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Electron loss of fast projectiles in collisions with molecules
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The single- and multiple-electron loss of fast highly charged projectiles in collisions with neutral molecules
is studied within the framework of a nonperturbative approach. The cross sections for single-, double-, and
triple-electron losses are calculated for the collision system Feq+ → N2 (q = 24, 25, 26) at the collision energies
10, 100, and 1000 MeV/nucleon. The effects caused by the collision multiplicity and the orientation of the axis of
the target molecule are treated. It is shown that the collision multiplicity effect leads to considerable differences
for the cases of perpendicular and parallel orientations of the molecular axes with respect to the direction of the
projectile motion, while for chaotic orientation such an effect is negligible.
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I. INTRODUCTION

Stripping, or electron loss by heavy projectiles in the
collisions with atoms, has been the subject of extensive studies
during the last decade. Various approaches for the theoretical
study of projectile electron loss cross sections in collisions with
neutral targets are presented in Ref. [1] and in the monograph
by Voitkiv and Ullrich [2], where a detailed discussion of the
experimental results can be found. In the theoretical study
of such processes, both the treatment of the effects caused
by the strong field of the projectile and accounting for the
transitions in the target state are important. Such a treatment
requires using nonperturbative methods for the calculation of
stripping cross sections [3,4]. Recently such an approach was
developed on the basis of sudden perturbation approximation
and was used for the study of electron losses by fast highly
charged projectiles with neutral gas atoms [5,6].

Despite the fact that considerable progress has been made
in the theoretical study of electron loss by fast projectiles, most
of the treatments are restricted because they consider atomic
targets. However, the study of electron loss by fast highly
charged projectiles in collisions with molecular targets is of
fundamental and practical importance because of the number
of new effects that cannot be observed in the case of atomic
targets.

One such effect is the strong dependence of the ionization
(both for the projectile and the target) cross section on the
orientation of the molecular axis with respect to the direction
of the collision velocity. Previously the existence of such an
effect was mentioned in Refs. [7–9], where the ionization of
molecular targets in their collisions with fast highly charged
ions was studied.

Another important effect that appears in the collision of
fast highly charged projectiles with molecules is the so-called
collision multiplicity effect [10]. It implies that after the
collision with the first atom of the target, before the relaxation,
the projectile collides with the second atom being in the excited
state. Considerable contributions from multiplicity effects to
the ionization cross section and energy losses of fast highly
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charged ions with diatomic molecules [10] and nanoparticles
[11] were found recently.

In particular, it was shown in Refs. [10,11] that
the orientation and multiplicity effects occur when the time
interval between two subsequent collisions is less than
the relaxation time. Furthermore, it is clear that the multiple
collisions of the projectile with target molecule atoms occur
when the direction of the projectile motion is close to the
orientation of the target molecule axis. Qualitatively, the role
of the orientation effects can be understood for a diatomic
molecule as follows. In the study of fast collisions of highly
charged projectiles with diatomic molecules, one should take
into account the two-step processes which include collisions
of the projectile with the first atom of the molecule which
cannot relax into the ground state before the collision with the
second atom of the target. We note that in the present paper
we consider the case when the time between two subsequent
collisions is much shorter than the characteristic period of
the projectile electrons. Therefore, the processes we deal with
can be interpreted as the variation of the “atomic-double-slit”
processes in which projectile electrons interact with both
molecular centers in a coherent way (see, e.g., Ref. [12]).
It is important to note that the collision multiplicity effects
contribute only to the projectile ionization or excitation cross
section without causing any changes in the transitions of
target states. Indeed, in subsequent collisions with each atom
of the target molecule the ionization or excitation occurs in
different atoms. It is clear that the above arguments are true
for polyatomic molecules, too.

In this paper we develop a nonperturbative approach which
is based on the use of sudden perturbation approximation
and we use it for the calculations of the electron loss cross
sections of fast highly charged projectiles in collisions with
polyatomic molecules. The method allows to take into account
all the transitions, in both target and projectile electronic states.
Moreover, it is possible to achieve considerable simplification
of the expressions for the electron-loss cross sections in the
cases of high enough projectile charges and multielectron
targets.

