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sublevels and x-ray-line polarization of ions
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The Breit-Pauli R-matrix (BPRM) method was employed to calculate x-ray line polarization resulting from
electron-impact excitation to excited-state magnetic sublevels (MS) of complex ions. In the development of
this work, the calculation of MS electron-impact excitation cross sections in the present BPRM method
is computationally efficient when the angular integration of the scattering polar angle is performed in an
analytical manner. The BPRM method is then applied to calculate the line polarization of 3C (λ = 15.01 Å)
and 3D (λ = 15.26 Å), two well-known x-ray lines of 17 (an ion with a medium nuclear charge and ion charge). We
demonstrate in this work the resonance effects in MS cross sections, which contribute to the energy dependence
in the polarization. The BPRM calculations of Fe XVII are further compared with the results calculated by the
Dirac R-matrix (DRM) method. Generally, most of the results calculated from the BPRM method and the DRM
method are in good agreement. This comparison confirms the earlier DRM calculations of resonance effects in
MS electron-impact excitation cross sections of 3C and 3D, and thus demonstrates the applicability of the BPRM
method to the calculation of x-ray line polarization of 3C and 3D, important for the analysis of x-ray spectra
observed on an electron beam ion trap.
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I. INTRODUCTION

The study of x-ray line polarization is needed for the
physical interpretation and analysis of x-ray radiation spectrum
in electron beam ion trap (EBIT) measurements [1,2]. An EBIT
is a most useful devices for testing theoretical calculations of
x-ray physics in highly charged, collisionally ionized plasmas
[3,4]. In EBIT experiments, ions are excited by collisions with
a beam of electrons, and the anisotropy of the beam’s velocity
distribution generally gives rise to excited states that can
emit polarized lines. The polarization spectroscopic analysis
may also provide new diagnostic insights for other laboratory
and distant astrophysical plasmas. For example, x-ray line
polarization spectroscopy may be applied to the future studies
of plasma conditions and parameters of laser or Z-pinch inertial
confinement fusion, magnetic confinement fusion, solar flares,
coronal mass ejection, and other exotic sources [5–8].

The determination of the polarization of 3C and 3D lines
in Fe XVII, an ion with a medium nuclear charge Z and ion
charge z, has become essential for benchmarking theoretical
calculations using an EBIT setup [2–4,9]. Lines 3C (λ =
15.01 Å) and 3D (λ = 15.26 Å) are two of the strongest Fe
XVII x-ray lines, arising from dipole transitions 3d → 2p with
target state total angular momentum Jι = 1◦ → 0. Currently, a
polarization value of 0.40, constant over a broad energy range
for both the 3C and 3D lines has been used in the spectral
analysis of EBIT experiments [3,10].

The relativistic close coupling Breit-Pauli R-matrix
(BPRM) method has been extended to the calculations of
magnetic sublevel (MS) electron impact excitation (EIE)
cross sections for ions [11] and for neutral atoms [12].
The BPRM method was applied to the calculation of line
polarization in He-like ions [11]. However, the BPRM method
has not been applied to the calculation of MS EIE cross
sections and polarization of Fe XVII. We note that the fully
relativistic distorted-wave (RDW) method has been applied to

the calculation of MS EIE cross sections and polarization of
Fe XVII [13,14].

In our previous work [13], the fully relativistic Dirac R-
matrix (DRM) method was extended to the calculations of
MS EIE cross sections and line polarization for ions. This
DRM method has also been applied to the calculation of MS
EIE cross sections and x-ray line polarization of Fe XVII. It
was found in Ref. [13] that polarization is a function of both
the electron energy and the electron beam width. Therefore, a
proper treatment of polarization is necessary for EBIT spectral
analysis. Note that, in our 2009 PRA paper [13], there was an
error in the computer code of the subroutine to calculate the
Coulomb phase shift. Due to this error, the part of the numerical
data in this paper to support our DRM method is incorrect (see
the Comment and Reply in Ref. [13] for further discussion).
However, the revised calculation in our 2010 Reply shows that
the wealth of resonance features still appears to be real, and
these features are reconfirmed by that revised calculation.

In this paper, we apply the BPRM method to calculate
MS EIE cross sections and polarization of x-ray lines 3C
and 3D of Fe XVII. The angular integration of the scattering
polar angle in the expression of MS EIE cross section is
performed analytically, so the calculation in the present BPRM
method is computationally efficient. This technique is used
here following the work of the distorted-wave (DW) method
in Ref. [15] for the calculation of MS EIE of ions. This similar
technique was also used in our previous development of the
fully relativistic DRM method for the calculation of MS cross
sections and x-ray line polarization.

