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Nonequilibrium forces between atoms and dielectrics mediated by a quantum field
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In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom,
treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice
of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there
exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques
of open quantum systems we introduce coarse-graining to the physical variables—the medium, the quantum
field, and the atom’s internal degrees of freedom, in that order—to extract their averaged effects from the lowest
tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium
upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the
dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier
of coarse-graining over the atom’s internal degrees of freedom results in an equation of motion for the atom’s
center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a
fully dynamical description of the atom’s motion including back-action effects from all other relevant variables
concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined
system is in equilibrium or in a nonequilibrium stationary state.
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I. INTRODUCTION

It is a remarkable fact that the dominant force between neu-
tral atoms at short distances arises from quantum fluctuations
(e.g., the London force between two hydrogen atoms dom-
inates over their mutual gravitational attraction at distances
�1 mm). Indeed, at zero temperature for distances larger
than the wavelength associated with an atom’s first optical
resonance the interaction originates from vacuum fluctuations.
The last decade saw intensified research in this area of
fluctuation-generated forces between atoms and between an
atom and a conducting or dielectric surface [1–3]. This was
brought about by increased high-precision capability in the
manipulation of trapped atoms in cavities and optical lattices
[4,5], superconductivity experiments [6], and the design and
operation of nano- and microelectromechanical devices [7–9],
among others. These advances which hold the promise of
ushering in a new era of quantum engineering have also made
possible a wide range of theoretical, “inquiries”, such as the
measurements of non-Newtonian forces [10–12], utilization
of experimental systems out of thermal equilibrium [13],
and the investigation of quantum-field theoretical effects in
tabletop experiments [14–18]. The expanded capability of
ultrafast, high-intensity lasers and high-precision manipulation
techniques on atoms make it possible to observe real-time
processes [19] which in turn demand a new theoretical
framework to treat systems far from equilibrium [e.g., see
[20] for the case of a Bose-Einstein condensate (BEC) in an
optical lattice]. In our research program which began with
the two earlier papers [21,22] and continues with the present
work we apply the methods of nonequilibrium quantum-field
theory [23] within the open quantum system [24] conceptual
framework to tackle these problems. This method can provide
a fully dynamical description of (nonstationary) systems far
from equilibrium under the influence of various environments,

or acted upon by different noises, going beyond the traditional
mean-field or linear-response treatments.

The state-of-the-art as far as we can discern from the
literature for describing atom-surface interactions is the so-
called macroscopic quantum electrodynamics (MQED) which
describes electromagnetic field fluctuations in a lossy medium.
In order for the system to remain in thermal equilibrium the
energy absorbed by the dielectric medium is compensated
for by a stochastic forcing term which is added by hand in
a manner consistent with the fluctuation-dissipation relation
(FDR) [25]. Previous works employing MQED (or its variants)
[26–33] (to name a few) have been skillfully employed to
study atom-surface forces (or spontaneous emission) for a
plethora of experimental setups. The key limitation of this
technique is that it requires the system to be in a steady
state, or at least in local thermal equilibrium in order to apply
the FDR. The method we use reproduces these earlier results
for systems under equilibrium or nonequilibrium steady-state
conditions, but is capable of treating fully nonequilibrium
conditions, including the effects of relaxation, and arbitrary
atomic motion, including full back-action from the field and the
medium in a self-consistent manner. The FDR emerges from
our model under steady-state conditions as a consequence of
our energy-conserving microscopic formulation in distinction
to being required as in the formulation of Rytov’s theory [34].

The techniques of MQED have been adapted to describe
nonequilibrium atom-surface forces for two scenarios. In
[35] a full treatment of the interactions between the body-
assisted field in equilibrium and an atom in an arbitrary
state was undertaken. There, it is the time development
of the atomic state that characterizes the nonequilibrium
behavior. In contrast, Antezza et al. [30] have successfully
applied a nonequilibrium generalization of MQED to describe
atom-surface forces when the field and surface are not
in global thermodynamic equilibrium yet remain stationary
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(see [36] for a unified treatment of both scenarios). This
generalization relies crucially on the validity of a “local
source hypothesis,” which assumes no spatial correlation of
the fluctuating polarization that drives the field in MQED.
This ad hoc hypothesis is equivalent to ignoring interactions
among the microconstituents of the dielectric medium. When
the temperature of the body is much higher than the interaction
energy among the medium’s microelements we believe that the
local source hypothesis should be an excellent approximation
and that the permittivity can safely be assumed to be local in
space. But at low temperatures or when the coherence length of
fluctuations in the medium becomes large this approximation
is expected to break down and new techniques are needed to
probe the fully nonequilibrium regimes.

A key challenge in this endeavor is to understand the
effects of dissipation [37] on the field. Introducing a complex
permittivity to the theory by hand provides dissipation but the
energy of the field is not conserved, and so the field cannot
be quantized in terms of energy eigenmodes. A first step was
taken in [38,39], where quantization of the field in a dielectric
half-space for the case of a real and a frequency-independent
permittivity was considered. For real permittivity there is no
dissipation and the field can readily be quantized but the
permittivity violates the Kramers-Kronig relations [40,41] and
so engenders acausal response.

Our ultimate aim in this paper is a first-principles derivation
of the atom-surface force based on the microphysics of the
dielectric medium, the quantum field, and the atom. At the
microlevel the total combined system is energy conserving.
Dissipative effects arise at the macroscopic level after coarse-
graining the detailed information in one or more subsystems by
either integrating out those degrees of freedom or eliminating
them as in an equation of motion approach.

For this goal we employ the model of Huttner and Barnett
[42] who described the microelements of a dielectric material
by a continuous lattice of harmonic oscillators (from now on
we’ll refer to it as the matter field) coupled to a reservoir
(see Appendix A of [43] for the matter described in terms
of a fermionic theory). The use of a reservoir provides
a microscopic method for introducing dissipation into the
remaining degrees of freedom in the total system. For such a
model composed of field + dielectric + reservoir the problem
can be solved exactly by Fano’s diagonalization [44,56] when
the coupling between respective components is bilinear. In
contrast to that work, we are not particularly interested in the
microscopic details of the dielectric but only need to capture
the averaged effect of the medium on the quantum field and
the atom. By invoking the concepts and techniques for open
quantum systems we coarse-grain the medium by tracing over
the dielectric variables leading to a complex permittivity (in
the frequency domain), which accounts for the dielectric’s
response to the field, and the absorption and emission of
energy. In addition, the fluctuations of the oscillators which
make up the dielectric manifest as a stochastic polarization
that drives the field and, when the system is in equilibrium,
serves to balance the dissipative losses. From this microscopic
viewpoint we see that a complex permittivity, quantifying
material response to an external field, cannot be added to
the theory freely unless the fluctuations of the same degrees
of freedom are accounted for. It can be shown that at this

level the semiclassical equations of motion for the field under
the influence of the medium at late times (37) take the exact
same form as in MQED (Lifshitz) theory when the medium is
assumed to be in a thermal state. The microscopic approach
we take offers a unique vantage point to see that the stochastic
polarization driving the field put in by hand in MQED without
field quantization actually arises from what is equivalent to the
media’s fluctuations. One could interpret the field fluctuations
in MQED as being induced by a fictitious matter field.

The approach we adopt is similar to that of [45] where
a path integral formulation was used to derive the effective
action describing the medium-influenced dynamics of the
electromagnetic field. For the specific case of a dielectric
half-space our results can be compared with those of the
authors of [46] who generalized the results of Carniglia and
Mandel [38] to frequency-dependent and lossy permittivities.
They calculated exactly the dielectric + field dynamics using
the Wiener-Hopf method and a sum over diagrams. We go
beyond these results by providing a fully nonequilibrium
treatment and apply these results to the atom-surface force.

The paper is organized as follows. In Sec. II we describe
the microscopic model. In Sec. III we find the medium-altered
equations of motion for the quantum field. From there the
permittivity of the medium is identified as well as a stochastic
force which accounts for the response and fluctuations of the
dielectric. In Secs. IV and V successive layers of coarse-
graining are performed to obtain the dynamics of the atom’s
trajectory. In Sec. VI, we consider the specific case of the
atom-surface force in a dielectric half-space and compare
with the known results from the literature. We adopt the
Einstein summation convention and natural units throughout,
h̄ = c = kB = 1.

II. MICROSCOPIC MODEL

The action describing the entire system S[�z, �Q,Aμ, �P , �Xν]
is the sum of eight terms:

S[�z, �Q,Aμ, �P , �Xν] ≡ SZ + SQ + SE + SM + SX + SAF
int

+ SPF
int + SPX

int , (1)

with five free actions pertaining to the five dynamical variables
and three interaction actions. Here (i) SZ is the action for the
motion of the atom’s center of mass with coordinate �z and total
mass M under the influence of an external potential V [�z(λ)]:

SZ[�z] =
∫ tf

ti

dt

[
M

2
�̇z2

(t) − V [�z(t)]

]
, (2)

where t is the atom’s worldline parameter. (ii) The internal
degrees of freedom of the atom are modeled by a three-
dimensional harmonic oscillator with coordinate �Q and natural
frequency � with action

SQ[ �Q] = μ

2

∫ tf

ti

dt[ �̇Q2(t) − �2 �Q2(t)], (3)

where μ is the oscillator’s reduced mass. (iii) The dynamics
of the free photon field is described by SE where E stands for
the electromagnetic field,

SE[Aμ] = 1

4

∫
d4xFμνFμν. (4)
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where Fμν = ∂μAν − ∂νAμ is the field strength tensor, with
Aμ being the photon field’s vector potential and

∫
d4x =∫ tf

ti
dt

∫
d3x. (iv) The matter may be described by a continuous

lattice of harmonic oscillators with natural frequency ω which
is meant to model the polarization of the medium; the
coordinate of each oscillator is described by the vector field,
�P , with action

SM [ �P ] = 1

2

∫
V

d4x[ �̇P 2(x) − ω2 �P 2(x)]. (5)

The subscript V on the integration denotes that the spatial
integration is restricted to the volume containing the matter.

