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Mutual neutralization in low-energy H+ + F− collisions
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The cross section for mutual neutralization in collisions between H+ and F− ions at low energies (E
� 10 eV) is calculated using a molecular close-coupling approach. Two different representations of the
quasidiabatic potentials and couplings of HF are used. The effect of autoionization on the cross section is
investigated. The coupled Schrödinger equation for the nuclear motion is solved using a numerical integration of
the corresponding matrix Riccati equation and the cross section for mutual neutralization is computed from the
asymptotic value of the logarithmic derivative of the radial wave function. The magnitude of the cross section
for mutual neutralization in this reaction is small compared to other systems. This can be understood by the lack
of avoided crossings at large internuclear distances. Resonant structures are found in the cross section and these
are assigned with dominant angular momentum quantum number. The cross section for mutual neutralization in
collisions of D+ and F− ions is also calculated.
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I. INTRODUCTION

In hydrogen and fluorine containing plasmas [1], mutual
neutralization in collisions of H+ and F− ions can be an
important source of charge removal. This reaction has as far as
we know never been studied theoretically or experimentally.
Here, we present a theoretical study of the reaction

H+ + F− → H(n) + F(2P ) (1)

at low collision energies.
We have previously studied dissociative recombination [2]

and ion-pair formation [3] in electron recombination with HF+
ions. A quasidiabatic representation of relevant potentials and
couplings was then determined from the calculated adiabatic
potentials [3]. The HF system is special in the sense that the
ion-pair channel is the first asymptotic channel for the excited
states of 1�+ symmetry. The next channel is the H(n = 2) +
F(2P ) that lies about 0.0267 eV above the ion-pair channel.
Therefore, this system does not have any avoided crossings
at very large distances that are found to be crucial for mutual
neutralization in collisions of H+ + H− [4], for example.
As we here will show, the lack of these curve crossings will
cause a cross section for mutual neutralization that is small in
magnitude but has a rich structure originating from, what we
think are, narrow resonances.

The outline of the paper is as follows. The calculation of
relevant quasidiabatic potentials and couplings is summarized
in Sec. II. Here states of 1�+ symmetry up to the asymptotic
limit H(n = 4) + F(2P ) are included. Two different models
describing the relevant electronic states are presented. In the
first model, only the electronic couplings among the excited
states are included, while the second model also accounts for
couplings to the ground state of HF. The method of solving
the coupled Schrödinger equation for the nuclear motion and
calculating reactive scattering cross sections is summarized
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in Sec. III. Section IV presents and discusses the resulting
cross sections for mutual neutralization. We have here also
carried out calculations on mutual neutralization in D+ + F−
collisions. Unless otherwise stated atomic units are used in the
paper.

II. POTENTIAL ENERGY CURVES AND COUPLINGS

The relevant potential energy curves of HF of 1�+
symmetry have previously [2] been calculated ab initio using
a multireference configuration interaction (MRCI) technique.
In the first step of the calculation, the molecular orbitals
are generated from a self-consistent-field calculation (SCF)
using a contracted (14s8p2d/11s7p2d) basis set for H and a
(10s7p2d/6s5p2d) triple zeta with polarization and additional
functions to describe the negative ion for F. Then, in the
second step, in order to obtain a more compact representation
of the orbitals, natural orbitals are calculated. In this step, a
configuration interaction (CI) calculation on the ground state
of HF is carried out consisting of all singles and doubles,
where the 1σ orbital is frozen and the active space contains
four orbitals, namely, 2σ , 3σ , 1πx , and 1πy . The natural
orbitals are then abstracted from this calculation. The final
step consists of the MRCI calculation using the natural orbitals
and a reference space consisting of 8 natural orbitals with
the highest occupation numbers, the lowest σ orbital which is
frozen, three σ , and four π orbitals, two πx and two πy orbitals.
Single excitations from this set of reference configurations into
the virtual orbitals are included. At each geometry, 25 roots
are calculated. Using this technique the electronically bound
adiabatic states of 1�+ symmetry are computed.