We also carry out a comparative study of MS EIE cross
sections and polarization of 3C and 3D of Fe XVII calculated
by the BPRM method in this work and by the DRM method in
our previous work. To our knowledge, a comparative study of
MS EIE cross sections with the BPRM method and the DRM
method has not been made in the literature. We note that a
comparative study of EIE for fine-structure levels of Fe XVII
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by the BPRM calculation [16] and by the DRM calculation
has been made in Ref. [17].

Following the Introduction, we outline the BPRM method
for the calculation of MS EIE cross sections and x-ray line po-
larization of ions in Sec. II. In Sec. III, as a test case study, our
BPRM method is employed to the calculation of MS EIE cross
sections and x-ray line polarization of Fe XVII. The BPRM cal-
culations are compared with the results calculated by the DRM
method. A brief summary and discussion is given in Sec. IV.

II. THEORY

Here we sketch the relevant details of the two main aspects
in the BPRM theory: the relativistic calculations and the nature
of electron correlation effects or channel coupling effects in
the close coupling (CC) expansion. In the BPRM theory, the
Hamiltonian is given as follows [18]:

H BP
N+1 = H NR

N+1 + H mass
N+1 + H Dar

N+1 + H so
N+1. (2.1)

In this equation H NR
N+1 is the nonrelativistic Hamiltonian along

with the one-body mass-velocity term, the Darwin term, and
the spin-orbit term—the result of reducing the Dirac equation
to the Pauli form and dropping two-body electron-electron
contributions. Since only the last terms breaks LS symmetry
(leading to fine-structure levels Jπ of total angular momentum
quantum number J at parity π ), mass and Darwin terms may
be retained to great effect in computationally cheaper LS

coupling calculations.
Relativistic fine-structure transitions in the Breit-Pauli

approximation may be considered with an intermediate JK

pair-coupling representation:

�Jι + ��ι = �K,

�K + �sι = �J , (2.2)

where ��ι and �sι are the orbital and spin angular momentum of
the free electron, respectively. The total angular momentum Jι

refers to the target level.
Using a partial wave expansion for the colliding electron

in the BPRM method, the coupled-channel wave function
in the inner region for the (e + Fe XVII) system at a given
symmetry Jπ (in an intermediate pair-coupling scheme) may
be expressed as products of the target ion states and partial
waves:

�(E; e + Fe XVII) =
∑

i

χi(Fe XVII)θi(�)

+
∑

j

cj	j (Fe XVI), (2.3)

where � denotes the continuum (E > 0) states of a given sym-
metry Jπ , expanded in terms of the core ion eigenfunctions
χi(Fe XVII) with a specific total angular momentum and parity
combination Jιπι, and the �ι partial wave θi(�ι) (containing
radial bases) for the colliding (N + 1)th electron with wave
number kι in a channel labeled Jιπι kι�ι[Jπ ] (the channel
energy k2

ι < 0 if the channel is closed). The symbol 	j (Fe XVI)
marks correlation wave functions made up of (N + 1) bound
electrons to (a) compensate for the orthogonality conditions
imposed on continuum with bound orbitals and (b) represent
additional short-range correlations that are often of crucial

importance in scattering and radiative CC calculations. The
variationally added functions 	j (Fe XVI), sometimes referred
to as “bound channels” as opposed to the continuum or
“free” channels in the first sum over the target states, form
a set of L2-integrable antisymmetrized wave functions. The
BPRM method is used to find the unknown continuum radial
functions θi(�) and CC expansion coefficients cj in Eq. (2.3).
The continuum states satisfy certain boundary conditions. In
Eq. (2.3), both spectroscopic orbitals and pseudo-orbitals may
be included.

In relativistic BPRM calculations, sets of collisional sym-
metry SLπ are recoupled to obtain the states of the (e + Fe
XVII) system with total Jπ , followed by diagonalization of
the (N + 1)-electron Hamiltonian. Details of diagonalizing
H BP

N+1 at the R-matrix boundary are given in Ref. [19], as is the
outward propagation.