(v) Each oscillator comprising the matter field is coupled
to a reservoir. The reservoir is composed of a collection of
oscillators at each point with frequency-dependent mass I (ν)
and coordinates �Xν , with natural frequency ν:

SX[ �Xν] = 1

2

∫
V

d4x

∫ ∞

0
dνI (ν)

[ �̇X2
ν(x) − ν2 �X2

ν(x)
]
. (6)

The interaction of these parties is specified by the three
interaction actions. (vi) The interaction between the internal
degree of freedom (dof) of the atom and the field is

SAF
int [Aμ, �Q,�z] = q

∫ tf

ti

dtQi(t)Ei(t,�z(t)), (7)

where q represents the electronic charge. For the case of the
matter, the dipole moment of each oscillator is coupled with
the local electric field with a coupling �P :

SPF
int [Aμ, �P ] = �P

∫
V

d4xP i
ν (x)Ei(x). (8)

For our model, which considers only the coupling of the
electric field to the local polarization of the matter, there is no
magnetic response for the medium and so the permeability can
assume its vacuum value, μo, throughout. It should be noted
that we have not included interactions among the elements of
the dielectric which will provide a spatially local form for the
permittivity in the macroscopic Maxwell’s equations.

Finally, each oscillator composing the matter is coupled to
a reservoir with the frequency-dependent “charge” g(ν) which
will provide dissipation and noise:

SPX
int [ �P , �Xν] =

∫
V

d4x

∫ ∞

0
dνg(ν)Pi(x)Xi

ν(x). (9)

III. FIELD EQUATIONS IN THE PRESENCE
OF A MEDIUM

In this section we show how coarse-graining over the
medium degrees of freedom leads to a permittivity and
a classical stochastic source responsible for an additional
induced component of field fluctuations. Here, when we refer
to medium we mean the combined reservoir + matter system.
For now let us forget about the atom and field and focus entirely
upon the matter and reservoir.

A. Reservoir-reduced density matrix

Consider the time evolution of the density matrix de-
scribing the medium (matter + reservoir system), ρ̂(t) =

Û (t,ti)ρ̂(ti)Û †(t,ti), from some initial state at time ti to a final
time t . By considering the matrix elements in an appropriate
basis we can express ρ̂(t) as a product of path integrals,

ρ( �Pf , �P ′
f , �Xνf , �X′

νf ; t)

=
∫ �Pf , �P ′

f

CTP
D �P exp

{
i
(
SM [ �P ] − SM [ �P ′] + SPF

int [Aμ, �P ]

− SPF
int [Aμ′

, �P ′]
)} ∏

ν

∫ �Xνf , �X′
νf

CTP
D �Xν exp

{
i
(
SX[ �Xν]

− SX[ �X′
ν] + SPX

int [ �P , �Xν] − SPX
int [ �P ′, �X′

ν]
)}

, (10)

where the density matrix depends upon the electromagnetic
field through the interaction SPF

int and CTP stands for closed-
time path. We assume that the initial state of the total system
factorizes allowing the convenient notation∫ �Yf , �Y ′

f

CTP
D �Y =

∫
D �Yi

∫
D �Y ′

i

∫ �Yf

�Yi

D �Y
∫ �Y ′

f

�Y ′
i

D �Y ′ρ( �Yi, �Y ′
i ; ti),

(11)

adopted to keep long expressions compact where the integrals
over �Yi and �Y ′

i trace over all configurations of the field �Y at
the initial time. To capture the averaged effect of the reservoir
on the matter we trace over its final variables leading to the
reservoir-reduced influence functional, FX[ �P , �P ′],

TrX{ρ( �Pf , �P ′
f , �Xνf , �X′

νf ; t)}

=
∫ �Pf , �P ′

f

CTP
D �P exp

{
i
(
SM [ �P ] − SM [ �P ′] + SPF

int [Aμ, �P ]

− SPF
int [Aμ′

, �P ′]
)}
FX[ �P , �P ′] (12)

which can be conveniently expressed in terms of the influence
action given by

−i lnFX[ �P , �P ′]
≡ SX

IF[ �P , �P ′]

=
∫

V

d4x

∫
V

d4x ′
[
P i−(t,�x)Gret(x,x ′)P +

i (t ′,�x)

+ i

4
P i−(t,�x)GH (x,x ′)P −

i (t ′,�x)

]
(13)

where Gret(x,x ′) and GH (x,x ′) are the retarded and Hadamard
Green’s functions for the reservoir, respectively, and the
superscripts + and − denote semi-sum and difference variables
defined by P + = (P + P ′)/2 and P − = P − P ′, respectively.
Here the unprimed and primed quantities denote the forward
and backward histories in the closed-time-path (or Schwinger-
Keldysh) sense [47,48].

The reservoir kernels take the explicit forms

Gret(x,x ′) =
∫ ∞

0
dν[g2(ν)/νI (ν)] sin ν(t − t ′)θ (t − t ′)

× δ3(�x − �x ′), �x ∈ V, (14)

and

GH (x,x ′) =
∫ ∞

0
dν[g2(ν)/νI (ν)] coth(βXν/2) cos ν(t − t ′)

× δ3(�x − �x ′), �x ∈ V, (15)
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where we have assumed that the initial state of the reservoir
is thermal with inverse temperature βX, and the matter is not
spatially correlated because the reservoir oscillators at one
position do not interact with their neighbors. The retarded
Green’s function represents the response of the reservoir to
an external field and so corresponds to its susceptibility,
and the Hadamard function, which can be derived from the
symmetric two-point function of the reservoir’s variables,
quantifies reservoir fluctuations. This can be seen by noting
that when the time arguments are coincident the Hadamard
function becomes

GH (t,t) =
∫ ∞

0
dν[g2(ν)/νI (ν)]

〈
�X2

ν (t)
〉
, (16)

where GH (x,x ′) = GH (t,t ′)δ3(�x − �x ′) and Xν(t) is the dis-
placement of the νth reservoir oscillator at a point.

By the assumption that the reservoir is initially in thermal
equilibrium these kernels satisfy the fluctuation-dissipation
relation. Taking the Fourier transform of the time-dependent
component of each kernel we find

Gret(ω,�x,�x ′) =
∫ ∞

0
dν [g2(ν)/νI (ν)]

[
ν

ν2 − ω2

+ i
π

2
(δ(ω − ν) − δ(ω + ν))

]
δ3(�x − �x ′)

(17)

and

GH (ω,�x,�x ′) = π

∫ ∞

0
dν [g2(ν)/νI (ν)] coth(βXν/2)

× [δ(ω − ν) + δ(ω + ν)]δ3(�x − �x ′), (18)

noting that the imaginary part of the reservoir susceptibility
Gret(ω,�x,�x ′), which describes the absorption of energy by the
reservoir, is balanced by the reservoir’s fluctuations

GH (ω,�x,�x ′) = 2 coth(βXω/2)Im[Gret(ω,�x,�x ′)]. (19)

To see explicitly how reservoir fluctuations influence the
matter we appeal to a Gaussian path integral identity first
suggested by Feynman and Vernon [49]. Note the complex
modulus of the influence functional can be written as

|FX[ �P , �P ′]| =
∫

D�ξXP[�ξX] exp

{
i

∫
V

d4x �ξX(x) · �P −(x)

}
,

(20)

where P[�ξX] takes the form (with a normalization constant)

P[�ξX] = exp

{
−

∫
V

d4x

∫
V

d4x ′δjkξ
j

X(x)G−1
H (x,x ′)ξk

X(x ′)
}
,

(21)

allowing the reservoir-reduced influence functional to be
expressed as

FX[ �P , �P ′] =
∫

D�ξXP[�ξX] exp

{
i

∫
V

d4xP −
i (x)

[
ξ i
X(x)

+
∫

V

d4x ′Gret(x,x ′)P i+(x ′)
]}

. (22)

In this process we have replaced the kernel describing quantum
and thermal fluctuations in the reservoir with the classical

variable �ξX, which drives the matter in the same manner as
an external force. To retrieve information about the reservoir’s
fluctuations it is necessary to integrate over the functional
distribution P[�ξX], which is positive definite because the
kernel G

−1
H is symmetric and positive. Therefore we interpret

the field �ξX as a classical stochastic force or noise, driving the
matter with probability distribution described by P[�ξX]. Due
to the Gaussianity of P[�ξX], all of its moments are specified
by the mean 〈ξ j

X〉ξX
= 0 and the variance 〈{ξ j

X(x),ξ k
X(x ′)}〉ξX

=
δjkGH (x,x ′), where 〈· · · 〉ξX

= ∫
D�ξXP[�ξX](· · · ).

Now that we have coarse-grained over the reservoir we
can derive the semiclassical equation of motion for the matter
field, ignoring for now its interaction with the field, to see
the reservoir’s averaged effect on the matter. A saddle-point
approximation of (12), after the fluctuation kernel has been
replaced by a stochastic forcing term, gives

P̈ k + ω2P k −
∫ tf

ti

dt ′Gret(t,t ′)P k(t ′) = ξk
X(t). (23)

The effect of the reservoir is now manifest; first, the addition of
the integral kernel in the equation of motion leads to dissipation
in the free oscillations of the matter field, and second, the
fluctuations of the reservoir drive the matter field through
the source term on the right. For the specific case of Ohmic
reservoir spectral density, that is, g2(ν)/νI (ν) = 2γ ν/π , we
find

P̈ k + ω̃2P k + γ Ṗ k = ξk
X, (24)

where the integral kernel leads to a dissipative term and
a frequency renormalization, ω̃2 = ω2 − 2γ δ(0), and the
fluctuation kernel defining the distribution of ξk

X(t) becomes

GH (t,t ′) = 2γ

π

∫ ∞

0
dνν coth(βXν/2) cos ν(t − t ′). (25)

B. Medium-reduced density matrix

Consider now the time evolution of the density matrix
elements describing the combined field + medium system,
where the reservoir has already been integrated out, expressed
as a product of path integrals:

ρ
(
A

μ

f ,A
μ′
f , �Pf , �P ′

f ; t
)

=
∫ A

μ

f ,A
μ′
f

CTP
DAμ exp{i(SE[Aμ] − SE[Aμ′

])}
∫

D�ξXP[�ξX]

×
∫ �Pf , �P ′

f

CTP
D �P exp

{
i

[
�SM [ �P , �P ′] + SPF

int [Aμ, �P ]

− SPF
int [Aμ′

, �P ′] +
∫

V

d4x �ξX · �P −
]}

. (26)

The action �SM contains the dissipation term from the
reservoir-reduced influence action

�SM [ �P , �P ′] = SM [ �P ] − SM [ �P ′]

+
∫

V

d4x

∫
V

d4x ′P i−(x)Gret(x,x ′)P +
i (x ′)

(27)
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Upon tracing the density matrix of the combined field +
medium system over the matter variables we obtain a reduced
density matrix ρr = Tr �P ρ that accounts for the averaged effect
the medium has on the field. For linear coupling between
the medium and the field and an initially Gaussian matter
state the path integrals can be evaluated exactly yielding the
medium-reduced density matrix [50]. The result of tracing over
matter variables gives

ρr

(
A

μ

f ,A
μ′
f ; t

) =
∫ A

μ

f ,A
μ′
f

CTP
DAμ exp{i(SE[Aμ]

