving
field is on resonance with the energy difference between the
states and only at discrete times, known as Rabi flopping times,
which is inversely proportional to the strength of coupling.

The task of finding schemes for complete population
transfer between selected states becomes increasingly difficult
in multistate coupled systems. Group-theoretical methods
offer a rigorous tool of how to determine whether a system
is wave function controllable, i.e., whether any initial state
in the system can be transferred into an arbitrary final
state [8,9]. However, these methods are nonconstructive and
do not provide a general recipe for implementing a complete
population-transfer scheme for a concrete system. So far, there
are only a limited number of systematic methods which can
provide this goal. Among them are the schemes exploiting
adiabatic evolution, which achieve this goal asymptotically,
with the requirement of strong pairwise sequence of coupling
pulses [2,10–13]. Also, few solutions for the general N-state
systems can be found. Those require special relations of their
coupling coefficients. A known example of such solutions is
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the spin-group system, which is the incorporation of the su(2)
dynamics in an N-level system [14,15].

This research explores the dynamics of four-coupled-
mode equations and the constraints for achieving complete
population transfer between two nonadjacent states. Contrary
to previous research of such systems, we explore its dynamics
from a geometrical point of view. For the two-state system,
the geometrical visualization on the Bloch sphere plays an
important role in developing a clear, intuitive understanding
of the two-state dynamics [16,17]. The approach which is
developed here helps to extend the geometric representation of
two-level dynamics into four-state systems. These systems are
of particular importance for quantum information processing
technology, where two-qubit quantum logic gates serve as
elementary building blocks for designing fully functional
scalable devices [5,18,19]. The analysis is based on a known
equivalence from continuous group theory — the isomorphism
between the the four-dimensional orthonormal group, which is
the rotation of vector in four dimensions, known also as SO(4),
and two separate two dimensional spacial unitary groups, each
exhibiting dynamical symmetry of SU(2). We show that the
evolution can be viewed on two different Bloch spheres, each
with its unique Rabi frequency and effective detuning.

When the requirements of obtaining complete population
transfer in a four-state system are analyzed, we find that
those impose certain analytical relations on the coupling
coefficients, which are surprisingly connected to families of
Pythagorean triples. We show that these relations are identical
to the equation for all primitive Pythagorean triples (PPTs),
which is a set of three integer numbers a, b, and c, which
does not possess a common factor and satisfies the equation
a2 + b2 = c2. In this article, several aspects of such solutions
in the context of atomic physics are presented and discussed.
We note that our analytical treatment can be implemented to
other physical realizations as well.

The article is organized as follows: In Sec. I we show the
decomposition of a four-state dynamics into two independent
qubits. In the analysis we discuss two frames, the Lab frame
and the Bell frame, which are important bases for the analytical
and geometric analysis. Section II presents the analytical
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solution of such dynamics and its geometrical interpretation
on two Bloch spheres. Section III deals with the special
case of nearest-neighbors coupling of the four-state dynamics.
The similarity with the two-mode dynamics is discussed.
Section IV presents the Pythagorean inversion scheme and
its unique properties. We also give a protocol to generate such
symmetries and show the effects of variation of the parameters
that control the dynamics.

I. DECOMPOSITION OF A FOUR-STATE DYNAMICS
INTO TWO INDEPENDENT QUBITS

Let us start by writing the evolution of a four-dimensional
wave function using the Schrödinger equation,

∂ρ

∂t
= −iHρ, (1)

where, ρ(t) = [a1(t),a2(t),a3(t),a4(t)], with an(t) as the prob-
ability amplitude of each state and Ĥ is the following
Hamiltonian:

Ĥ =

⎛
⎜⎜⎜⎝

0 V12 −iV13 V14

V12 0 V23 −iV24

iV13 V23 0 V34

V14 iV24 V34 0

⎞
⎟⎟⎟⎠ . (2)

Here Vij represents general coupling coefficients between
the states, which are real valued. In the following treatment
we consider a laser-field-driven four-level atom as an example
of a physical realization of such systems. In this context, after
considering the rotating wave approximation, the coupling co-
efficients are Vij = μij ε (t) /h̄. Here ε(t) is the field amplitude
and μij are dipole matrix elements between levels i and j .
This basis is noted as the Lab frame. A unique case of the
system is the case of periodic nearest-neighbor couplings with
V13 = V24 = 0, which is the diamond-type four-level structure
that appears in many physical systems. If also V14 = 0, a
ladder-type system is obtained.