The calculations of the electron-loss cross sections and
their dependence on the orientation of the molecular axis are
presented for single, double, and triple stripping of fast highly
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charged iron ions. It is also shown that the collision multiplicity
effect leads to considerable difference between the stripping
cross sections for the cases of parallel and perpendicular
orientation of the molecular axis with respect to the direction
of projectile motion. However, for a chaotic orientation of the
axis of the target molecule, such an effect is negligible. Finally,
it should be noted that for the calculation of the multiple
stripping cross section of the fast highly charged projectiles
in their collisions with multielectron targets one should use
nonperturbative methods, since the Born approximation is not
applicable for these processes. Our approach also can be con-
sidered a nonperturbative one. However, our results concerning
the dependence of the cross sections on the molecule’s axis
orientation can be obtained within the perturbative approach,
too—at least for a single-electron ionization.

This paper is organized as follows. In the next section we
present a detailed description of the approach used, including a
derivation of the nonperturbative expressions for the stripping
cross section and its applications for the calculations of
the multiple stripping cross sections of fast highly charged
projectiles in collisions with the nitrogen molecule, N2.
Section III presents discussions of the results, and in Sec. IV
we give some concluding remarks.

II. THEORETICAL BACKGROUND

The system we are going to treat includes a fast highly
charged projectile colliding with a molecule that consists of
multielectron atoms (number of electrons, NA � 1). For such
a collision system, the cross section for excitation or ionization
of the projectile from states |0〉 to |k〉 (provided arbitrary
transition can occur in the target state) with high accuracy
(error is proportional to 1/NA) in the Glauber approximation
can be written as [6,10]

σ =
∫ ∣∣∣∣〈k| exp

{
− i

v

+∞∫
−∞

UdX

}
|0〉

∣∣∣∣
2

d2b, (1)

where v is the projectile velocity and the x axis is directed
along the vector v. If b is the impact parameter, and the target
position is fixed with one of the nuclei being at the origin of the
coordinate system, then the position of the projectile nucleus
can be given by the vector R = (X,b). Atomic units are used
here and in the following. In Eq. (1) the potential U describes
the interaction of the projectile electrons with the target, which
is considered a lengthy object. In other words, the cross section
in Eq. (1) is expressed in terms of the charge density of target
electrons [10,11]. Formally, Eq. (1) has the same form as that
for the ionization cross section in the “frozen” approximation
for the target electrons. However, as shown in Ref. [4], for the
multielectron targets (NA � 1) this formula describes (with
the error order of 1/NA) the transition cross section for the
projectile electrons summed over the complete set of final
states of the target electrons. For a molecule consisting of
multielectron atoms, the electronic density is almost the same
as the sum of that for isolated atoms. Therefore, for such a
case we can consider the target as consisting of isolated and
noninteracting atoms [10,11]. We describe the charge density

of each atom in the target within the Hartree-Fock-Slater model
[13], in which the spatial charge density can be written as

ρm (r) = − Zm

4πr

3∑
i=1

Am,iα
2
m,i e−αm,i r ,

3∑
i=1

Am,i = 1,

(2)

where Zm is the charge of the mth atomic nucleus, and Am,i and
αm,i are the tabulated constants that can be found in Ref. [13].
The potential created by a molecule at the point r can be written
in terms of potentials created by each atom of the molecule:

ϕ(r) =
N∑

m=1

Zm

dm

�m(dm), (3)

where N is the number of atoms in the target, dm is the distance
from the mth nucleus in the target to the observation point
r, and �m(r) is the screening function for the mth atom. In
the Hartree-Fock-Slater model, the screening function can be
written as

�m(r) =
3∑

i=1

Am,i exp(−αm,ir).

Furthermore, let us introduce the following notation: rp

is the coordinate of the projectile electrons with respect to
its nucleus (p = 1,2, . . . ,NP ), NP is the total number of
projectile electrons, and Rm = (Xm,bm) are the distances
between the projectile nucleus and the nucleus of the mth
atom of the target. If bm is the impact parameter with respect
to the mth atom, then dm = |Rm + rp|.

Therefore, the interaction potential between the target and
projectile electrons can be written as

U = −
NP∑
p=1

ϕ(rp) = −
N∑

m=1

NP∑
p=1

Zm

|Rm + rp|�m(|Rm + rp|).

(4)

Taking into account Eq. (4) for the “eikonal phase” involved
in Eq. (1), we have

χ = −1

v

+∞∫
−∞

UdX

=
N∑

m=1

2Zm

v

NP∑
p=1

3∑
i=1

Am,iK0(αm,i |bm + sp|), (5)

where K0(z) is the lowest-order McDonald function and sp

is the projection of the vector rp onto the impact parameter
plane. As shown in Ref. [6], Eq. (1) with the eikonal phase
given in Eq. (5) is applicable for relativistic collisions, too.
Thus Eq. (1) describes the cross section for the transition of
the projectile electrons from the initial state |0〉 to a state |k〉
under the assumption that arbitrary transitions can occur in the
states of target electrons. The accuracy of the formula depends
on the number of target electrons, NA; i.e., the error is of order
of the quantity ∼1/NA for NA � 1.