− SE[Aμ′
])}FM [Aμ,Aμ′

], (28)

where the medium-reduced influence functional FM [Aμ,Aμ′
]

accounts for the averaged effect of the medium on the field. The
influence action SM

IF , which relates to the influence functional
as FM = ∫

D�ξXP[�ξX] exp{iSM
IF }, is given by

SM
IF [Aμ,Aμ′

] =
∫

V

d4x

∫
V

d4x ′E−
i (x)

{
g̃ret(x,x ′)

[
�2

P Ei+(x ′)

+�P ξ i
X(x ′)

] + i

4
�2

P g̃H (x,x ′)Ei−(x ′)
}
,

(29)

where the kernels g̃ret(x,x ′) and g̃H (x,x ′) are the matter’s
retarded and Hadamard functions, respectively. In this case
the retarded Green’s function does not follow directly from the
commutator of the matter’s polarization operators because the
semiclassical equation of motion for the reservoir-influenced
polarization field is not self-adjoint. It can be solved for clas-
sically or by considering the commutator of the polarization
operator with its adjoint with respect to (23). Because the
matter + reservoir system is linear, the Heisenberg equation
of motion for the polarization operators is the same as the
semiclassical equation (24). The symmetric two-point function
of the homogeneous solution of this equation subject to
the appropriate boundary conditions provides g̃H (x,x ′). The
explicit form for g̃ret(t,t ′) and g̃H (t,t ′) are given below for
Ohmic spectral density of the reservoir:

g̃ret(t,t
′) = 1

ω
e−γ /2(t−t ′) sin ω(t − t ′)θ (t − t ′), (30)

g̃H (t,t ′) = 1

ω̃ω2 e−γ /2(t+t ′−2ti ) coth(βP ω/2)

[
ω̃2 cos ω(t − t ′)

− γ 2

4
cos ω(t + t ′ − 2ti) + γ

2
ω sin ω(t + t ′ − 2ti)

]
,

(31)

where ω =
√

ω̃2 − γ 2/4 and ti is the initial time at which the
reservoir and matter begin to interact. Note, in particular, that
the Hadamard function is not stationary and thus describes a
nonequilibrium process. It can easily be verified that when the
matter-reservoir coupling goes to zero these kernels give back
the expected free forms.

As with the case of coarse-graining over the reservoir
described in the previous section we see that tracing over
the matter degrees of freedom leads to two terms that are
nonlocal in time: the term containing the retarded Green’s
function characterizes the response of the dielectric to the

field (g̃ret plays the role of the susceptibility), and the one
containing the Hadamard function quantifies the effects that
quantum and thermal fluctuations (βP being the matter’s
inverse temperature) of the polarization within the medium
has upon the field.

As with the case of the reservoir we can represent the
fluctuation kernel in terms of a stochastic force. This allows
us to write the complex modulus of the influence functional as

|FM [Aμ,Aμ′
]|

=
∫

D�ξMP[�ξM ] exp

{
i�P

∫
V

d4xξ i
M (x)E−

i (x)

}
, (32)

whereP[�ξM ] takes the following form modulo a normalization
constant,

P[�ξM ] = exp

{
−

∫
V

d4x

∫
V

d4x ′δij ξ
i
M (x)g̃−1

H (x,x ′)ξ j

M (x ′)
}
,

(33)

which defines 〈{ξ j

M (x),ξ k
M (x ′)}〉ξM

= δjkg̃H (t,t ′)δ3(�x − �x ′).
Using P[�ξM ] the medium-reduced influence functional

becomes

FM [Aμ,Aμ′
] =

∫
D�ξXP[�ξX]

∫
D�ξMP[�ξM ] exp

{
i�P

∫
V

d4x

×E−
i (x)

[
ξ i
M (x) +

∫ tf

ti

dt ′g̃ret(t,t ′)

× [�P Ei+(t ′,�x) + ξ i
X(t ′,�x)]

]}
. (34)

Now we turn to the stochastic effective action Sξ [Aμ,Aμ′
]

for the field which is the sum of the free-field action and the
influence action after the terms quantifying the fluctuations of
the medium have been replaced with stochastic forces. As we
work with the photon field in the path integral a gauge-fixing
prescription must be adopted in order to prevent summing
over gauge equivalent orbits. The Fadeev-Popov trick could
be employed but the ghost fields introduced do not couple
to the electromagnetic field in flat space and only contribute
an overall multiplicative constant. Furthermore, the currents
in our microscopic model which couple to the photon field
are conserved. So we are free to choose any gauge we wish
to evaluate the path integral [52]. As a result the Green’s
functions which appear will be gauge dependent. However, as
a consequence of current conservation any gauge choice will
give equally valid descriptions of physical processes. With this
freedom we can express the stochastic effective action for the
field after choosing the temporal gauge (A0 = 0). At this level
we can make a comparison with MQED by allowing tf and
−ti to go to infinity, assuming the field evolves to a steady
state and taking the Fourier transform to find

Sξ [Aμ,Aμ′
] = 1

2π

∫ ∞

−∞
dω′

∫
d3x

{
− [∇ × �A−(−ω′,�x)]

· [∇ × �A+(ω′,�x)] + �A−(−ω′,�x) · �A+(ω′,�x)ω′2

× [
1 + �2

P g̃ret(ω
′,�x)

] + �P
�E−(−ω′,�x)

· g̃ret(ω
′,�x)�ξX(ω′,�x)

}
, (35)
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where in the infinite time limit the matter’s stochastic force
is exponentially suppressed �ξM → 0. Note that we’ve added
the explicit position dependence of the medium’s retarded
Green’s function because its support is restricted to the volume
containing the dielectric.

The stochastic semiclassical equations of motion for the
field can be derived from the saddle-point condition for the
medium-reduced density (28) matrix which gives

∇ × ∇ × �A(ω′,�x) − ω′2[1 + �2
P g̃ret(ω

′,�x)
] �A(ω′,�x)

= i�P ω′g̃ret(ω
′,�x)�ξX(ω′,�x). (36)

In this form the role of the coarse-grained medium is evident.
By comparing with the macroscopic Maxwell’s equations
we identify the permittivity as ε(ω′,�x) = 1 + �2

P g̃ret(ω′,�x)
and observe that the fluctuations of the medium drive the
field through the stochastic force(s) �ξX(x) [�ξM (x) drives the
field in addition to the reservoir when the system is not in
a steady state]. For Ohmic spectral density of the reservoir
the frequency-dependent permittivity corresponds with the
Lorentz oscillator model

ε(ω′,�x) = 1 − �2
P

ω′(ω′ + iγ ) − ω̃2
, �x ∈ V. (37)

When the restoring force of the matter vanishes we obtain the
Drude model and the plasma model when γ → 0 in addition.
In this form it’s clear that the matter-field coupling �P can be
interpreted as the medium’s plasma frequency.

One can see from Eq. (36) a striking similarity with MQED.
Due to the linearity of our theory this is not surprising.
Indeed if one were to proceed from this point treating the
field semiclassically and choosing all space to be filled with a
dielectric material, albeit in vacuum this dielectric is fictitious,
one would exactly reproduce the predictions of MQED using
Eq. (36) and choosing the dielectric to be in a thermal state.
However, it is important to note that in this case the stochastic
field ξ

j

X represents the fluctuations of the medium only and
does not include the intrinsic fluctuations of the field. After the
next level of coarse-graining described in the following section
the intrinsic quantum fluctuations of the field will enter, which
is different from the induced fluctuations from interaction with
the dielectric medium.

IV. FIELD-REDUCED DENSITY MATRIX

In the last section we showed how the medium influences
the field, and for the particular case of local fluctuations
we found that the stochastic semiclassical action for the
field takes the same form as the noninteracting field (with
frequency-dependent velocity) driven by an external current
(stochastic force).

By coarse-graining over the medium-influenced field we
can incorporate the averaged effect of the field on the atom’s
trajectory without a specific knowledge of the final field state,
leading to the reduced density matrix for the atom:

ρr (zf ,z′
f , �Qf , �Q′

f ; tf )

=
∫ �zf ,�z′

f

CTP
D�z

∫ �Qf , �Q′
f

CTP
D �Q exp{i(SZ[�z] − SZ[�z′]

+ SQ[ �Q] − SQ[ �Q′])}
∫

DA
μ

f

∫ A
μ

f ,A
μ

f

CTP
DAμ

× exp{i(SE[Aμ] − SE[Aμ′
] + SAF

int [�z, �Q,Aμ]

− SAF
int [�z′, �Q′,Aμ′

])}FM [Aμ,Aμ′
], (38)

where the integral
∫
DA

μ

f traces over the final field
configurations.

After evaluating the path integrals over the field we
find the field-reduced influence functional, Fξ [Jμ,Jμ′

,ξ ] =∫
D�ξXP[�ξX]

∫
D�ξMP[�ξM ] exp{iSE

IF[Jμ,Jμ′
,ξ ]}, expressed in

terms of the influence action, SE
IF, given by

SE
IF[Jμ,Jμ′

,ξ j ] =
∫

d4x

∫
d4x ′Jμ−(x)

[
D̃ret

μν(x,x ′)[J ν+(x ′)

− κν
i ξ i(x ′)

] + i

4
D̃H

μν(x,x ′)J ν−(�x ′)
]
, (39)

where �ξ (x) ≡ �ξM (x) + ∫ tf
ti

dt ′g̃ret(t,t ′)�ξX(t ′,�x).
The current density Jμ in (39) comes from the atom-field

interaction and takes the explicit form

Jμ(x) = −q

∫
dλQi(λ)κμ

i δ4(xα − zα(λ)), (40)

where the derivative operator κ
μ

i = −∂0η
μ

i + ∂iη
μ

0 yields the
electric field when contracted with the vector potential Ei =
κi

μAμ and also enforces current conservation ∂μκ
μ

i f (x) =
(−∂0∂i + ∂i∂0)f (x) = 0. The integral kernels D̃ret

μν and D̃H
μν are

the retarded Green’s and Hadamard function for the medium-
altered electromagnetic field which result from solving the
semiclassical equations of motion (for the retarded Green’s
function sourced by a δ function). The retarded Green’s
function describes the classical electrodynamical propagation
of the field in the presence of the dielectric material, and
the Hadamard function describes the field’s intrinsic quantum
fluctuations.