The reactance K-matrix describes the asymptotic form of
the entire wave function of the (e + Fe XVII) system for the
scattering process. In BPRM theory, when matching the inner
and outer regions, the K-matrix may be obtained from a set of
asymptotic radial functions for the open channels,

Fii ′(r) −→ k
−1/2
i (sin ϕiδii ′ + cos ϕiKii ′) when r → ∞,

(2.4)

ϕi = kir − 1
2�iπ + ηi ln(2kir) + σ�i

, (2.5)

where ηi = (Z − N )/ki and i ′ indexes the linearly indepen-
dent solution of the coupled equations in the outer region. The
Coulomb phase shift σ�i

for the orbital angular momentum �i

of the free electron is given by

σ�i
= arg �(�i + 1 − iηi). (2.6)

When the electron is scattered from direction k̂i to k̂f ,
the scattering amplitude (with the Condon-Shortley phase
convention for the spherical harmonics) f (αiJiMi,αf Jf Mf )
from the initial sublevel αiJiMi to the final sublevel αf Jf Mf

of the target is expressed in terms of the T-matrix by [13,15,20]

f (αiJiMi,αf Jf Mf ) = 2π√
kikf

∑
�im�i

∑
�f m�f

i�i−�f +1ei(σ�i
+σ�f

)

×Y ∗
�im�i

(k̂i)Y�f m�f
(k̂f )Tβiβf

, (2.7)

where the symbols C and Y are Clebsch-Gordan coeffi-
cients and spherical harmonics, respectively; and the sym-
bols M and m are the corresponding magnetic quantum
numbers. The notation βi = �i1/2m�i

msi
αiJiMi and βf =

�f 1/2m�f
msf

αf Jf Mf with αi and αf the additional quantum
numbers is used to specify the initial and final target magnetic
states, respectively.

The expression of MS EIE cross section
σ (αiJiMi,αf Jf Mf ) is then given by

σ (αiJiMi,αf Jf Mf )

= kf

2ki

∫ ∑
msi

∑
msf

|f (αiJiMi,αf Jf Mf )|2dk̂f . (2.8)

In order to obtain a computationally efficient expression
for σ (αiJiMi,αf Jf Mf ), we perform an analytical angular
integration for Eq. (2.8), with the aid of the orthogonality
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of spherical harmonics, following the development of the DW
method in Ref. [15]. After transforming the T-matrix from the
uncoupled representation to the coupled representation,

Tβiβf
=

∑
JM

∑
KiMKi

∑
Kf MKf

C
Ji�iKi

Mim�i
MKi

C
Ki1/2J

MKi
msi

M

×C
Jf �f Kf

Mf m�f
MKf

C
Kf 1/2J

MKf
msf

MTγiγf
, (2.9)

we derive the final analytical expression for MS EIE cross
section σ (αiJiMi,αf Jf Mf ) (in units of πa2

0 with a0 as the
Bohr radius):

σ (αiJiMi,αf Jf Mf )

= 1

2k2
i

∑
JJ ′

∑
�i�

′
i

∑
KiK

′
i

∑
Kf K ′

f

∑
�f

∑
msi

∑
msf

× i�i−�′
i [(2�i + 1)(2�′

i + 1)]
1
2 e

i(σ�i
−σ�′

i
)

×C
Ji�iKi

Mi0Mi
C

Ki1/2J

Mimsi
MC

Jf �f Kf

Mf m�f
MKf

C
Kf 1/2J

MKf
msf

MC
Ji�

′
iK

′
i

Mi0Mi
C

K ′
i 1/2J ′

Mimsi
M

×C
Jf �f K ′

f

Mf m�f
MKf

C
K ′

f 1/2J ′

MKf
msf

M Tγiγf
T ∗

γ ′
i γ

′
f
. (2.10)

Here γi = Ji�iKi1/2 αiJM and γf = Jf �f Kf 1/2 αf JM .
The factor i�i−�′

i on the RHS of Eq. (2.10) should be removed
if the Fano and Racah phase convention instead of the Condon-
Shortley phase convention for the spherical harmonics is
adopted. The unitarized and complex T-matrix is calculated
from the symmetric K-matrix by

T = 2iK/(I − iK). (2.11)

The K-matrix calculated by the BPRM codes [19] provides
the input to the computer program for the calculation of MS
EIE cross sections.

III. CALCULATION AND RESULTS

We have written a computer program, based upon the
formulas of the BPRM method developed in the preceding
section, to calculate the specific MS EIE cross sections σ0(E)
and σ1(E) for both 3C and 3D of Fe XVII. We use the notation
σ0(E) and σ1(E) to represent MS EIE cross sections with
the magnetic quantum number of the upper-level Mf = 0 and
Mf = 1, respectively. The computer program is then used to
calculate the polarization of 3C and 3D x-ray line emission in
Fe XVII.