The excited neutral states consist of both Rydberg states
converging to the ground ionic core (X2�) as well as Rydberg
states converging to excited ionic cores. In a quasidiabatic
representation, these excited core Rydberg states might cross
the ionic ground state potential and become resonant states.
In order to calculate the resonant states embedded in the
ionization continuum, electron scattering calculations are
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carried out using the complex Kohn variational method [5].
These calculations will provide us with both the energy
positions and autoionization widths of the resonant states.
To obtain consistency, it is crucial to have the same target
(HF+) electronic wave function in the scattering and structure
calculations.

The nuclear dynamics is studied using a quasidiabatic
representation of the electronic states. In our previous study
on HF [3], we proposed a method to obtain not only the
quasidiabatic potentials, but also the electronic couplings
between the neutral states. In this method, a guess of the
quasidiabatic potential curves is first obtained by tracking
the states using the configuration interaction coefficients. The
Rydberg states will have the same electron configuration as
the ground state of the ion, i.e., [(1σ )2(2σ )2(3σ )2(1π )3] plus
an outer electron in a diffuse orbital. The resonant states
are Rydberg states that converge to electronically excited
ionic cores. These cores all have the (3σ ) orbital singly
excited. The quasidiabatic ion-pair state will be dominated
by the electron configurations (1σ )2(2σ )2(3σ )1(4σ )1(1π )4.
By following the configurations of the resonant states, the
quasidiabatic potential energy curves can be obtained. The
diabatic (V) and adiabatic (E) potential matrices are related by
the orthogonal transformation matrix T according to [6]

V = T−1ET. (2)

The diabatic potential matrix has the diabatic potential curves
on the diagonal and the electronic couplings as off-diagonal
matrix elements. The adiabatic potential matrix is diagonal and
its nonzero elements describe the adiabatic potential curves. It
is here assumed [3] that the transformation matrix is given by
a product of matrices describing successive 2 × 2 rotations of
the adiabatic states:

T = T1T2 . . . Tn. (3)

In the case of rotations among states 1 and 2, the matrix Ti is
given by

Ti =

⎛
⎜⎜⎜⎜⎝

cos(γi) − sin(γi) 0 0 · · ·
sin(γi) cos(γi) 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ . (4)

The rotational angles γi are assumed to be smooth functions
that go from 0 to π/2, describing diabatic and adiabatic states
that coincide on both sides of the avoided crossings. Here, we
use the analytical form

γi(R) = π

4
{1 + tanh[αi(R − Ri)]} (5)

for the rotational angles. The total transformation matrix
in Eq. (3) can be shown to be orthogonal [3]. After the
diabatic potential matrix V is set up we perform an opti-
mization procedure, where the unknown parameters αi and Ri

of the rotational angles are determined in order to optimize
the agreement between the diagonal elements of V and
the estimated diabatic potentials obtained by tracking the
configurations as described above. When the parameters
are optimized, also the electronic couplings are obtained as

the off-diagonal elements of the matrix V. By construction
[see Eq. (2)], the obtained quasidiabatic potentials have the
adiabatic potentials as eigenvalues. However, we do not show
that the coupling elements of the nuclear kinetic energy
operator (nonadiabatic interactions) for the quasidiabatic states
are identically zero. Therefore, the proposed method does not
produce any strict diabatic states [7], but rather quasidiabatic
potentials and couplings.

In our previous study on the HF system [3], two different
models describing the set of the potential energy curves and
couplings were proposed. In model I, the ion-pair state is
supposed to interact only at small internuclear distances with
the Rydberg states converging to the ground ionic core. Thus,
there were no couplings included between the ground state
of HF, X1�+, and the excited states of the same symmetry.
In Fig. 1, the quasidiabatic potentials of 1�+ symmetry for
model I of HF are shown. The ion-pair state is the dashed
(black) curve.