In the temporal gauge the semiclassical equation of motion
for the field’s retarded Green’s function in the presence of a
dielectric medium satisfies

εab
iε

mn
b∂a∂mD̃ret

nk (x,x ′) + ∂2

∂t2
D̃ret

ik (x,x ′)

+ ∂

∂t

∫ tf

ti

dt2g̃ret(t,t2; �x)
∂

∂t2
D̃ret

ik (t2,�x,x ′) = δikδ
4(x − x ′),

(41)

where εabc is the Levi-Civita symbol (Roman indices refer to
spatial components). The solution to (41) gives the particular
solution AP

j to the semiclassical equation of motion (36) for
the electromagnetic field:

AP
j (x) = �P

∫
d4x ′D̃ret

jk (x,x ′)
∂

∂t ′
ξk(x ′). (42)

As was noted previously the Heisenberg equations of
motion for the field operators take the same form as the
semiclassical equation of motion because of the linear coupling

εab
iε

mn
b∂a∂mÂn(x) + ∂2

∂t2
Âi(x) + ∂

∂t

∫ tf

ti

dt2g̃ret(t,t2; �x)

× ∂

∂t2
Âi(t2,�x) = �P

∂

∂t
ξi(x); (43)
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TABLE I. Summary of Coarse-graining and detailed physics remaining at each tier.

Tier Coarse-graining Influence functional Detailed physics Remaining variables

0 All parties �z, �Q,Aμ, �P , �Xν

1 TrX FX Atom + field + matter �z, �Q,Aμ, �P
2 TrP FM Atom + field �z, �Q,Aμ

3 TrA Fξ Atom �z, �Q
4 TrQ FZ Atom’s motion �z

therefore we can use the homogeneous solution to (43)
to construct the symmetric two-point function of the field
operators to give the Hadamard function

D̃
ij

H (x,x ′) = 〈{Âi
o(x),Âj

o(x ′)}〉. (44)

After these considerations, the field-reduced density matrix
takes the form

ρr (zf ,z′
f , �Qf , �Q′

f ; tf )

=
∫ �zf ,�z′

f

CTP
D�z

∫ �Qf , �Q′
f

CTP
D �Qei(SZ [�z]+SQ[ �Q]−SZ [�z′]−SQ[ �Q′])

×Fξ [Jμ,Jμ′
,ξ ]. (45)

V. ATOM’S INTERNAL DOF ( Q)-REDUCED
DENSITY MATRIX

At this point we have the density matrix that describes the
dynamics of the atom’s trajectory and its internal degrees of
freedom under the influence of the medium-altered field. As
with the previous parties it is only the averaged effect and
not the microscopic details of the atom’s internal degree of
freedom which we need for the description of the force.

As our last tier of coarse-graining we trace over �Qf ,
the oscillator’s internal dof, to obtain the oscillator-reduced
density matrix which characterizes the dynamics of the atom’s
trajectory determined by its interaction with all remaining
parties:

ρZ(zf ,z′
f ; tf ) =

∫ �zf ,�z′
f

CTP
D�zei(SZ [�z]−SZ [�z′])FZ[�z,�z′]. (46)

The environmental influences are now packaged in the
oscillator-reduced influence functional FZ[�z,�z′] with their
back-action accounted for in a self-consistent manner. The
coarse-grainings are summarized in Table I at each tier; the
influence of all lower tiers on the remaining degrees of freedom
is packaged in the influence functional.

We proceed by evaluating FZ[�z,�z′] perturbatively to lowest
order in the atom-field coupling. In the fully dynamical case
an exact calculation is not possible as back-action of the field
on the dynamics of the atom’s dipole moment enters as a third
time derivative and includes multiple reflections between the
dielectric medium and the atom. At leading order in powers
of the atom-field coupling, an expression for the force can
be found which neglects the radiation reaction to the atom’s
dipole moment and the effects of multiple reflections.

To ease the notational burden we define

〈· · · 〉o =
∫ ∞

−∞
d �Qf

∫ �Qf , �Qf

CTP
D �Qei(SQ[ �Q]−SQ[ �Q′])(· · · ), (47)

which represents the noninteracting time-dependent expecta-
tion value with respect to the oscillator’s initial state. With this
simplification the oscillator-reduced influence functional can
be compactly expressed in terms of quantum and stochastic
expectation values:

eiSIF[�z,�z′] def= FZ[�z,�z′] = 〈〈〈
eiSE

IF
〉
o

〉
ξM

〉
ξX

, (48)

which introduces the influence action, SIF.
A saddle-point approximation of (46) gives the semiclas-

sical equation of motion for the trajectory where the saddle
point is determined by the equation

δ

δzk − (t)
SCGEA[�z,�z′]|zk−=0 = 0⇒Mz̈k(t)+∂kV [�z(t)] = fk(t),

(49)

the coarse-grained effective action, SCGEA[�z,�z′], is defined as
SZ[�z] − SZ[�z′] + SIF[�z,�z′], and the influence force, fk(t), is
given by

δ

δzk−(t)
SIF[�z,�z′]

∣∣∣∣
zk−=0

= fk(t). (50)

We now wish to evaluate the influence force perturbatively
for an expansion in terms of small atom-field coupling. We
begin by expanding both sides of (48). Because SE

IF contains
terms linear and quadratic in the atom-field coupling we find
to O(q3),

FZ[�z,�z′] = 1 + iSIF + O(q3)

≈ 1 + i
〈〈
SE

IF

〉
o

〉
ξ
− 1

2

〈〈
(SE

IF)2
〉
o

〉
ξ
+ O(q3), (51)

where the subscript ξ in 〈· · · 〉ξ represents that both the ξX

and ξM stochastic expectation values have been taken. On the
right-hand side there are two contributions: the term linear in
SE

IF reduces to

〈〈
SE

IF

〉
o

〉
ξ

=
∫

d4x d4x ′
[
〈Jμ−(x)J ν+(x ′)〉oD̃ret

μν(x,x ′)

+ i

4
〈Jμ−(x)J ν−(x ′)〉oD̃H

μν(x,x ′)
]
, (52)
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while the term linear in ξ j vanishes. The quadratic term in SE
IF

reduces to〈〈(
SE

IF

)2〉
o

〉
ξ

=
∫

d4x d4x ′ d4y d4y ′〈Jμ−(x)J α−(y)〉o
× D̃ret

μν(x,x ′)D̃ret
αβ(y,y ′)κν

i κ
β

j 〈ξ i(x ′)ξ j (y ′)〉ξ ,
(53)

where we’ve dropped higher-order terms that enter at O(q3).
Thus, at leading order the influence force takes the form

fk(τ ) = δ

δzk−(τ )

[〈〈
SE

IF

〉
o

〉
ξ
+ i

2

〈〈
(SE

IF)2
〉
o

〉
ξ

]
. (54)

The explicit form for (54) can be obtained after an integration
by parts and evaluating the expectation values of the atom’s
current density. The result separates into three distinct contri-
butions fk = f1k + f2k + f3k .

The first component arises from the intrinsic fluctuations of
the field

f1k(τ ) = q2

2

∫ tf

ti

dλδij gret(τ,λ)︸ ︷︷ ︸
∼α

∂k(x)GH
ij (x,zα(λ))︸ ︷︷ ︸

∼〈� �E2〉

∣∣∣∣
x=z(τ )

. (55)

The retarded Green’s function for the atom gret quantifies its
response to an external field and so represents the atom’s dy-
namic polarizability, α. The Hadamard function,GH

ij , describes
electric field fluctuations and is constructed by contracting
each index of D̃

μν

H with κi
μ. Therefore f1k can be related to the

recognizable form for the interaction energy of a polarizable
body with the electromagnetic field Uint = 1

2α �E2.
The second component follows from dipole moment

fluctuations and is the analog of the London force for
the atom-surface geometry. Heuristically, we can construct
this component of the force by considering the interaction
energy of a quantum dipole in front of a dielectric surface.
First, the atom is brought near the surface leading to the
induction of an image dipole and therefore an image field.
The interaction energy of this system is then given by
Uint = − �p · �Eimage, where �p is the atom’s instantaneous dipole
moment and �Eimage is the electric field from its image.
The image field can be expressed as the convolution of the
classical electromagnetic Green’s function for the electric
field, Gjk

ret , with the image dipole E
j
image = ∫

d4x ′Gjk
retp

image
k

finally taking the expectation value of the interaction energy
we find 〈Uint〉 = − ∫

d4x〈pj p
image
k 〉Gjk

ret . Because the atom
and its image’s internal degrees of freedom are correlated
we find that the expectation value of the dipole moments of
the atom and image relate directly to the fluctuations of the
atom’s dipole moment alone 2〈pj p

image
k 〉 ∼ gH = 〈{Qj,Qk}〉,

showing the relation between our heuristic derivation and the
exact expression below:

f2k(τ ) = q2

2

∫ tf

ti

dλδij gH (τ,λ)∂k(x)Gret
ij (x,zα(λ))

∣∣∣∣
x=z(τ )

.

(56)

The last component of the force, f3k , is similar to the first with
the exception that the force arises from the induced fluctuations
of the field. We note from the semiclassical equation of motion
for the field that the electric field induced by fluctuations within

the medium takes the form Ek
ind = ∫

V
d4x ′Gkj

retξj . By simply
taking the expression for f1k and substituting the Hadamard
function by the two-point function for induced fluctuations we
find

f3k(τ ) → q2

2

∫ tf

ti

dλδkjgret(τ,λ)∂k(x)

× 〈{
Ek

ind(x),Ej

ind(zα(λ))
}〉∣∣∣∣

x=z(τ )

,

which when expanded out takes the form

f3k(τ ) = q2

2

∫ tf

ti

dλ

∫
V

d3x

∫ tf

ti

dt

∫ tf

ti

dt ′gret(τ,λ)

× G̃med
H (t,t ′)Gij

ret(z
α(λ),x)∂k(x ′)Gret

ij (x ′; t ′,�x)

∣∣∣∣
x ′=z(τ )

,

(57)

where the collective effect of the medium’s fluctuations is
accounted for in

G̃med
H (t,t ′) = g̃H (t,t ′)

+
∫ tf

ti

dt1

∫ tf

ti

dt2g̃ret(t,t1)g̃ret(t
′,t2)GH (t1,t2).

(58)

So we find that at leading order in perturbation theory the
origin of each force component is due to the quantum and
thermal fluctuations in a different degree of freedom.

Equations (55), (56), and (57), which form the centerpiece
of this paper, provide the fully dynamical and self-consistent
force between an atom and a general medium including
arbitrary geometry and composition [53].