An important feature of this problem is that it is solvable
using geometric tools of su(2) rotations. This Hamiltonian can
be separated into two distinct subsymmetries of su(2) and can
be viewed as an element of su (2) ⊕ su (2) Lie algebra (explicit
algebraic decomposition is shown in the Appendix):

Ĥ = (V12 + V34)

2
Î (1) ⊗ σ̂ (2)

x + (V23 + V14)

2
σ̂ (1)

x ⊗ σ̂ (2)
x

+ (V12 − V34)

2
σ̂ (1)

z ⊗ σ̂ (2)
x + (V23 − V14)

2
σ̂ (1)

y ⊗ σ̂ (2)
y

+ (V13 + V24)

2
σ̂ (1)

y ⊗ ˆI (2) + (V13 − V24)

2
σ̂ (1)

y ⊗ σ̂ (2)
z ,

(3)

where we used the known Pauli matrices

σ̂x =
(

0 1

1 0

)
, σ̂y =

(
0 −i

i 0

)
, σ̂z =

(
1 0

0 −1

)
, (4)

with an upper index (1) and (2) associated with qubits 1 and
2, indicating inner or outer SU(2) symmetry, respectively. The
following decomposition is best seen in the Bell frame, which

is obtained by performing a similarity transformation using
the known Bell (unitary) matrix:

Ŵ = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1

⎞
⎟⎟⎟⎠ . (5)

The new wave functions will then become a superposition of
the original wave functions

∣∣ψB
n

〉 = W |ψn〉, where we denoted
|ψB

n 〉 as the new Bell wave functions. In the Bell basis, two
distinct su(2) subalgebras can be clearly identified

ĤB = Ŵ †Ĥ Ŵ

= ĤB = (V12 + V34)

2
Î (1) ⊗ σ̂ (2)

x + (V23 + V14)

2
σ̂ (1)

z ⊗ Î (2)

+ (V12 − V34)

2
σ̂ (1)

x ⊗ Î (2) − (V23 − V14)

2
Î (1) ⊗ σ̂ (2)

z

− (V13 + V24)

2
σ̂ (1)

y ⊗ Î (2) + (V13 − V24)

2
Î (1) ⊗ σ̂ (2)

y .

(6)

We rewrite the Hamiltonian as a linear combination of Pauli
matrices σ̂(x,y,z) acting separately on qubits 1 and 2, left (outer)
and right (inner), respectively:

ĤW = ĥ(1) ⊗ Î (2) + Î (1) ⊗ ĥ(2), (7a)

ĥ(1) ≡ Re{�L0}σ̂x − Im{�L0}σ̂y + �Lσ̂z, (7b)

ĥ(2) ≡ Re{�R0}σ̂x + Im{�R0}σ̂y − �Rσ̂z, (7c)

where

�L0 = V12 − V34

2
+ i

V13 + V24

2
,�L = V23 + V14

2
, (8a)

�R0 = V12 + V34

2
+ i

V13 − V24

2
,�R = V23 − V14

2
. (8b)

We also write the generalized Rabi frequencies of these two
qubits, which is shown to be the generalization of the single
Rabi frequency from the two-level case:

�L =
√

|�L0 |2 + �2
L

= 1
2

√
|V12 − V34|2 + |V13 + V24|2 + |V23 + V14|2, (9a)

�R =
√

|�R0 |2 + �2
R

= 1
2

√
|V12 + V34|2 + |V13 − V24|2 + |V23 − V14|2. (9b)

The notations presented here are summarized in Fig. 1. As
illustrated from Fig. 1(a), arbitrary on-resonant real valued
coefficients are allowed in the Lab frame scheme, whereas
in the Bell frame scheme, shown in Fig. 1(b), the coupling
coefficient between state |ψB