The electronic coupling elements are obtained as off-
diagonal elements of the diabatic potential matrix. The largest
coupling elements come from states that in the quasidiabatic
representation cross each other. Some of the relevant couplings
of the quasidiabatic potentials obtained in model I were
displayed in Fig. 3 of Ref. [3].

There has been a debate in the literature on whether or
not the ion-pair state is interacting with the ground state of
HF [8,9]. At small distances, the ground state has an ion-
pair character, while at larger distances it covalently goes to
the lowest limit H(n = 1) + F(2P ). Hence, there is a large
avoided crossing between the ground state of HF and the ion-
pair state. Similar avoided crossings are possessed by the alkali
halides such as LiF, LiCl, and NaI [10–12]. In model II of the
quasidiabatic states, the curve crossing between the ion-pair
state and the ground state of HF is included. As discussed
in our previous study [3], the inclusion of the curve crossing
between the ion-pair and the ground state of HF results in an
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FIG. 1. (Color online) Model I: Quasidiabatic potential energy
curves of 1�+ symmetry of HF. The covalent potentials are shown
as colored solid lines from the top to the bottom according their
asymptotical limits, while the potential of the ion-pair state is
displayed with the dashed (black) curve. The ground state of HF
is not displayed in the figure. The energy scale is relative to the
asymptotic limit of the ion-pair state.
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electronic coupling between these states that is an order of
magnitude larger than all other coupling elements (see Fig. 4
of [3]). The couplings between the higher excited states of
model II remain very similar to those of model I.

In the study of dissociative recombination and ion-pair
formation in electron recombination of HF+ the two models of
the potentials have produced very similar cross sections. The
inclusion of the couplings between the ion-pair and the ground
states did not have any effect on the dynamics in the reactions.

It is well known that to correctly describe the translational
motion of the electrons along with the nuclei, the so-called
electron translational factors (ETFs) have to be incorpo-
rated [13]. By including the ETFs, nonvanishing asymptotic
nonadiabatic interactions can be avoided [14]. However, the
presently studied system is such that asymptotic couplings
are not likely to have significant influence on the mutual
neutralization reaction. Rather, the reaction is believed to
be driven by the avoided crossings occurring at smaller
(R < 10a0) internuclear distances.

In Table I, the channels included in the present study are
listed. The energy is relative to the asymptotic H+ + F− ion-pair
limit. The potential curves associated with each limit in model I
and II are also given.

Since the spin-orbit coupling is not considered when the
potential energy curves are calculated, the average values for
the different J components for the atomic limits for F are used.

III. SCATTERING FORMALISM

In order to solve the coupled equations for the nuclear
motion, a partial wave expansion is used for the nuclear wave
functions:

χi(R) = 1

R

∞∑
l=0

Alui,l(R)Pl(cos θ ). (6)

In the quasidiabatic representation of the potentials, we now
obtain the coupled equations for the radial nuclear wave
functions ui,l that takes the form

[
− 1

2μ

d2

dR2
+ l(l + 1)

2μR2

]
ui,l +

M∑
j=1

Ṽij uj,l = Eui,l, (7)

where μ is the reduced mass of the molecular system and M is
the number of coupled states included in the study. Here eight
states are included in model I and nine states in model II.

Autoionization from the resonant states is included by
letting the potential energy curves become complex valued

TABLE I. Channels included in the present study.

Atomic States Model I Model II Energy (eV)

H(n = 1) + F(2P ) V11 −10.1722
H+ + F− V11 V22 0.0
H(n = 2) + F(2P ) V22, V33, V44 V33, V44, V55 0.0267
H(n = 3) + F(2P ) V55, V66 V66, V77 1.9153
H(n = 4) + F(2P ) V77, V88 V88, V99 2.5764

when they are above the ion potential and to have only real
parts otherwise:

Ṽii(R) =
{

Vii(R) − i 1
2
i(R), R < Rx,

Vii(R), R � Rx.
(8)

Here, 
i is the autoionization width of the electronically
resonant state and Rx is the internuclear distance where
the potential curves of the resonant state and ion cross.
This is the so-called local (boomerang) model for including
autoionization [15,16] and it is valid when the total energy of
the system is high enough that autoionization into a complete
set of vibrational eigenstates is possible. In the study of
dissociative recombination of HF+ we confirmed the validity
of this approximation for energies similar to those studied
for the present reaction [2]. By making the inner part of the
diagonal potential of the electronically resonant states complex
as in Eq. (8), we obtain a non-Hermitian problem [17–20].