In the following we consider the highly charged projectiles
whose “visible” (effective) charge, ZP , is much larger than
unity (for instance, for the Fe10+ projectile, ZP = 10, while
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the nucleus charge is Z = 26). Then the characteristic size
of the projectile is much less than that of an atom of the
target molecule. Therefore, we can assume that the mean field
created by an atom acts uniformly on the projectile electrons,
corresponding to expansion of the eikonal phase in Eq. (5) in
terms of a small parameter, sp/b. This allows us to rewrite
Eq. (1) for orthogonal |0〉 and |k〉 in the following form:

σ =
∫ ∣∣∣∣〈k| exp

⎛
⎝−i

N∑
m=1

qm

NP∑
p=1

rp

⎞
⎠ |0〉

∣∣∣∣
2

d2b, (6)

where

qm = 2Zm

v

3∑
i=1

αm,iAm,iK1(αm,ibm)
bm

bm

(7)

has the meaning of the momentum transfer to each projectile
electron due to the collisions with the mth atom of the target,
and K1(z) is the first-order McDonald function.

Furthermore, we note that Eq. (6) can be applied for the
collisions of highly charged (ZP � 1) projectiles with the
neutral molecules consisting of multielectron atoms. This
requires fulfilling by Zt the condition Zt � 1, with t =
1,2, . . . ,N being the number of atoms in the target; i.e., Z1

is the nucleus charge of the first atom of the target, ZN is the
nucleus charge of the N th atom, and so on.

Since the expression for the cross section is derived within
the Glauber approximation, the energy of the projectile,
E, should be much larger than that of the projectile-target
interaction U (i.e., E � U and kL � 1, where k is the
projectile momentum and L is the interaction radius for the
potential U ). In the case of a neutral molecular target whose
size is much larger than that of the projectile, as the quantity L

one can take the characteristic size of the target. It is clear that
this condition is fulfilled for a fast highly charged projectile. In
addition, to make use of our approach we have to assume that
the sudden perturbation approximation is valid; i.e., for each
target atom (interaction) collision time, τc ∼ L/v between the
projectile and target is much shorter than the period of the
fastest (inner) electron, τe, to be ionized:

τc � τe.

Fulfillment of this condition means that target electrons
cannot change their positions during the collision time. In
this case target electrons can be considered as being in fixed
positions during the collision [14]. For relativistic projectiles
the above condition can be written as

√
1 − v2/c2 L/v � τe.

The quantity τe can be estimated for each fixed collision
system. For a multielectron collision system, with most of the
electrons to be ionized being in outer shells, we have τe ∼ 1.

As mentioned above, in order to make use of Eq. (6)
for the calculation of the projectile stripping cross sections
in the collision with neutral molecular targets, the following
condition should be fulfilled:

ZP = Z − NP � 1,

where NP is the number of projectile electrons before the
collision and Z is the charge of the projectile nucleus. This
means that the (unscreened) charge of the projectile should
be large enough that the projectile is considered a highly

charged particle. An important point in the calculations
of the projectile’s multiple stripping cross section in the
collisions with polyatomic molecules is the effects of collision
multiplicity and effects of molecular axis orientations. To
include these effects in the consideration, we need to assume
that two or more atoms in the target are on the same line
which is parallel to the vector v. To demonstrate collision
multiplicity and molecular axis orientation effects, we
consider the simplest target, a diatomic molecule. We use L to
denote the orientation vector of the molecular axis and assume
that it is directed along the line connecting nuclei of two
atoms in the molecule. Then the cross section presented by
Eq. (6) is the function of vector L; i.e., σ = σ (L) = σ (θ,φ).
Furthermore, we represent vector L in terms of spherical
coordinates with the angles φ, θ and assume the axis of the
spherical coordinate system is directed along the vector v.

In the following we are interested in the stripping cross
section averaged over the angle φ:

σ (θ ) = 1

2π

∫
σ (θ,φ) dφ. (8)

Angle θ is called the orientation angle of the molecular
axis. Then the multiplicity effect can be characterized in terms
of θ -dependent relative correction; δ is defined as δ = (σ (θ ) −
σ⊥)/σ⊥, where σ⊥ is the stripping cross section at θ = π/2. It
is easy to see that σ⊥ described the collision when the target
molecular axis is perpendicular to the projectile direction.