1 〉 and |ψB
2 〉 is the same as |ψB

3 〉
and |ψB

4 〉 (equal to �R0 ), and the coupling coefficient between
state |ψB

1 〉 and |ψB
3 〉 is the same as for |ψB

2 〉 and |ψB
4 〉 (equal

to �L0 ). Detunings are also allowed in the Bell frame. In both
frames, the Hamiltonians contain six degrees of freedoms,
which is expected from the summation of the degrees of
freedom in two su(2) systems.
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(a) (b)

FIG. 1. (Color online) Coupling diagram of the four-mode
dynamics in two different representations. (a) Lab frame
representation - the couplings are real valued and can be with
different values. (b) Bell frame representation—detunings are
allowed and the coupling coefficients can be complex valued.
Equivalence between coupling values is needed.

II. ANALYTICAL SOLUTION OF THE DYNAMICS AND
GEOMETRICAL INTERPRETATION

In the language of Lie group theory, the dynamical problem
factorizes into two separate problems for two SU(2) unitary

operators acting on two qubits. Therefore, geometric tools for
visualization of resulting solutions are readily available. By
using an algebraic property of local transformations, we can
represent the action of an SU(2) × SU(2)/Z2 operator on a
four-dimensional state vector as left and right multiplication
by two 2 × 2 su(2) matrices acting on a 2 × 2 complex
matrix [20,21]. Thus we rewrite the equations for the evolution
of amplitudes an (t) of the states |ψn〉, n ∈ {1,2,3,4} using the
following rearrangement:

Â(t) = a1(t)Î + a2(t)σ̂x + a3(t)iσ̂y + a4(t)σ̂z. (10)

Here Â (t) is a two-dimensional matrix which contains the
information about four amplitudes an (t). For completeness,
we write it explicitly:

Â(t) =
(

c1(t) c2(t)

c3(t) c4(t)

)
=

(
a1(t) + a4(t) a2(t) + a3(t)

a2(t) − a3(t) a1(t) − a4(t)

)
.

(11)

The general time-dependent evolution can be found in a
form of two rotations of Â (t), where one acts from the
left uL and the second acts from the right uR . This can be
written as

Â(t) = ûT
L(t − t0)Â(t0)ûR(t − t0), (12)

where the operators

ûL(t) = exp

{
i
t

2
[(V12 − V34)σ̂x − (V13 + V24)σ̂y + (V23 + V14)σ̂z]

}

=
⎛
⎝ cos (�Lt) + i �L

�L
sin (�Lt) i

�∗
L0

�L
sin (�Lt)

i
�L0
�L

sin (�Lt) cos (�Lt) − i �L

�L
sin (�Lt)

⎞
⎠ ,

ûR(t) = exp

{
i
t

2
[(V12 + V34)σ̂x + (V13 − V24)σ̂y − (V23 − V14)σ̂z]

}

=
⎛
⎝ cos (�Rt) − i �R

�R
sin (�Rt) i

�R0
�R

sin (�Rt)

i
�∗

R0
�R

sin (�Rt) cos (�Rt) + i �R

�R
sin (�Rt)

⎞
⎠ ,

are the local rotations of qubits 1 and 2, correspondingly.
Equation (12), is an important expression which allow a
simplified way to solve analytically the four mode dynamics,
using multiplication of three 2 by 2 matrices.

The above dynamics can also be visualized on two separate
Bloch spheres. Let us define the associated state vectors, 	rL =
(UL,VL,WL) and 	rR = (UR,VR,WR), written as follows:

WL = |c1|2 − |c2|2 + |c3|2 − |c4|2, (13a)

UL = c∗
1c2 + c1c

∗
2 + c∗

3c4 + c3c
∗
4, (13b)

VL = i(c∗
1c2 − c1c

∗
2 + c∗

3c4 − c3c
∗
4), (13c)

and

WR = |c1|2 − |c3|2 + |c2|2 − |c4|2, (14a)