In order to numerically integrate the Schrödinger equation,
we introduce the logarithmic derivative of the radial wave
function

yl = u′
lu

−1
l (9)

and the radial Schrödinger equation is transformed into a
matrix Riccati equation

y′
l + Ql + y2

l = 0. (10)

The physical boundary condition for the logarithmic derivative
at origin becomes a diagonal matrix with infinite elements.
Using a numerical procedure developed by Johnson [21–23],
the matrix Ricatti equation is integrated out to a region where
the potentials have reached their asymptotic form. In the
present study Rf = 50a0 is used.

By combining the value of logarithmic derivative at Rf with
the correct regular and irregular solutions of the asymptotic
states, the reactance matrix can be calculated [4]. The elements
of the scattering matrix [Sij,l(E)] are obtained as a Cayley
transformation between the open partitions of the reactance
matrix. Finally the cross section for mutual neutralization can
be computed from the scattering matrix elements

σij (E) = π

k2
j

∞∑
l=0

(2l + 1)|Sij,l − δij |2, (11)

where kj is the asymptotic wave number of the incoming
channel given by

kj =
√

2μ
(
E − Eth

j

)
. (12)

Eth
j is the asymptotic energy of state j . It can be shown [18,20]

that the formalism outlined above to calculate the cross section
remains valid even when autoionization is added to the model.

Here, Rf is varied from 50a0 outward and the cross section
was found not to change significantly. To determine the number
of partial waves included in the summation [Eq. (11)], the same
convergence criteria used in our previous study on H++ H− [4]
is applied. To reach convergence, 25 of the partial waves at
1 meV and more than a hundred partial waves at 10 eV collision
energies had to be included.

In the state-dependent cross sections for mutual neu-
tralizations, resonant structures may occur. These resonant
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structures can originate by so-called Feshbach resonances
created when the bound states interact with states that are
open for dissociation. Similar resonances are found in our
previous study on ion-pair formation in electron recombination
with HF+ [3]. Alternatively, shape resonances are formed by
the centrifugal barrier added to the diagonal elements of the
potential matrix.

In order to understand and identify these resonances,
we examine what partial waves contribute to the resonant
structures by calculating the difference between the inelastic
cross section and the contribution to this channel from a
specific angular momentum:

�σij,l(E) = σij (E) − σij,l(E). (13)

By comparing the difference cross sections with the total cross
section, we can assign the angular momentum to a possible
resonant structure.

IV. RESULTS AND DISCUSSION

A. Cross section for mutual neutralization

We start by solving the scattering equations for model I
of the potentials, where eight states are included and no
couplings to the ground state of HF. We investigate the role
of the autoionization by turning on and off the complex
term added to the potential curves of the resonant states.
In Fig. 2 the total neutralization cross section in collisions
between H+ and F− is displayed when autoionization is not
included (black solid curve) and included (red dashed curve).
The cross section shows a sharp threshold at 0.0267 eV,
where the H(n = 2) + F(2P ) channel becomes energetically
open. The cross section does not show the 1/E behavior at
low collision energies that is typical for attractive Coulomb
interaction [24]. Instead resonant structures dominate the cross
section. These resonant structures are more pronounced when
autoionization is not included. The inclusion of autoionization
will reduce the cross section for mutual neutralization and
smear out the resonant structures. Some resonant structures
will still remain. The magnitude of the total neutralization
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FIG. 2. (Color online) Total cross section for mutual neutraliza-
tion in low-energy collisions of H+ and F− calculated using model I
of the potentials and with and without including autoionization from
electronic resonant states.