VI. NONEQUILIBRIUM ATOM-SURFACE FORCE

In this section we study the force between an atom
situated in vacuum (z > 0) and a dielectric half-space
occupying the region (z < 0). Our goal here is to find the
kernels of the electromagnetic field. The retarded Green’s
function for the field in a lossy dielectric half-space is well
known, and so our focus in this section is to calculate the
Hadamard function quantifying the intrinsic fluctuations of
the field. To do this we must find the solution for the
time-dependent field operator by solving Eq. (43). We begin
by taking the divergence of the Heisenberg equation of motion

for the homogeneous solution �̂Ao(s,�x) for the field (43), giving

∇ ·
∫ tf

ti

dt ′ε(ṫ ,t ′,�x) �̂Ao(ṫ ′,�x) = 0, (59)

where ε(t,t ′,�x) is the dynamical permittivity and an over dot
denotes a time derivative.

Because the temporal gauge is incomplete the vector
potential can be augmented by the gradient of any time-
independent scalar without altering the electric or magnetic
fields, the condition provided by (59) fixes the residual gauge
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freedom giving equivalent physics to the generalized Coulomb
gauge [39]:

Â0 = 0, ∇ ·
∫ tf

ti

dt ′ ε(ṫ ,t ′,�x) �̂A(ṫ ′,�x) = 0. (60)

For a piecewise uniform permittivity the field becomes
transverse within either half-space.

For the study of nonequilibrium dynamics of our system
we are restricted to compact intervals for the time integrations
appearing in the actions describing the total system. Using
the Laplace transform we can simplify the integrodifferential
equation (43) for compact time intervals which results in the
transformed equation

−∇2Âj
o(s,�x) + ε(is,�x)s2Âj

o(s,�x)

= φj
o (s,�x) = ˙̂Aj (t = ti ,�x) + ε(is,�x)sÂj (t = ti ,�x), (61)

where ε(ω,�x) is the frequency-dependent permittivity
ε(is,�x) = 1 + �2

P g̃ret(is,�x) and φi
o(s,�x) encapsulates the ef-

fect of the initial conditions. We assume that the field and the
medium only begin to interact at the initial time ti and that just
prior to t = ti the field can be found in a plane-wave expansion,

Âj (t−i ,�x) =
∑

σ

∫
d3k

√
1

2(2π )3k

[
ej
σ (�k)aσ (�k)ei�k·�x + H.c.

]
,

(62)

where k = |�k|, e
j
σ (�k) is the j th component of a σ -polarized

wave in the Coulomb gauge, and aσ (�k) is the destruction
operator for a photon of wave vector �k and polarization σ . In
the Coulomb gauge σ is summed over TE (transverse electric)
and TM (transverse magnetic) polarization. By taking the
appropriate derivatives and reading off the Fourier amplitudes
of (62) we can identify φi

o(s,�k) as

φ̂j
o (s,�k) =

∑
σ

√
(2π )3

2k
[ε(is,�x)s − ik]ej

σ (�k)aσ (�k) + H.c..

(63)

We now consider plane-wave solutions originating from
either half-space. For points within the dielectric we find

Âj−(s,�k) = φ̂
j
o (s,�k)

ε(is)s2 + k2
, (64)

and for points in vacuum we find

Âj+(s,�k) = φ̂
j
o (s,�k)

s2 + k2
, (65)

where + (−) in this section denotes waves in vacuum
(dielectric) and in (65) the permittivity is taken to 1 in φ̂

j
o (s,�k).

Inverting the Laplace transform gives the time dependence
of the field amplitude for planes waves with momentum �k. In
vacuum we have

Âj+(t,�k) =
∑

σ

√
(2π )3

2k
ej
σ (�k)aσ (�k)e−ik(t−ti )θ (t − ti) + H.c.,

(66)

and within the dielectric medium we have the general result

Âj−(t,�k) = 1

2πi

∫
C
ds es(t−ti )

φ̂
j
o (s,�k)

ε(is)s2 + k2
, (67)

which depends upon the specific choice of matter-reservoir
coupling. For Ohmic reservoir spectral density the dispersion
relation has four distinct poles and the Bromwich integral can
be inverted exactly:

Âj−(t,�k) =
∑

l

∑
σ

√
(2π )3

2k
ej
σ (�k)aσ (�k)rle

sl (t−ti )θ (t − ti)

+ H.c., (68)

where rl is the residue of [ε(is)s − ik]/[ε(is)s2 + k2] from
the lth pole and sl is the lth pole.

Given the plane-wave solutions above we can now construct
the total field by considering right- and left-incident waves.
Waves that approach the vacuum-dielectric interface reflect
and transmit. The sum of the incident, reflected, and transmit-
ted components gives the total solution where the boundary
conditions on the field at the interface,

E‖(0+) = E‖(0−) and Dz(0
+) = Dz(0

−), (69)

H‖(0+) = E‖(0−) and Bz(0
+) = Bz(0

−), (70)

determine the Fresnel transmission and reflection coefficients.
For example, in the case of right-incident TE waves the electric
field is parallel to the vacuum-dielectric interface and because
the electric field is parallel to the vector potential the x and
y components of the vector potential are continuous across
z = 0, leading to the relation [see Eq. (71)] 1 + RR

TE = T R
TE (to

avoid confusion we stress here that this is a constraint on the
field amplitude and not on the energy). Because our dielectric
model does not have a magnetic response all components of
the magnetic field are continuous across z = 0. For the case
of TE waves the continuity of the x and y components of the
magnetic field give kz(1 − RR

TE) = KzT
R

TE, where Kz is chosen
so that the transmitted component of the field satisfies the
wave equation in the medium. Following the same procedure
for TM-polarized waves defines the remaining reflection and
transmission coefficients. This allows us to express the right-
incident waves as

Â
j

R(x)=
∑

σ=TE,TM

∫
d3k

1√
2(2π )3k

θ (−kz)e
−ik(t−ti )+i�k‖·�x‖aR

σ (�k)

× ej
σ θ (t − ti)

[(
eikzz + RR

σ e−ikzz

)
θ (z)

+ T R
σ eiKzzθ (−z)

]
+ H.c., (71)

where the Fresnel coefficients become

RR
TE = kz − Kz

kz + Kz

, T R
TE = 2kz

kz + Kz

,

RR
TM = ε(k)kz − Kz

ε(k)kz + Kz

, T R
TM = 2

√
ε(k)kz

ε(k)kz + Kz

.

Here aR
σ (�k) is the destruction operator for left-moving

waves with wave vector �k (kz < 0) and polariza-
tion σ , the z component of the wave vector in the
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medium is Kz = sgn(kz)
√

ε(k)k2 − k2
‖ , and the polariza-

tion vectors can be conveniently expressed in differ-
ential form as êTE = (−�‖)−1/2(−i∂y,i∂x,0) and êTE =
(��‖)−1/2(−∂x∂z,−∂y∂z,�‖).

Likewise, we can follow the same procedure for left-
incident waves. For a general medium one would employ (67),
in the case of Ohmic reservoir spectral density we find

Â
j

L(x) =
∑

σ=TE,TM

∑
l

∫
d2k

∫
dKz

1√
2(2π )3k′ θ (Kz)

× rle
sl (t−ti )+i�k‖·�x‖aL

σ (�k′)ej
σ θ (t − ti)

[(
eiKzz

+RL
σ e−iKzz

)
θ (−z) + T L

σ eikl,zzθ (z)
]+H.c., (72)

where the Fresnel coefficients are

RL
TE = Kz − kl,z

Kz + kl,z

, T L
TE = 2Kz

kl,z + Kz

,

RL
TM = Kz − ε(isl)kl,z

Kz + ε(isl)kl,z

, T L
TM = 2

√
ε(isl)Kz

ε(isl)kl,z + Kz

,

the wave vector in the medium is �k′ = (�k‖,Kz) with magnitude
k′ = |�k′|, and kl,z is chosen to solve the wave equation in
vacuum kl,z =

√
−sl

2 − k2
‖ with Im[kl,z] > 0. By considering

the cases where the dielectric becomes an ideal conductor
(ε → ∞), ε becomes a real constant, or the dielectric becomes
transparent (ε = 1), one can verify that the expressions for the
field above reduce to the expected half-space [38] and vacuum
forms (after choosing an appropriate initial state).

We can now construct the two-point functions of the field
under the influence of the medium. The retarded Green’s
function solves (41) and can be split into two pieces: one
corresponding with the source point in vacuum and the other
with source point in the medium. This can be easily understood
by noting that ÂR,L is proportional to aR,L

σ and therefore
〈ARAL〉 = 0. Therefore we can decompose D̃

ij
ret into a portion

due to right- and left-incident waves:

D̃
ij
ret(x,x ′) = D̃

ij

ret,R(x,x ′) + D̃
ij

ret,L(x,x ′). (73)

The retarded Green’s function gives the electric field from a
point dipole located at �r:

E
dip
i (x) =

∫
dt ′Gret

ij (x; t ′,�r)pj
o (t ′). (74)

Dipole oscillations will lead to emitted radiation that will be
seen at x at retarded times. By noting that the source point for
the retarded Green’s function appearing in the component of
the atom-surface force due to medium fluctuations lies in V

and the observation point lies in the future in the vacuum region
we can ascertain that information about medium fluctuations is
contained entirely in the left-incident component of Gij

ret which
allows the replacement Gret

ij → Gret,L
ij in (57).

The Hadamard function for the field can be constructed
from the solution for the field operators (71) and (72), which
also decomposes into a left- and right-incident component

D̃
ij

H (x,x ′) = 〈{
Âi

L(x),Âj

L(x ′)
}〉 + 〈{

Âi
R(x),Âj

R(x ′)
}〉

. (75)

The crucial point we would like to make now is that intrinsic
fluctuations of the field emanating from within the medium are
exponentially suppressed in time for a dissipative medium.