UR = c∗
1c3 + c1c

∗
3 + c∗

2c4 + c2c
∗
4, (14b)

VR = i(c∗
1c3 − c1c

∗
3 + c∗

2c4 − c2c
∗
4). (14c)

Here the cn (t) are the probability amplitudes in the Bell
basis frame [written explicitly in Eq. (11)]. In such a basis,
the dynamics can be written as two independent torque
equations,

∂

∂t
	rL = 	�L × 	rL, (15a)

∂

∂t
	rR = 	�R × 	rR, (15b)

where 	�L = [Re{�L0},Im{�L0},�L] and 	�R = [Re{�R0},
Im{�R0},�R] are their associate torque vectors. This geomet-
rical visualization offers an intuitive physical understanding
of such four-state dynamics, in the same way as for the
two-level case.

013414-3



HAIM SUCHOWSKI, YARON SILBERBERG, AND DMITRY B. USKOV PHYSICAL REVIEW A 84, 013414 (2011)

III. NEAREST-NEIGHBOR COUPLINGS

In the case of periodic nearest-state coupling, where V13 =
V24 = 0 in the Hamiltonian presented in Eq. (2), there is
another symmetry which allows us to solve the problem in an
elegant geometric fashion. Suppose that we choose to rotate
the basis in the space spanned by vectors |ψ2〉 and |ψ4〉.
Such a rotation apparently has no effect on the evolution
of the states |ψ1〉 and |ψ3〉. We can represent this trans-
formation as a phase multiplication acting on two complex
vectors (V12 + iV14) → (V12 + iV14) eiθ and (V23 + iV34) →
(V23 + iV34) eiθ . The invariance of the amplitudes a1 (t) and
a3 (t) under such a transformation means that the amplitudes
a1 and a3 are determined not by the full set of coupling
coefficients {V12,V23,V34,V14} ∈ R4, but by an element of the
quotient space R2 × R2/SO(2), described by a special alge-
braic transformation known as the Hopf S3 → S2 projective
map [22,23]. In physics, the Hopf map is commonly associated
with the Bloch sphere representation of a pure state. In our
problem, the map takes the four-dimensional Vij space to a
three-dimensional ξn space,

ξ0 = 1
2

(
V 2

12 + V 2
14 + V 2

23 + V 2
34

)
, (16a)

ξ1 = V12V23 + V14V34, (16b)

ξ2 = V12V34 − V23V14, (16c)

ξ3 = 1
2

(
V 2

12 + V 2
14 − V 2

23 − V 2
34

)
. (16d)

The new coordinates ξn satisfy the equation ξ 2
0 − ξ 2

1 − ξ 2
2 −

ξ 2
3 = 0, which is the equation for a three-dimensional cone

embedded in four-dimensional Euclidian space [24]. By using
the projective coordinates {ξ1,ξ2,ξ3}, the algebraic expressions
for the amplitudes an (t) can be significantly compacted.

As an example of the analytical solution, we find the general
evolution of the states when the system is initialized in the
ground state |ψ1〉 so that a1 (0) = 1 and a2,3,4 (0) = 0 (in this
case Â (0) = Î ). The time-dependent amplitudes of the states
|ψn〉 can be followed from Eq. (12),

a1 (t) = cos(�Lt) cos(�Rt) − ξ3√
ξ 2

1 + ξ 2
3

sin(�Lt) sin(�Rt),

(17a)

a2(t) = i
�R0

�R

cos(�Lt) sin(�Rt) − i
�L0

�L

sin(�Lt) cos(�Rt),

(17b)

a3(t) = − ξ1√
ξ 2

1 + ξ 2
3

sin(�Lt) sin(�Rt), (17c)

a4(t) = i
�R

�R

cos(�Lt) sin(�Rt) − i
�L

�L

sin(�Lt) cos(�Rt).

(17d)

It immediately follows from these relations that, the amplitudes
of a1,3 (t) remain real valued while the amplitudes of a2,4(t) are
purely imaginary. If we look only on the solutions of a1 (t) and
a3(t), we can see that the structure of the solution of the four-
coupled modes dynamics is the same as for the two-coupled
mode one, where instead of a single Rabi frequency there are
two distinct ones. This is summarized in Table I.