cross section around E = 0.03 eV is about 2.5 × 10−16 cm2.
This should be compared with the total cross section for
mutual neutralization of H+ + H−, which has a magnitude
of about 2 × 10−13 cm2 at the same energy. Furthermore, the
low-energy cross section of the H+ + H− reaction has a very
smooth 1/E energy dependence. The H2 system has avoided
crossings at internuclear distances around 36a0. It is these
avoided crossings at large internuclear distances that drives the
reaction of mutual neutralization in H+ + H− collisions at low
energies. The HF system does not have these kinds of avoided
crossings at large distances. This can be understood since the
ion-pair limit is situated below the excited H(n = 2) + F(2P )
channel. The mutual neutralization reaction is instead driven
by the avoided crossings with the Rydberg states occurring
at small distances. This will explain the smaller magnitude
and pronounced structures of the cross section for mutual
neutralization in H+ + F− collisions.

We then compute the state-dependent cross sections for the
mutual neutralization reactions H+ + F− → H(n) + F(2P ),
where n = 1,2,3,4, using the two models of the potentials
with and without inclusion of autoionization. As can be
seen in Fig. 3, the two models produce very similar cross
sections. The inclusion of the electronic couplings between
the ion-pair and the ground states does not significantly
influence the dynamics. The cross section for scattering into the
ground-state fragments is much smaller than the cross section
for scattering into the channel H(n = 2) + F(2P ). It can be
concluded that the electronic couplings to the ground state do
not have any significant impact on the state-dependent cross
sections. Similar results were found in the study of dissociative
recombination of HF+ [3].

There is a sharp threshold in the n = 2 cross section when
this channel becomes energetically open. This cross section
shows distinct structures indicating the presence of resonances.
Both models of the potentials show similar structures even
though they do not agree in positions and magnitudes. The
cross sections for scattering into the n = 3 and n = 4 channels
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FIG. 3. (Color online) State-dependent cross sections for mutual
neutralization at low-energy collisions of H+ and F− to form H(n)
+ F(2P ), where n = 1,2,3 and 4. The cross sections are calculated
using the two different models of the diabatic electronic states with
and without autoionization included.
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show sharp onsets followed by smooth decays. No resonant
structures are found in these state-dependent cross sections.

B. Resonant structures

In order to understand and identify the sharp oscillations
found in the cross section of mutual neutralization, the
contribution to the resonant structures from the partial wave l

is examined by calculating the difference cross section defined
in Eq. (13). We have here used model I of the diabatic states
and performed the analysis without and with inclusion of
autoionization. In Fig. 4 we show the identification of resonant
structures originating from the l = 13 and l = 21 partial waves
by displaying the total cross section (black solid and red
dashed lines), the contribution from the specific partial wave
(blue dotted line), and the difference cross section (green
dotted-dashed line). The very narrow structures originating
from the l = 13 partial wave are completely smeared out
when autoionization is included. The l = 21 partial wave
however will contribute to the cross section with a broader
resonant structure that will be broadening by the inclusion of
autoionization but it remains strong and well pronounced.

In Fig. 5, we label the structures in the n = 2 cross section in
the region 0.02 eV � E � 0.1 eV with the angular momentum
quantum number.

Some resonant structures originate almost exclusively from
a single partial wave, while for other structures, several partial
waves contribute.

A more detailed understanding of the resonant structures
requires an analysis similar to the one used in the study of the
N3+ + H → (NH)3+ → N2+ + H+ reaction [25]. The under-
lying theory is based on that the S matrix is a meromorphic
function that thus can be expanded in the residues of its
complex poles, the resonance energies. The contribution of
a particular resonance to a cross section is thus expressed as a
residue term.
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FIG. 4. (Color online) Identification of the contribution to the
resonant structures from the l = 13 [in (a) and (c)] and l = 21 [in (b)
and (d)] partial waves. Here model I is used for the diabatic potentials
and the analysis is performed without [in (a) and (b)] and with
[(c) and (d)] inclusion of autoionization.
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FIG. 5. (Color online) Labeling of the resonant structures with the
angular momentum quantum number using the model I of the diabatic
electronic states and without and with including autoionization.