In our BPRM calculations, we constructed a large
eigenfunction expansion over the 15 configurations 2s22p6,
2s22p5n�, 2s2p6n� up to the principal quantum number n = 3
and the n = 4 complexes of Fe XVII, yielding 89 fine-structure
levels corresponding to 49 LS terms. Full details of the
target calculations and the BPRM calculation for EIE cross
sections between fine-structure levels have been reported in
our previous work [9,16].

The effective EIE cross section σ̄ (E,W ) is defined from the
detailed MS excitation cross section σ (E′) as

σ̄ (E,W ) =
∫

σ (E′)g(E,W ; E′)vedE′∫
g(E,W ; E′)vedE′ , (3.1)

where ve is the velocity of the incident electron. The electron
distribution function is g(E,W ; E′) and, for an EBIT, is
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FIG. 1. (Color online) Collision strength � (black) and effective
collision strengths �̄ (colored or gray curves) for EIE to 3D magnetic
sublevel Mf = 1 of Fe XVII: (a) BPRM method, (b) DRM method.
Green (gray with oscillation) curve: W = 5 eV; blue (gray without
oscillation) curve: W = 30 eV.

generally assumed to be a Gaussian peaked at E, with a full
width at half maximum defined as W .

Figures 1 and 2 show the MS collision strengths � = wik
2
i σ

as a function of incident electron energy Ei for 3D, where
wi is the statistical weight of the initial state and ki is the
wave number of the incident electron. The effective MS
collision strengths �̄ for W = 5 eV and W = 30 eV are
also shown in the figures to gauge the resonance effects.
The BPRM calculation is shown in the upper panel, and the
DRM calculation is shown in the lower panel for comparisons.
Large resonance effects and complicated resonance structures
are demonstrated in both Figs. 1 and 2. In the low-energy
resonance region, the effect of resonances may enhance the
background collision strengths by an amount up to as much as
40% or more, depending on the electron energy and the beam
width. The features of 3D collision strengths calculated by the
BPRM and DRM methods are generally in good agreement,
except for the case of �̄ with a smaller W = 5 eV, for which we
find some significant differences. We note that the backgrounds
of the 3D MS collision strengths in this work are in agreement
with the previous RDW calculations with the inclusion of the
target states up to n = 3 [14]. In the energy range shown
in our figures, the MS collision strengths from this RDW
calculation for 3D are 5.58 × 10−3 at Ei = 62.78 Ry and
6.10 × 10−3 at Ei = 74.78 Ry for Mf = 1; and 1.22 × 10−2 at
Ei = 62.78 Ry and 1.46 × 10−2 at Ei = 74.78 Ry for Mf = 0,
respectively.

Similarly, Figs. 3 and 4 show the detailed and effective MS
collision strengths as a function of incident electron energy
Ei for 3C. Again, the background collision strengths and
resonance features calculated by the BPRM method and the
DRM method are generally in good agreement. As seen from
Figs. 3 and 4, resonance effects are also a bit significant for
3C, although they are less strong than for the case of 3D.
This is expected, because 3D is an intercombination dipole
transition while 3C is not. We note that the backgrounds of the
3C MS collision strengths in this work are also in agreement
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FIG. 2. (Color online) Collision strength � (black) and effective
collision strengths �̄ (colored or gray curves) for EIE to 3D magnetic
sublevel Mf = 0 of Fe XVII: (a) BPRM method; (b) DRM method.
Green (gray with oscillation) curve: W = 5 eV; blue (gray without
oscillation) curve: W = 30 eV.

with the previous RDW calculations with the inclusion of the
target states up to n = 3 [14]. In the energy range shown in our
figures, the MS collision strengths from this RDW calculation
for 3C are 2.14 × 10−2 at Ei = 63.82 Ry and 2.39 × 10−2 at
Ei = 75.82 Ry for Mf = 1; and 4.65 × 10−2 at Ei = 63.82 Ry
and 5.66 × 10−2 at Ei = 75.82 Ry for Mf = 0, respectively.