The time dependence of the field for wave vector �k
emanating from within the medium can be calculated by
inverting the Laplace transform in (67). Because all of the
poles (and/or branch cuts) in the dispersion relation lie to the
left of the imaginary axis in the complex s-plane the intrinsic
fluctuations of the field associated with left-incident waves are
damped away in time so that at late times

D̃H
ij (x,x ′)

t→∞→ 〈{
ÂR

i (x),ÂR
j (x ′)

}〉 ≡ D̃
H,R
ij (x,x ′). (76)

A. Long-time limit

We now specialize to the case of a stationary atom and take
the long-time limit. Because this system exhibits dissipation
we expect that a steady-state exists at late times. In the
previous section we have already noted that for general
reservoir-matter coupling field fluctuations emanating from
inside the dielectric medium will be exponentially suppressed
in time. Within the medium the matter fluctuations will be
defined by the reservoir at late times as the polarization field is
thermalized. The collective fluctuations of the medium are de-
scribed by the kernel G̃med

H (t,t ′) containing components due to
the intrinsic fluctuations of the matter and reservoir. We
showed explicitly for Ohmic reservoir spectral density that
the intrinsic fluctuations of the matter damp away in time (31)
and will for general reservoir-matter coupling. Therefore as
ti → −∞ we find

G̃med
H (t,t ′) →

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2g̃ret(t,t1)g̃ret(t

′,t2)GH (t1,t2),

(77)

where the upper limit of the time integrals can be taken
to infinity because the matter’s retarded Green’s functions
contain θ functions which restrict the integration range over
past times. By taking the Fourier transform we find an
equivalent description in frequency space:

G̃med
H (ω′) → g̃∗

ret(ω
′)GH (ω′)g̃ret(ω

′). (78)

The retarded Green’s function for the matter satisfies (23)
sourced by a δ function

∂2

∂t2
g̃ret(t,t

′) + ω2g̃ret(t,t
′)

−
∫ tf

ti

dt ′′Gret(t,t ′′)g̃ret(t
′′,t ′) = δ(t − t ′), (79)

whose Fourier transform gives (again tf , − ti → ∞)

−ω′2g̃ret(ω
′) + ω2g̃ret(ω

′) − Gret(ω′)g̃ret(ω
′) = 1, (80)

where g̃ret(ω′) is a complex function of frequency. Multipli-
cation of (80) by g̃∗

ret(ω
′) and then taking the imaginary part

provides an identity between GH and g̃ret [54,55]:

g̃∗
ret(ω

′)Im[Gret(ω′)]g̃ret(ω
′) = Im[g̃ret(ω

′)]. (81)

Using the fluctuation-dissipation relation (19) we find

g̃∗
ret(ω

′)GH (ω′)g̃ret(ω
′) = 2 coth(βXω′/2)Im[g̃ret(ω

′)]G̃med
H

= (ω′), (82)
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where the last equality holds only for ti → −∞. The imag-
inary part of g̃ret(ω′) relates directly to the imaginary part
of the permittivity so that in the long-time limit we find the
asymptotic behavior

fk = q2

4π

∫ ∞

−∞
dω′ δij

[
g∗

ret(ω
′)∂k(x)GH,R

ij (ω′,�x,�z)

+ g∗
H (ω′)∂k(x)Gret

ij (ω′,�x,�z)
]
x=z(τ )

+ q2

2π

∫ ∞

−∞
dω′

∫
V

d3x Im[ε(ω′)] coth(βXω′/2)g∗
ret(ω

′)

×Gij∗
ret,L(ω′,�z,�x)∂k(x ′)Gret,L

ij (ω′,�x ′; �x)|x ′=z(τ ). (83)

1. Fluctuation-dissipation relation for the field in vacuum

In the long-time limit, when a steady-state has been
attained, we can study the features of right-incident waves,
AR , in terms of Fourier modes in the vacuum region as in (71):

Â
j

R(x) = 1√
2(2π )3

∑
σ=TE,TM

∫
d3k√

k
θ (−kz)

× [
aR

σ (�k)ej
σ e−iω(t−ti )+i�k·�x(1 + RR

σ e−i2kzz
)

+H.c.
]
θ (z). (84)

The Wightman function for the field provides all information
about propagation and fluctuations of right-incident waves
in the vacuum region (evaluated here at coincident spatial
arguments for later convenience)

D̃
jl+
R (x; t ′,�x)

= 〈
Â

j

R(x)Âl
R(t ′,�x)

〉 = 1

2(2π )3

∑
σ=TE,TM

∫
d3k

k
θ (−kz)

× [
ej
σ ei�k·�x(1+RR

σ e−i2kzz
)][

el∗
σ e−i�k·�x(1+RR∗

σ ei2kzz
)]

× [coth βEk/2 cos k(t − t ′) − i sin k(t − t ′)]θ (z),

(85)

where we have assumed that the right-incident component of
the field is in a thermal state at inverse temperature βE . Two
times the real part gives the Hadamard function and two times
the imaginary part relates to the retarded propagator

D̃
jl

H,R(x; t ′,�x) = 2Re
[
D̃

jl+
R (x; t ′,�x)

]
,

(86)
D̃

jl

ret,R(x; t ′,�x) = −2θ (t − t ′)Im
[
D̃

jl+
R (x; t ′,�x)

]
.

After taking the Fourier transform of these stationary kernels
with respect to t − t ′ we find that they are related by the
fluctuation-dissipation relation

D̃
jl

H,R(ω′,�x,�x) = 2 coth(βEω′/2) Im
[
D̃

jl

ret,R(ω′,�x,�x)
]

(87)

at the same point.

B. Steady-state atom-surface force

For comparison with previous works we note that
Gij

ret(ω
′,�x,�x ′) and q2gret(ω′) in our treatment can be identified

with the dyadic Green’s function for the electric field,

Gij/(4π ), and 4πα(ω′), the frequency-dependent polarizabil-
ity used in [30,32,33].

By using the fluctuation-dissipation relation the atom-
surface force can be brought into the same form as derived by
others. After taking the long-time limit, Fourier transforming
in time, assuming global thermodynamic equilibrium and
specifying the atom’s trajectory to be static, (83) can be used
to express the force in equilibrium. This expression can be
simplified by the use of an identity.

By using (85) with (86) a tedious calculation shows that the
imaginary part of the electric field’s retarded Green’s function
satisfies the relation

Im
[
Gret,R

ij (ω,�x,�x)
] +

∫
V

d3y δklIm[ε(ω,�y)]

×Gret,L
ik (ω,�x,�y)Gret,L∗

j l (ω,�x,�y)

= Im
[
Gret

ij (ω,�x,�x)
]
. (88)

For z > 0 the fluctuation-dissipation relation re-
quires GH,R

ij (ω′,�z,�z) = 2 coth(βω′/2)Im[Gret,R
ij (ω′,�z,�z)] and

gH (ω′) = 2 coth(βω′/2)Im[gret(ω′)]. With these relations (and
borrowing the notation of others) we can rewrite fk as

fk = 1

π

∫ ∞

0
dω′ δij coth(βω′/2)Im[α(ω′)

× ∂k(x)Gij (ω′,�x,�z)]|�x=�z(τ ), (89)

reducing it to the form for the atom-surface force as derived
from MQED [32]. After some formal manipulation, Eq. (89)
can be expressed in terms of a sum over Matsubara frequencies
[see the Appendix, Eq. (A4)].

It is interesting to consider now the specific case where the
temperature of the medium differs from the field. Using (88)
we can write the force in the form.

fk = q2

4π

∫ ∞

−∞
dω′ δij

[
2 coth(βEω′/2)g∗

ret(ω
′)∂k(x)

× Im
[
Gret

ij (ω′,�x,�z)
] + g∗

H (ω′)∂k(x)Gret
ij (ω′,�x,�z)

]
x=z(τ )

+ q2

2π

∫ ∞

−∞
dω′

∫
V

d3xIm[ε(ω′)][coth(βMω′/2)

− coth(βEω′/2)]g∗
ret(ω

′)Gij∗
ret,L(ω′,�z,�x)∂k(x ′)

×Gret,L
ij (ω′,�x ′,�x)

∣∣∣∣
x ′=z(τ )

. (90)

The first term is equivalent to the force associated with the
atomic energy level shifts derived in [28]; when the atom is
in a thermal state at temperature TE it gives back the atom-
surface force in thermal equilibrium. The last term gives the
correction to the force when the medium and field are out of
thermodynamic equilibrium. We denote this correction to the
force f

neq
k :

f
neq
k = q2

2π

∫ ∞

−∞
dω′

∫
V

d3y g∗
ret(ω

′)∂k(x) Im[ε(ω′)]

× (coth[βMω′/2] − coth[βEω′/2])Gij

ret,L(ω′,�x,�y)

×Gret,L∗
ij (ω′,�z,�y)

∣∣∣∣
�x=�z

. (91)
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C. Nonequilibrium steady-state force

In this section we elucidate the physics of the nonequilib-
rium correction to the force by evaluating the convolution of

the Green’s functions in (91) and comparing the results with
the force in equilibrium. After some manipulation (91) can be
brought into the form

f
neq
k (TM,TE)EW = −

√
2

π

∫ ∞

0
dω′

∫ ∞

1
dqqω′4Re[α(ω′)][coth(βMω′/2) − coth(βEω′/2)]

√
q2 − 1

√
Re[ε(ω′)] − q2 + |ε(ω′) − q2|

×
[

1

|
√

1 − q2 +
√

ε(ω′) − q2|2
+ (2q2 − 1)(q2 + |ε(ω′) − q2|)

|ε(ω′)
√

1 − q2 +
√

ε(ω′) − q2|2
]
e−2zω′

√
q2−1, (92)

f
neq
k (TM,TE)PW =

√
2

π

∫ ∞

0
dω′

∫ 1

0
dqqω′4Im[α(ω′)]

[
coth(βMω′/2) − coth(βEω′/2)

]√
q2 − 1

√
Re[ε(ω′)] − q2 + |ε(ω′) − q2|

×
[

1

|
√

1 − q2 +
√

ε(ω′) − q2|2
+ (q2 + |ε(ω′) − q2|)

|ε(ω′)
√

1 − q2 +
√

ε(ω′) − q2|2
]
, (93)

where the force splits into a component due to evanescent
waves (EW) and one due to propagating waves (PW); see
the Appendix for details (the properties of the polarizability
have been used to simplify the frequency integrations). Note
in particular that the evanescent component of the nonequi-
librium correction is equivalent to the difference between
two evanescent components to the atom-surface force in
equilibrium (A11). The propagating wave component gives
rise to a constant space-independent wind term which results
from the radiation of the field into the vacuum region (z > 0).
The imaginary part of the polarizability in (93) has support in
a narrow band around the resonances of the atom, indeed for
our oscillator model the imaginary part of the polarizability
is proportional to a δ function which allows the frequency
integral in (93) to be done directly. However, for realistic
laboratory temperatures the effect of the propagating waves is
exponentially suppressed. (See [32] for a detailed derivation of
asymptotic properties of the evanescent wave nonequilibrium
contribution to the force.)

We now have an expression for the atom-surface force for a
stationary system when the dielectric medium is out of thermal
equilibrium with the field. By dissecting the Lifshitz force
we can intuitively argue for the form of the force derived
previously. First, in thermal equilibrium the Lifshitz force is
composed of a propagating and evanescent wave component.
The propagating component arises from field fluctuations in
the vacuum region and partially transmitted waves from the
medium. The evanescent component arises from fluctuations
of the field within the dielectric that partially transmit into
the vacuum region from incident angles exceeding the critical
angle. By subtracting the effect of transmitted waves from the
expression for the force in equilibrium, both at temperature
TE , we describe the effect of incident and reflected propagating
waves in the vacuum region. To account for the waves partially
transmitted into the vacuum region we need to add the effect
of medium fluctuations within the dielectric at temperature TM

which is done by adding f neq(TM,TE) to the equilibrium force.
This results in a modification of the evanescent component of
the equilibrium force and accounts for the blackbody radiation

emitted from the surface when the global system is out of
equilibrium:

fk = fk(TE) − f
FF,EW
k (TE) + f

FF,EW
k (TM ) + f

neq
k (TM,TE)PW

(94)

see Eq. (A8).