IV. THE PYTHAGOREAN INVERSION SCHEME

Now we have all the necessary equations to solve the
problem of complete population transfer from state |ψ1〉 to
state |ψ3〉 at time t = τ , i.e.,

a3(τ ) = 1, a1(τ ) = a2(τ ) = a4(τ ) = 0. (18)

To do so, the requirement of on-resonant interaction should be
satisfied, i.e., the ξ3 variable, the analogoue of the detuning �

in the two-mode case, should be equal to zero. Next, complete
population transfer will occur only when dynamic angles �Lt

and �Rt simultaneously complete a π -phase rotation, i.e.,
when �L = π

2τ
(2m1 + 1) ≡ π

2τ
p and �R = π

2τ
(2m2 + 1) ≡

π
2τ

q, where we defined m1 and m2 to be arbitrary integer
numbers, and the p and q parameters are then two odd
numbers. After some algebra, we derive the following solution
for complete population transfer, where

(ξ0,ξ1,ξ2) = π2

2τ 2

(
p2 + q2

2
,pq,

p2 − q2

2

)
≡ �2

Pyth

2
(c,b,a).

(19)

This solution exactly matches the generating function of
primitive Pythagorean triples (PPTs) [25], which states that
for any pair (p,q) of positive odd integers with p > q, the

TABLE I. Comparison of the Rabi solution for a two-mode system (the middle column) with a four-mode nearest-neighbor solution (the
right column). We observe a striking similarity in the structure of both solutions.

Parameter Two-mode dynamics Nearest-neighbor four-mode dynamics

Dynamical symmetry SU(2) SU(2) × SU(2)
Spanned space {|ψg〉 ,|ψe〉} {|ψ1〉 ,|ψ3〉} and {|ψ2〉 ,|ψ4〉}
Generalized frequencies � =

√
V 2

ge + �2 �L =
√

�2
L0 + �2

L

�R =
√

�2
R0 + �2

R

“Torque” vector 	�Rabi = (
Re{Vge},Im{Vge},�

) 	�Pyth = 2
c

1√
ξ0

(ξ1,ξ2,ξ3)

Ground-state evolution ag (t) = cos(�t) − �√
V 2

ge+�2
sin(�t) a1 (t) = cos(�Lt) cos(�Rt) − ξ3√

ξ2
1 +ξ2

3

sin(�Lt) sin(�Rt)

Excited-state evolution ae (t) = − Vge√
V 2

ge+�2
sin(�t) a3 (t) = − ξ1√

ξ2
1 +ξ2

3

sin(�Lt) sin(�Rt)

Inversion time τ = π

|�Rabi| τ = π

|�Pyth|
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FIG. 2. (Color online) Complete population transfer |ψ1〉 ←→ |ψ3〉 (or |ψ2〉 ←→ |ψ4〉). (I) State normalized populations as a function of
the interaction time. The system is prepared in the ground state (solid red). The population is periodically transferred to the third state (dashed
green). Parameters correspond to (a) (m1,m2) = (1,0), (b) (m1,m2) = (2,0), and (c) (m1,m2) = (3,0). (II) The Pythagorean triple relation
between the coupling coefficients in a four-state ladder system. The computed transition time for complete population transfer matches the
calculated transition time from Eq. (21).

triple (a,b,c) ≡
(

p2−q2

2 ,pq,
p2+q2

2

)
is a PPT. As an example,

the triples (3; 4; 5) and (5; 12; 13) are primitive triples, whereas
(6; 8; 10) is not a PPT (pythagorean triple, but not primitive).
Note also that in spite of the fact that a set of numbers (1,1,

√
2)

satisfies the Pythagorean relation, these numbers are not a
Pythagorean triple. Other types of generating functions of
PPTs can be found elsewhere [26–28]. Equation (19) states
that for the nearest-neighbor four-mode coupling problem,
complete population transfer between two nonadjacent states
|ψ1〉 and |ψ3〉 (or |ψ2〉 and |ψ4〉) occurs if and only if the ratio
of (ξ0 : ξ1 : ξ2) is equal to ratio of a Pythagorean triple!