III. RESULTS AND DISCUSSION

Let us now apply Eq. (6) to the collision system consisting
of a fast Feq+ projectile and N2 molecule. For simplicity we
consider the cases when q = 24,25,26. Let us start from the
simplest case: stripping of a hydrogenlike projectile in the
collision with a diatomic molecule for which the cross section
can be written as

σ (θ,φ) =
∫

d2b

∫
dk | 〈k | exp{−i(q1 + q2)r} | 0〉 |2 .

(9)

Here r is the coordinate of the projectile electron with respect
to the projectile nucleus, k is the momentum of the projectile
electron lost, and qj is the momentum transfer that can be
written as qj = 2ZA

v

∑3
i=1 αiAiK1(αibj ) bj

bj
, where bj is the

impact parameter with respect to the j th nucleus of the target
(j = 1,2).

Using Eqs. (8) and (9), we have calculated the stripping
cross section σ (θ ) of the hydrogenlike projectile Fe25+ in the
collision with nitrogen molecule N2 for different orientation
angles and collision energies. A quantity we are interested
to analyze is the correction to the projectile stripping cross
section due to the collision multiplicity, which is given as
δ(θ ) = [σ (θ ) − σ⊥]/σ⊥. In Fig. 1, the results of the calculation
of such a quantity for collision system Fe25+ → N2 are
presented. The continuous line in this figure represents δ(θ )
for the collision energy 10 MeV/nucleon, while long-dashed
and short-dashed lines are the results for the energies 100
and 1000 MeV/nucleon, respectively. The angle θ is given in
radians.

Now let us consider stripping of a heliumlike projectile,
Fe25+-N2 in the collision with a N2 molecule. In this case,
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FIG. 1. The dependence of the quantity δ(θ ) = (σ (θ ) − σ⊥)/σ⊥
on the orientation of the target molecule axis θ for the collision system
Fe25+ → N2 with σ⊥ = σ (θ = π/2). The continuous line is the result
for the collision energy 10 MeV/nucleon; the long-dashed line is the
result for the collision energy 100 MeV/nucleon and the short-dashed
line is δ(θ ) for the energy 1000 MeV/nucleon. The values of θ are
given in radians.

according to Eq. (6) the cross section for the transition of a
projectile from state |0,0〉 to |n1,n2〉 can be written as

σ (θ,φ) =
∫

d2b | 〈n1,n2 | e−i(q1+q2)(r1+r2) | 0,0〉 |2 , (10)

with r1 and r2 being the coordinates of the projectile electrons
with respect to the projectile nucleus.

Following Refs. [15,16], in our calculations (final and
initial), two-electron states of the projectile are described as
symmetric products of one-electron hydrogenlike wave func-
tions with effective charges equal to the degree of ionization.
Single σ 1+(θ ) and double σ 2+(θ ) electron loss cross sections
can be calculated using Eq. (10). Here the cross section for
double stripping, σ 2+(θ ), corresponds to a transition of both
electrons into the continuum state, while the single projectile
ionization cross section σ 1+(θ ) describes the transition of
one of the electrons into the continuum by exciting another
one into a state of the discrete spectrum. Correspondingly, the
quantity δ can be estimated for both cases. In Figs. 2(a), 2(b),
and 2(c) we plotted δ as a function of orientation, θ for
the collision energies 10, 100, and 1000 MeV/nucleon,
respectively. The continuous line in this figure is the result
for single electron loss, δ = [σ 1+(θ ) − σ 1+

⊥ ]/σ 1+
⊥ , while the

dashed line describes the calculation of δ for double ionization,
i.e., δ = [σ 2+(θ ) − σ 2+

⊥ ]/σ 2+
⊥ .

Finally, we use Eq. (6) for the calculation of multiple
stripping of a three-electron (lithiumlike) projectile, Fe23+,
in the collision with a N2 molecule. In this case the electron
loss cross section describing the transition from state |0,0,0〉
to state |n1,n2,n3〉 can be written as

σ =
∫

d2b | 〈n1,n2,n3 | e−i(q1+q2)(r1+r2+r3) | 0,0,0〉 |2 ,

(11)

where r1, r2, and r3 are coordinates of projectile electrons.

(a)

(b)

(c)

FIG. 2. The dependence of the quantity δ(θ ) = (σ (θ ) − σ⊥)/σ⊥
on the orientation of the target molecule axis θ for the colli-
sion system Fe24+ → N2 for the energies (a) 10, (b) 100, and
(c) 1000 MeV/nucleon. The continuous line is the result for single
electron loss, and the dashed line is the result for double electron loss
by projectile.