C. Mutual neutralization in D+ + F− collisions

By changing the reduced mass of the molecular system
to the mass of DF, mutual neutralization in collisions of
D+ + F− is calculated. Due to the smaller mass difference
between the colliding ions, the D+ + F− mutual neutralization
reaction might be easier to experimentally measure in an
apparatus such as the double electrostatic storage device
DESIREE [26], which currently is being under construction
in Stockholm, Sweden. In Fig. 6, the total cross section for
mutual neutralization in collisions between D+ + F− (green
dotted and blue dashed-dotted lines) is compared with the
corresponding cross section in collisions between H+ + F−
(black solid and red dashed lines).

Model I of the potentials is applied when the cross section is
calculated and the effect of the autoionization is investigated.
The cross section for mutual neutralization in collisions
between D+ + F− shows the same sharp threshold effect at
0.0267 eV, where the D(n = 2) + F(2P ) channel becomes
energetically open. However, between this threshold and to
an energy of about 0.3 eV, the cross section for D+ + F−
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FIG. 6. (Color online) Total cross sections for mutual neutraliza-
tion in collisions of D+ + F− and H+ + F− calculated using model I
of the potentials and without and with including autoionization.
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is considerably larger than the cross section for H+ + F−.
The cross section shows a clearer 1/E energy dependence, but
some structures can be seen. These structures are, however,
less pronounced than the resonant structures found in the H+
+ F− cross section. A comparison with the analysis of the
N3+ + H → (NH)3+ → N2+ + H+ reaction studied in [25]
may here be helpful in order to understand the difference
between the D+ + F− and the H+ + F− mutual neutralization
cross sections. It was there found that the resonant structures
appeared in a narrow energy window centered around the
rotational barrier maximum, close to the threshold of the
incoming channel. Some resonances were just below this
maximum and some just above. If we now compare the
mutual neutralization of the two isotopic systems we note
that the rotational and vibrational level structure in the heavier
isotopologue is more dense due to the about twice as heavy
reduced mass of DF compared to HF. Thus, there can be
more resonances per energy unit within the energy window
that produce resonant structures in the cross section. This
implies that each of the partial wave cross sections would
have more resonant structures per energy unit and when added
together the total cross section will be larger at low energies.
Furthermore, using classical arguments, the centrifugal barrier
will prevent dissociation along the H(n = 2) + F(2P ) channel
at low energies. This will cause a screening of the reaction. For
the heavier isotopologue the offset of this screening is shifted
toward lower energies.

V. CONCLUSIONS

The quasidiabatic potentials of HF have been calculated
by combining multireference configuration interaction cal-

culations with electron scattering calculations. Two sets of
models of the quasidiabatic potentials are tested. In model I,
the ion-pair state is crossing the excited states of HF at
small internuclear distances. In model II, the ion-pair state
and the electronic ground state are allowed to cross. There
are no curve crossings for this system occurring at large
internuclear distances. Autoionization of the electronically
resonant states is included using a local approximation. The
first cross section for mutual neutralization in collisions
between H+ + F− is calculated by numerically integrating a
matrix Ricatti equation. The two models provide very similar
cross sections. The cross section has a sharp threshold and
is dominated by the formation of the H(n = 2) + F(2P )
fragments. The magnitude of the cross section is small
compared to a system such as H+ + H−, which has curve
crossings between ionic and covalent states occurring at large
internuclear distances. Sharp oscillations are observed in the
cross section for H+ + F−. The structures are broadening
or smeared out when autoionization is added to the model.
The resonant structures are assigned with angular momentum
quantum numbers. The cross section for mutual neutralization
in collisions of D+ + F− is calculated and found to be
significantly larger than that of its lighter isotopologue at low
energies.
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