The coupling coefficients {V12,V23,V34,V14} needed in
order to achieve complete population inversion can be then
obtained from Eq. (19) by inverting the transformation of
Eqs. (16). Though there are several ways to do it, we choose
to present the following protocol which performs such a task:

(1) Choose a Pythagorean triple. Denote it (A,B,C).
(2) Choose the ratio between the couplings k = V14/V12. It

is the extra degree of freedom of the dynamics (which from a
geometrical point of view can be seen as the orientation phase
between the two distinct Bloch spheres).

(3) The following relation will determine the coupling
coefficients:

V12 = C√
1 + k2

, V23 = B − kA√
1 + k2

,

(20)

V34 = A + kB√
1 + k2

, V14 = kV12.

For the special case of ladder-type coupling, where k =
0 and thus V14 = 0, this solution becomes ξ0 = V 2

12, ξ1 =
V23V12, ξ2 = V34V12, which takes a simple form of a proportion
(V12; V23; V34) ∼ (C,A,B).

We tested our theoretical prediction by performing numer-
ical simulations on the dynamics of a four-level ladder transi-
tion in 85Rb: 5S1/2 ↔ 5P3/2 ↔ 4D3/2 ↔ 4F5/2, with resonant
CW interaction of 780.2 nm, 1.529 μm, and 1.344 μm,
respectively. The coupling coefficients were chosen to satisfy
the simplest Pythagorean triple ratio (V12 : V23 : V34) ∼ (C :
A : B). As seen in Fig. 2, numerical results are in complete
agreement with the analytical solution and confirm that there
is periodic population transfer between states |ψ1〉 and |ψ3〉.
The time period for complete population transfer is given by

τ ≡ π

�Pyth
= 2

C

π√
�2

L + �2
R

= π√
2C

. (21)

Here we denoted the transition time required to achieve popu-
lation transfer as �Pyth, analogous with the Rabi frequency for
a two-level dynamics, where both scale as the absolute value
of the torque vector.

The next step was to check the evolution of the amplitude
probabilities when the value of k was varied, which is the free
parameter. For the Pythagorean relation of m1 = 1,m2 = 0 (or
A = 3,B = 4,C = 5), we present in Fig. 3 the evolution of
the system in different values of k. As expected, the amplitude
probabilities of |ψ1〉 and |ψ3〉 remain the same for any k,
while the amplitude probabilities of |ψ2〉 and |ψ4〉 changed
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FIG. 3. (Color online) Evolution of the normalized populations with different k-values. As seen the population amplitudes of states
|ψ1〉 (solid red) and |ψ3〉 (dashed green) remain the same for all values of k.

dramatically. This indicates again the existence of an extra
phase between the two independent qubits, which does not
influence the inherent dynamics of the full system, but only
the projection of the evolution of one qubit from the viewpoint
of the second qubit.

Another interesting question that could be raised is whether
one can find the couplings that guarantee complete “switch-
ing” of information between the states of the qubits, or in
mathematical terms, what will be the constraints to start
with a general complex value of four probability amplitudes
ai(0) = (α,β,γ,δ), which could obtain, after time τ , that any
set of probability amplitudes will be exchanged |ψ1〉 ↔ |ψ3〉
and |ψ2〉 ↔ |ψ4〉, i.e., that ai(τ ) = (γ,δ,α,β). In the quantum
literature this is known as a “dual-rail” mechanism.

For the case of periodic nearest-state coupling (V13 =
V24 = 0), such constraints can be found. It requires that
k = C−B

A
, resulting in the following coupling coefficients:

V12 = V34 = B

√
C

2(C − A)
, (22a)

V14 = V23 =
√

C(C − A)

2
. (22b)

We again checked our prediction by choosing the
Pythagorean relation of m1 = 1,m2 = 0, or (A,B,C) =
(3,4,5). By fixing the parameter and choosing an arbitrary
complex valued wave function, we see in Fig. 4 that after
an inversion time (where τ = π/�Pyth), the evolution of
probability amplitude of each state is “exchanged” with the
value of its counterpart. From a geometrical point of view,

the dynamics of the two separate su(2)’s evolve with the same
parameters of the torque vectors.