As in the case of a heliumlike projectile, the wave functions
of the three electron states are taken as the symmetric
product of one-electron (hydrogenlike) wave functions with
effective charges equal to the degree of ionization discussed in
Refs. [15,16]. Single, double, and triple electron loss cross
sections of the Fe23+ projectile can be calculated using
Eq. (11). Single electron loss implies ionization of one
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electron, while the other two electrons can be excited into any
state of the discrete spectrum. Similarly, in the case of double
electron loss, two electrons are lost, while the other electron
is excited into any bound state. As in the cases of single
and double electron losses, we have calculated the quantity
δ for the cases of single-, double-, and triple-electron losses.
Figures 3(a), 3(b), and 3(c) present the results of calculation of
δ(θ ) for the collision energies 10, 100, and 1000 MeV/nucleon,
respectively. The continuous line in this figure is the result
for single-electron loss, δ = (σ 1+(θ ) − σ 1+

⊥ )/σ 1+
⊥ ; the long-

dashed line describes calculation of δ for double ionization,
δ = (σ 2+(θ ) − σ 2+

⊥ )/σ 2+
⊥ ; and the short-dashed line is the plot

of δ = (σ 3+(θ ) − σ 3+
⊥ )/σ 3+

⊥ .
As is seen from Figs. 1–3, for all collision energies,

stripping cross sections considerably depend on the orientation
angle θ ; the difference between perpendicular and parallel
orientations is about 50%–100%. It is easy to estimate
from the geometrical analysis the value of the angle θ at
which the multiplicity effect becomes essential. Since in all
cases the projectile collides with the neutral atoms of the target
molecule whose sizes are ∼1, for the internuclear distance of
target atoms denoted by L, the orientation can be estimated as
θ � 1/L. Therefore, for the nitrogen molecule, for instance,
we have L = 2.07, which gives the estimate θ � 0.5. This can
be seen also from Figs. 1–3.

Also, it should be noticed that the behavior of the quantity δ

is almost the same for all collision partners. To check this, we
have performed calculations (similar to the above) for one-,
two-, and three-electron Ni and Xe projectiles colliding with
N2, O2, and Au2 targets. The difference from the above treated
collision systems we observed for these systems was too small
to present them in this paper.

Finally, since in the experiment the cross sections for
chaotic orientation are usually measured, we have performed
calculations of the stripping cross section averaged over the
angle θ assuming uniform distribution on the orientation
angle:

σ =
∫

σ (L)
d

4π
=

∫ π

0
σ (θ )

1

2
sin θ dθ.

As shown in the results of such calculations, the corrections
due to the collision multiplicity for the case of chaotic
orientation is too small: on the order of 0.1%. In this case
the difference between the cross sections σ and σ⊥ is very
small. Thus the collision multiplicity effect is considerable
only for the case of regular (nonchaotic) orientation of the
molecular axis, while for the chaotic orientation it becomes
negligible.

IV. CONCLUSIONS

The electron losses of fast highly charged projectiles in
collisions with neutral molecules has been studied. Based
on the Glauber approximation, a nonperturbative approach
is developed to estimate single and multiple stripping cross
sections. Using the method, single-, double-, and triple-
electron-loss cross sections of the fast Fe25+, Fe24+, and Fe23+
ions in the collisions with a N2 molecule are calculated. The
effect of collision multiplicity, caused by the collisions of
the projectile with separate atoms of the target, is analyzed.

(a)

(b)

(c)

FIG. 3. The dependence of the quantity δ(θ ) = (σ (θ ) − σ⊥)/σ⊥
on the orientation of the target molecule axis θ for the colli-
sion system Fe23+ → N2 for the energies (a) 10, (b) 100, and
(c) 1000 MeV/nucleon. The continuous line is the result for single-
electron loss, the long-dashed line is the result for double-electron
loss, and the short-dashed line is the result for triple-electron loss by
projectile.

It is shown that the multiplicity effect is essential for the
case when the orientation of the target molecule axis is
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parallel or perpendicular to the projectile velocity direction,
whereas for chaotic orientation such an effect is negligible.
We note that in all the cases we calculate the total electron
loss cross sections; i.e., we perform summation (integration)
over all the continuum states of the electron after the
ionization. Therefore, in the present paper we did not discuss
the energies and directions of the emitted electrons. The
above developed method is rather simple for application
and can be used for any (polyatomic) target molecules and

for the projectiles of arbitrarily high (including relativistic)
velocities.
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