D. Force as a function of time

Now that we have isolated the steady-state form for the force
we can identify the components giving rise to force dynamics.
We showed previously that as time evolves the reservoir will
thermalize all parties that it interacts with eventually resulting
in a steady-state. The power of our nonequilibrium formulation
is that we can follow the time evolution of the force from an
initial state.

To highlight these effects, not obtainable through MQED
or Lifshitz theory, we isolate the dynamical terms from
the total force which at early times will lead to different
predictions from the standard equilibrium theories. These
corrections come in two terms. First, we showed earlier that
the left-incident fluctuations of the field are damped away in
time due to interaction with the medium. For times shorter
than the inverse dissipation rate left-incident field fluctuations
augment the equilibrium force by

f
dyn
1k (τ ) = q2

2

∫ tf

ti

dλδij gret(τ,λ)∂k(x)GH,L
ij (x,zα(λ))

∣∣∣∣
x=z(τ )

.

(95)

The second contribution comes from the induced fluctuations
of the field which at early times, before the matter is thermal-
ized by the reservoir, gives the additional force contribution

f
dyn
2k (τ ) = q2

2

∫ tf

ti

dλ

∫
V

d4x

∫ tf

ti

dt ′gret(τ,λ)g̃med
H (t,t ′)

×Gij

ret,L(zα(λ),x)∂k(x ′)Gret,L
ij (x ′; t ′,�x)

∣∣∣∣
x ′=z(τ )

. (96)

An illustrated summary of the different cases treated in this
paper can be found in Fig. 1.
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1. Time-dependent force due to field thermalization
by eddy currents

As an explicit example of force dynamics we’ll compute the
time-dependent contribution to the atom-surface force arising
from the thermalization of the field by the medium. For this
purpose we’ll work explicitly with the Drude model, which has
been chosen for its simplicity. In addition we’ll assume that
the field is initially described by a thermal state, factorized
from the remaining parties, where the matter is assumed to
have already been thermalized by the reservoir.

The Drude model dispersion relation contains two dissipa-
tive oscillating modes, the bulk plasmons, and a third diffusive
mode arising from eddy currents [57]. For weak dissipation
(dissipation rate much smaller than the plasma frequency)
the plasmons give rise to a constant space-independent
force at leading order corresponding to blackbody radiation
into vacuum. In distinction the eddy currents establish an
evanescent field which varies with atom-surface spacing and
so will be the focus of our investigation. After computing the
Hadamard function for the field in (95) we find the explicit
expression for the dynamical force below:

f
dyn
1k (τ )

= − 1

8π2
αo�

∑
l,l′

∑
σ

∫ τ

0
dλ

∫ ∞

0
dk

∫ 1

0
dqk coth(βk/2)

× sin �(τ − λ)Im
[
kz,l sl s

∗
l′ rl r

∗
l′ e

slτ+s∗
l′λ+i(kz,l−k∗

z,l′ )z

× T L
σ,lT

L∗
σ,l′ êσ,l · ê∗

σ,l′
]
, (97)

where αo is the oscillator’s static polarizability, we’ve set the
initial time to zero, and we’ve made the change of variables
Kz = kq. In the limit of weak dissipation the root, sl , the z

component of the wave vector, kz,l , and the residue, rl , for the

diffusive mode can be approximated by

seddy ≈ − γ k2

k2 + �2
P

, reddy ≈ −k2 + �2
P

2
(
k2 + �2

P

) ,

kz,eddy ≈ ik
√

1 − q2. (98)

After making the change of variables y =
√

1 − q2, we note
that the exponential factor exp{slτ + s∗

l′λ + i(kz,l − k∗
z,l′ )z}

suppresses large values of y and k for �P z � 1 at finite times.
After expanding the integrand for small y and k, we find

f
dyn
1k (τ ) ≈ − 3

8π2

αo�γ 2

�4
P

∫ τ

0
dλ

∫ ∞

0
dk

∫ 1

0
dy sin �(τ − λ)k6

× coth(βk/2)y2e
− γ k2

k2+�2
P

(τ+λ)−2kyz
, (99)

where a more precise comparison of the thermal wavelength
to the time and distance scales is necessary before we can
expand the hyperbolic cotangent. Note that the combination
of exponentials in the integrand ensures convergence for the
k integration and that replacing − γ k2

k2+�2
P

(τ + λ) → − γ k2

�2
P

(τ +
λ) results in a negligible error when γ τ � 1. Making this
replacement allows us to perform the y integration, which to
leading order for large z gives

f
dyn
1k (τ ) ≈ − 3

32π2

αo�γ 2

�4
P

1

z3

∫ τ

0
dλ

∫ ∞

0
dk sin �(τ − λ)k3

× coth(βk/2)e
− γ k2

�2
P

(τ+λ)
. (100)

At room temperature (or hotter) time is the factor which
determines the largest scale in the problem when τ � 1 ns
(for a gold surface), thereby allowing a Taylor expansion of
the hyperbolic cotangent in the integrand. Subsequently the

ε(ω)
ξ

Temperature 
constant 

throughout

TX = T TF = T

TA = T

Thermal Equilibrium

ε(ω)
ξ

Temperature 
varies 

throughout

TX TF

TA

Nonequilibrium Steady-State

ε(ω)
ξ

Temperature 
varies 

throughout

time-
dependent

flux
TA

TMTX

Fully Nonequilibrium

TF

FIG. 1. (Color online) The figure summarizes the differences between atom-surface interactions in equilibrium, in a nonequilibrium
steady-state, and under fully nonequilibrium conditions. The gray bulk at the left illustrates the matter where the symbols ε(ω) and ξ denote
that the medium has been coarse-grained and so its averaged effect is described by a permittivity and a stochastic force. The vacuum region
at the right of the matter contains an atom and the field. The simplest case is thermal equilibrium where are all parties are described by a
thermal state at temperature T , the long-time limit is taken, and the position of the atom is fixed. The equilibrium case can be generalized by
the consideration of nonequilibrium steady states where all parties are described by thermal states (e.g., TA, TF , and TX are the atom’s, field’s
and reservoir’s temperature), the atom is held fixed, and the long-time limit is taken so that the state of the entire system no longer evolves in
time. A fully nonequilibrium treatment describes dynamics. For this case the total system is time evolved from an initial state given above as
thermal for each party. The illustration depicts the time-dependent flux of energy emanating from the medium as well as atom motion.
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FIG. 2. The plots quantify the dynamical force (in Newtons) at room temperature (T = 295 K) between a rubidium atom and a gold surface
as the field is thermalized by eddy currents. The plasma frequency and dissipation rate for gold used were �p = 8.9 eV and γ = 0.0357 eV.
For rubidium we set the static polarizability, αo, equal to 4.73 × 10−29 m3 and � to rubidium’s first optical resonance, 2.35 × 1015 Hz. The
plot on the left shows the spatial dependence of the atom-surface force [neglecting the rapidly oscillating cosine term in (101)] as a function of
distance in micrometers evaluated at different times. The solid line corresponds to 1 μs. From there each successive line moving upward gives
the force at 1-μs intervals from 1 to 4 μs for the top line. The plot on the right shows the time dependence of the dynamical force as a function
of time at an atom-surface distance of 1 μm. The force is rapidly oscillating and so we’ve plotted the average force, indicated by the solid line,
and the envelope, by the dashed lines, bracketing the force oscillations.

k and λ integral can be performed where the result below is
expressed to leading order for �τ � 1:

f
dyn
1k (τ ) ≈ − 3αo

16π3/2

√
γ

�2
P

T

z3

[
1

2
√

2
− cos �τ

]
1

τ 3/2
. (101)

A few remarks are in order. First, it is not surprising that
the force depends on the inverse of the cubic distance. In a
nonequilibrium steady state where the field and matter are
described by different temperatures it is an evanescent field
that gives rise to the novel scaling of 1/z3 in the far field [32].
The particular case we address here is the time dependence of
the evanescent field as it is thermalized by the eddy currents.
Second, as the conductivity becomes very good, �P /γ � 1,
the presence of eddy currents is suppressed (in this limit the
Drude model approaches the plasma model). This effect is

captured by the prefactor
√

γ /�2
P in (101) which relates to

the resistivity of the material, indicating that the force is larger
for poor conductors.

The plots in Fig. 2 quantify (101) for a gold surface and a
rubidium atom when the field is initially at room temperature.

VII. CONCLUSION

In this paper we have derived from first principles with
a microscopic model the nonequilibirum force between an
atom and a medium (modeled by a continuous lattice of
noninteracting harmonic oscillators each coupled to a reser-
voir) including fully dynamical activities such as dissipation,
absorption, radiation, and fluctuations. In the end we show that
the force is in agreement with the results of previous works
employing MQED theory when the long-time limit is taken
and the system has evolved to a steady state.

Our results go beyond previous work by providing the fully
dynamical force including effects of relaxation, thermaliza-
tion, and back-action from the field and matter in addition to
being valid for general dielectric geometries and composition.
These results could play a role in experiments measuring the

dynamical aspects of surface-atom interactions, like quantum
friction [58,59] (and references therein) and relaxation. The
dynamical effects derived herein are very sensitive to the model
used to describe the dielectric. In particular one would expect
stark differences between the dynamics of the force when
comparing Ohmic models, like Drude, with the plasma model
which neglects dissipation. Dynamical effects not only provide
a new arena in which to explore quantum-fluctuation forces but
could aid in the resolution of controversies involving quantum
friction [60–62] and the so-called thermal problem [63,64].