In conclusion, the dynamics of four-state systems were
analyzed from a geometric perspective. We have shown that

FIG. 4. (Color online) The dual-rail mechanism. As seen, the
initial probability amplitudes an (0) = (−i,2,3 − i,1 + 3i) transfer
“information” between |ψ1〉 ↔ |ψ3〉 and |ψ2〉 ↔ |ψ4〉, after a period
of τ = π

�Pyth
.
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such systems can be decomposed into two separate qubits,
each with its own characteristics. Two frames of the dynamics
were explored, each highlighting a different aspect of the
system, and a general analytical solution was written. The
main focus of the article is the identification of a scheme for
complete population transfer in such systems. We observed
very close connection between the structure of solution for the
nearest-neighbor coupling four-state system and the family of
primitive Pythagorean triples. Due to its simplicity and clear
geometric structure, the identified solution may be important
for quantum information and quantum computing applications
and as a state preparation technique for both population or
entanglement transfer [6]. Though the dynamics of four-state
systems were analyzed here in the realization of atomic
physics, we shall note again that all the analytical results
can be implemented in other physical realizations as well.
Also, those results can be used for some problems of spatial
propagation of light pulses, such as the coupling between
directional waveguides, and multimode fibers. We expect that

similar solutions, revealing a deeper link with number theory,
can be found for six- and eight-state systems. The present
method can also be generalized to include more complex,
exactly solvable two-state models.
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APPENDIX: EXPLICIT ALGEBRAIC DECOMPOSITION

For completeness, we choose here to write the explicit
decomposition of the Hamiltonian in both frames. In the Lab
frame it is

Ĥ = (V12 + V34)

2

(
σ̂x 0

0 σ̂x

)
+ (V23 + V14)

2

(
0 σ̂x

σ̂x 0

)
+ (V12 − V34)

2

(
σ̂x 0

0 −σ̂x

)

+ (V23 − V14)

2

(
0 −iσ̂y

iσ̂y 0

)
+ i(V13 + V24)

2

(
0 −Î

Î 0

)
+ i(V13 − V24)

2

(
0 −σ̂z

σ̂z 0

)

= (V12 + V34)

2
Î (1) ⊗ σ̂ (2)

x + (V23 + V14)

2
σ̂ (1)

x ⊗ σ̂ (2)
x + (V12 − V34)

2
σ̂ (1)

z ⊗ σ̂ (2)
x

+ (V23 − V14)

2
σ̂ (1)

y ⊗ σ̂ (2)
y + (V13 + V24)

2
σ̂ (1)

y ⊗ ˆI (2) + (V13 − V24)

2
σ̂ (1)

y ⊗ σ̂ (2)
z . (A1)

The explicit decomposition in the Bell frame is:

ĤB = Ŵ †Ĥ Ŵ

= (V12 + V34)

2

(
σ̂x 0
0 σ̂x

)
+ (V23 + V14)

2

(
Î 0
0 −Î

)
+ (V12 − V34)

2

(
0 Î

Î 0

)

− (V23 − V14)

2

(
σ̂z 0
0 σ̂z

)
− i (V13 + V24)

2

(
0 −Î

Î 0

)
+ (V13 − V24)

2

(
σ̂y 0
0 σ̂y

)

= (V12 + V34)

2
Î (1) ⊗ σ̂ (2)

x + (V23 + V14)

2
σ̂ (1)

z ⊗ Î (2) + (V12 − V34)

2
σ̂ (1)

x ⊗ Î (2)

− (V23 − V14)

2
Î (1) ⊗ σ̂ (2)

z − (V13 + V24)

2
σ̂ (1)

y ⊗ Î (2) + (V13 − V24)

2
Î (1) ⊗ σ̂ (2)

y (A2)
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