When the 3C and 3D x-ray emission is observed at an
angle of 90◦ with respect to the electron beam direction in
EBIT measurements, the polarization can be calculated from
the MS EIE cross sections σ0(E) and σ1(E) [20]. The energy-
dependent expression of polarization P (E) for 3C and 3D is
defined as [13]

P (E) = σ0(E) − σ1(E)

σ0(E) + σ1(E)
. (3.2)
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FIG. 3. (Color online) Collision strength � (black) and effective
collision strengths �̄ (colored or gray curves) for EIE to 3C magnetic
sublevel Mf = 1 of Fe XVII: (a) BPRM method; (b) DRM method.
Green (gray with oscillation) curve: W = 5 eV; blue (gray without
oscillation) curve: W = 30 eV.
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FIG. 4. (Color online) Collision strength � (black) and effective
collision strengths �̄ (colored or gray curves) for EIE to 3C magnetic
sublevel Mf = 0 of Fe XVII: (a) BPRM method; (b) DRM method.
Green (gray with oscillation) curve: W = 5 eV; blue (gray without
oscillation) curve: W = 30 eV.

Further detailed discussions for the degree of linear polar-
ization of the emitted radiation are given in our previous
paper [13].

Our polarization calculations for 3C and 3D are shown in
Figs. 5 and 6. Generally, the polarization calculated with the
BPRM and DRM methods are in good agreement, except for
the case of P̄ (E,W ) with a smaller W = 5 eV, for which we
find noticeable differences. The polarization of 3C and 3D
is shown in the figures to be energy dependent, in particular
in the resonance region with low incident electron energy.
Furthermore, oscillation features in polarization are more
pronounced in 3D. Due mainly to the resonances in MS cross
sections, negative polarization at certain energy regions show
up in both 3C and 3D.
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FIG. 5. (Color online) Polarization P (E) (black) and effective
polarization P̄ (E,W ) (green or gray curve with oscillation for W =
5 eV; blue or gray curve without oscillation for W = 30 eV) in 3D
of Fe XVII. Top panel: BPRM method; bottom panel: DRM method.
Dotted curve: a constant value used in EBIT [3,10].
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FIG. 6. (Color online) Polarization P (E) (black) and effective
polarization P̄ (E,W ) (green or gray curve with oscillation for W =
5 eV; blue or gray curve without oscillation for W = 30 eV) in 3C
of Fe XVII. Top panel: BPRM method; bottom panel: DRM method.
Dotted curve: a constant value used in EBIT [3,10].

The effective polarization P̄ is defined as [13]

P̄ (E,W ) = σ̄0(E,W ) − σ̄1(E,W )

σ̄0(E,W ) + σ̄1(E,W )
. (3.3)

The effective polarization P̄ calculated using Eq. (3.3) is
also shown in Figs. 5 and 6. For 3C, P̄ varies little for both
W = 5 and 30 eV, but for 3D, P̄ shows large oscillations in E.
Depending on the electron beam energy and the beam width,
the effective polarization of 3C and 3D may significantly
deviate the constant value of 0.4, which is currently used in the
analysis of EBIT x-ray spectrum [3,10]. We note that cascade
effects may not play an important role for the polarization
calculations at low energy, and they are not included in the
present calculations.

IV. SUMMARY AND DISCUSSION

In this work, we report a BPRM method and develop a
computer program to calculate EIE to magnetic sublevels and
x-ray line polarization. The BPRM method is applied to the
calculations of EIE to specific MS of the upper states of the 3C
and 3D transitions in Fe XVII, from which we compute the line
polarizations. The present BPRM method is computationally
efficient when the angular integration of the scattering polar
angle is performed analytically. From the results of our BPRM
calculations, resonance effects in MS EIE cross sections and
oscillation features in polarization are demonstrated.

We also report the corresponding calculations from our
DRM method [13] for comparisons. For a specific case study
of MS EIE for strong dipole lines 3C and 3D of Fe XVII,
which is an ion with a medium nuclear charge Z and medium
ionization state (i.e., with a medium ion charge z), a generally
good agreement for most of the results calculated from the
BPRM method and the DRM method is established in this
work. This agreement shows the applicability of the BPRM
method to the calculation of x-ray line polarization of 3C and
3D, important for the analysis of EBIT x-ray line spectrum. We
should note that this agreement may be expected only where
the applications of the BPRM and DRM methods overlap.
Because the BPRM method is generally computationally more
efficient than the DRM method, one may further argue that the
BPRM method for the calculations of the MS cross sections
and polarization (of strong dipole lines in particular) is more
applicable to ions with a low to medium nuclear charge Z and
ion charge z, while the DRM method is more applicable to
ions with a medium to high nuclear charge Z or ion charge z.
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