As a final note we point out that beyond giving a fully
dynamical description for atom motion in the presence of a
dielectric material the nonequilibrium quantum-field theoretic
formulation of this problem is particularly adept at treating
fluctuation phenomena. It will be the aim of a future study
to understand the rich interplay between the propagating and
evanescent wave components of the force and their effect upon
the fluctuations of the atom’s trajectory in space.
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APPENDIX

1. Representation of the equilibrium force in terms of a sum
over Matsubara frequencies

In this short section we represent the equilibrium force
(89) as a sum over Matsubara frequencies. We note first that
the imaginary part of the product of the retarded Green’s
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function for the electric field and oscillator’s polarizability
can be expressed as

Tr Im[α(ω′)∂kG(ω′)] = 1

2i
[α(ω′)∂kTrG(ω′)

−α∗(ω′)∂kTrG∗(ω′)], (A1)

where we’ve omitted the explicit spatial dependence on the
atom’s position (note, however, that the derivative acts on only
one of the Green’s function’s arguments) and Tr stands for
trace taken on the Green’s function’s indices. The analytic
properties of the polarizability and the field’s Green’s function
in equilibrium give the relations

α(−ω) = α∗(ω) and G(−ω) = G∗(ω), (A2)

which tell us that (A1) is an odd function of frequency and
allows the integration in (89) to be extended from minus to
plus infinity. By plugging (A1) into (89), making a change of
variables in the second term (ω → −ω), and using the analytic
properties (A2), (89) can be expressed as

fk = 1

2πi

∫ ∞

−∞
dω′ coth(βω′/2)α(ω′)∂k(x)TrG(ω′,�x,�z)

∣∣∣∣
�x=�z

.

(A3)

Due to causality all of the poles of the polarizability and the
field’s Green’s function will lie below the real frequency axis.
We will exploit this fact to compute the frequency integral
above by using the residue theorem. Since the Green’s function
goes to zero for large frequency we can add a vanishing integral
along an arc of infinite radius passing from positive infinity to
negative infinity in the upper half complex ω-plane to express
(A3) as a closed contour integral. Thus by using the residue
theorem (A3) can be expressed as a sum of all of the residues
of the integrand enclosed by the contour. The contour we
have chosen conveniently avoids enclosing any of the poles
of the polarizability or the Green’s function, but surrounds the
poles of the hyperbolic cotangent which lie along the positive
imaginary axis at complex frequencies ξn = 2πn/β, having
residue 2/β each, and giving the final expression for the force

fk = 2

β

∞∑
n=0

′
α(iξn)∂k(x)TrG(iξn,�x,�z)

∣∣∣∣
�x=�z

. (A4)

Since the contour passes directly through the zero-frequency
pole only half of its residue contributes to the sum above as
denoted by the prime, i.e.,

∑∞
n=0

′ = ∑∞
n=0(1 − δn0/2).

2. Evanescent and propagating waves

To understand the nature of the nonequilibrium force
correction (91), we study the Green’s function Gret

ik (ω′,�x,�y)
in the vacuum region.

In equilibrium the fluctuations of the field in this region
(z > 0) come in two categories: left-incident waves and their
reflected components, and waves that partially transmit into the
vacuum region. By use of the fluctuation-dissipation relation
we use Gret

ik (ω′,�x,�y) to identify the effects associated with
partially transmitted field fluctuations.

In the vacuum half-spaceGret
ik (ω′,�x,�y) is obtained by solving

the classical equations of motion for the field, subject to
dielectric boundary conditions in the z = 0 plane, sourced by

a δ function. Its form can be taken from [65] or the Appendix
of [33] and is written below for both spatial arguments lying
in the vacuum half-space:

Gret
ij (ω′,�x,�x ′) = Go

ij +
∑

σ=TE,TM

∫
d2k‖

iω′2

8π2kz

eσ,i(+)eσ,j (−)

×Rσeikz(z+z′)ei�k‖·(�x‖−�x ′
‖). (A5)

Above Rσ are the Fresnel reflection coefficients where the
index σ refers to the polarization [implicitly appearing below
(A9) and (A10)]. The polarization vectors for the field in
the vacuum region are eσ,i(±), where eTE(±) = k̂‖ × ẑ and
eTM(±) = (k‖ẑ ∓ kzk̂‖)/ω′; k̂‖ and ẑ are unit vectors, ẑ normal
to the vacuum dielectric interface with k̂‖ directed parallel to
the projection of the wave vector in the plane of the interface;

kz =
√

ω′2 − k2
‖ is the z component of the wave vector. The

free field component of the Green’s functions, or bulk term, is
Go

ij and would be present whether the dielectric were there or
not. The bulk term leads to a divergence in the energy but has
no spatial dependence at coincidence, and so we discard it as
we require the force to vanish at infinite atom-surface spacing.

Let us now focus on the portion of the atom-surface force in
thermal equilibrium that arises from fluctuations of the field,
be them induced or intrinsic, given by

f FF
k = q2

4π

∫ ∞

−∞
dω′δij g∗

ret(ω
′)∂k(x)GH

ij (ω′,�x,�z)

∣∣∣∣
�x=�z(τ )

= 2
∫ ∞

−∞
dω′α∗(ω′) coth[βω′/2]δij ∂k(x)

× Im
[
Gret

ij (ω′,�x,�z)
]∣∣∣∣

�x=�z(τ )

, (A6)

where FF stands for field fluctuations. Tracing over the indices
of the Green’s function, taking the spatial derivative, and
setting the two spatial arguments to the position of the atom,
we can express the FF contribution to the force: as

f FF
k = − 1

4π2

∫ ∞

−∞
dω′

∫
d2k‖ω′2α∗(ω′) coth(βω′/2)

× Im

{[
RTE + RTM

(
k2
‖ − k2

z

ω′2

)]
ei2kzz

}
. (A7)

When both spatial arguments lie in the vacuum half-space
Gret

ik (ω′,�x,�y) decomposes into two contributions. First, field
fluctuations in the vacuum region give rise to propagating
waves, in particular, waves moving in the negative z direction
will reflect from the dielectric surface giving rise to waves
propagating in the positive z direction. Second, a field
fluctuation within the dielectric producing waves propagating
toward the vacuum-dielectric interface will partially transmit
into the vacuum region. One consequence of this is that the z

component of the wave vector in (A7) is not necessarily real.
For values of |k‖| < ω′ we see that kz is real but becomes
pure imaginary for the integration range |k‖| ∈ (ω′,∞). The
former is associated with the propagating solutions to the
wave equation in the vacuum and the latter with evanescent
waves.

We can isolate the influence of the evanescent modes on the
force if we restrict the integration range so that the magnitude
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of the transverse momenta is strictly greater than that of the
wave frequency:

f
FF,EW
k = − 1

π

∫ ∞

0
dω′

∫ ∞

ω′
dk‖k‖ω′2Re[α(ω′)] coth(βω′/2)

× Im

{[
RTE + RTM

(
k2
‖ − k2

z

ω′2

)]
ei2kzz

}
, (A8)

where EW stands for evanescent waves.
In this range the z component of the wave vector is pure

imaginary, kz → iκ , and this property can be used to simplify
the equation for the force by explicitly taking the imaginary
part of the integrand inside the curly brackets {· · · }. We note
that

Im[RTE] = Im

[
kz − k′

z

kz + k′
z

]
= 2κRe[k′

z]

|kz + k′
z|2

, (A9)

Im[RTM] = Im

[
ε(ω′)kz − k′

z

ε(ω′)kz + k′
z

]
= 2κRe[ε(ω′)k

′∗
z ]

|ε(ω′)kz + k′
z|2

= 2κRe[k
′
z](k

2
‖ + |k′

z|2)

ω′2|ε(ω′)kz + k′
z|2

, (A10)

where k′
z =

√
ε(ω′)ω′2 − k2

‖ is the z component of the
wave vector in the dielectric and in the last step we have
used the identity ω′2Re[ε(ω′)k

′∗
z ] = Re[k

′
z](k

2
‖ + |k′

z|2). To
bring the force due to evanescent waves into its final form
we make the change of variables k‖ = ω′q and note that√

2Re[k′
z] =

√
Re[ε(ω′)]ω′2 − k2

‖ + |ε(ω′)ω′2 − k2
‖|:

f
FF,EW
k = −

√
2

π

∫ ∞

0
dω′

∫ ∞

1
dqq ω′4Re[α(ω′)] coth(βω′/2)

×
√

q2 − 1
√

Re[ε(ω′)] − q2 + |ε(ω′) − q2|
×

[
1

|
√

1 − q2 +
√

ε(ω′) − q2|2

+ (2q2 − 1)(q2 − |ε(ω′) − q2|)
|ε(ω′)

√
1 − q2 +

√
ε(ω′) − q2|2

]
e−2zω′

√
q2−1.

(A11)

This expression now quantifies the force on the atom due only
to evanescent field fluctuations.

3. Nonequilibrium correction: Relation to the
equilibrium force

In this section we explicitly evaluate the the nonequilibrium
correction to the force beginning with the convolution of the

Green’s functions in f
neq
k . Starting from (91) we note that

the Green’s functions appearing are those with support at one
point in the vacuum half-space and the other located within
the medium. Using the appendices of Refs. [66] and [67] we
can evaluate the convolution of the Green’s function product:

I
def=

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ 0

−∞
dzGret,L

ij (ω′,�r1,�x)∂zGij∗
ret,L(ω′,�r2,�x)

= 1

16π2

∫
d2k‖ei�k‖·(�r1‖−�r2‖) (−ik∗

z )ω′4

2|k′
z|2Im[k′

z]

×
[
|TTE|2 + |TTM|2

(
k2
‖ + |kz|2

ω′2

)(
k2
‖ + |k′

z|2
|ε(ω′)|ω′2

)]

× ei(kzz1−k∗
z z2). (A12)

Above TTE and TTM are the Fresnel transmission coefficients
for the TE- and TM-polarized waves. After making the change
of variables k‖ = ω′q, plugging in the explicit forms for the
Fresnel coefficients, and setting �r1 and �r2 to be the position
of the atom, I separates into two contributions, one from
evanescent waves and the other from propagating waves
(labeled EW and PW):

IEW = −
√

2

4π

∫ ∞

1
dqq

ω′3|ω′|
√

q2 − 1

Im[ε(ω′)]

×
√

Re[ε(ω′)] − q2 + |ε(ω′) − q2|e−2z|ω′ |
√

q2−1

×
[

1

|
√

1 − q2 +
√

ε(ω′) − q2|2

+ (2q2 − 1)(q2 + |ε(ω′) − q2|)
|ε(ω′)

√
1 − q2 +

√
ε(ω′) − q2|2

]
,

IPW = − i
√

2

4π

∫ 1

0
dqq

ω′4√1 − q2

Im[ε(ω′)]

×
√

Re[ε(ω′)] − q2 + |ε(ω′) − q2|

×
[

1

|
√

1 − q2 +
√

ε(ω′) − q2|2

+ (q2 + |ε(ω′) − q2|)
|ε(ω′)

√
1 − q2 +

√
ε(ω′) − q2|2

]
.

For evanescent waves we have constrained the imaginary wave
vector kz to be positive by expressing it as kz = i|ω′|

√
q2 − 1

after the change of variables k‖ → ω′q. Combining this with
the expression for the nonequilibrium correction to the force
(91) we can express the force as (92) and (93).
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