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Application of the finite-element-discrete-model method for calculating resonance properties
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A enhanced procedure implementing the finite-element-discrete-model method [R. K. Nesbet, Phys. Rev. A
24,1184 (1981)] for determining atomic or molecular shape resonances and widths is described. The present
procedure includes an approximation for the static exchange plus polarization model involving Möller-Plesset
perturbation theory. Applications to Mg, N2, CH2O, and uracil are described. Compared with experiment, the
results for Mg are within 5 meV for the resonance position and 75 meV for the width. The vertical geometry
results for N2 and CH2O compare well with experiment insofar as can be determined in the presence of nuclear
motion complications. Uracil is calculated as an example where the large dipole moment (4.8 D) has an impact
on threshold properties and possible dipole bound states.
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I. INTRODUCTION

Recently, increased experimental and theoretical interest in
dissociative electron attachment (DEA) has occurred, induced
by the experimental discovery of DNA strand breaking by
low-energy electrons [1,2]. The theoretical treatment of DEA
and related molecular processes is normally based upon the
Born adiabatic theory [3,4] of nuclear motion, which depends
upon accurate knowledge of the electronic properties of the
molecule. Principally, these are fixed nucleus positions and
lifetimes of resonance states and are usually determined
with some version of the Fano-Feshbach [5–8] theory of the
lifetimes of transient states. Domcke [9] has reviewed this
subject with special emphasis on electron-molecule collisions.
The current paper revisits a technique for approximating
solutions to the Fano-Feshbach procedure that, apparently,
has lain dormant for some years. We apply it to electronic
resonances in Mg, N2, formaldehyde, and uracil to display
some of its characteristics.

Its earliest applications were associated with the Stieltjes
moment theory that was discussed and applied to the problem
of calculating transition moments in quantum mechanical
systems [10,11]. About the same time Hazi [12,13] and
Hazi et al. [14,15] utilized some of these ideas to calculate
the lifetime of electronic resonances in a number of simple
systems. Nesbet [16] continued the development, but referred
to it as a finite-element-discrete-model (FEDM) method,
noting that smoothing by means of the Stieltjes moment theory
is not relevant to its application. Smoothing is an important
issue and is discussed more fully below. We shall continue to
use the FEDM appellation..

Briefly, the FEDM method involves using a set of dis-
crete, normalizable functions to approximately represent the
electronic continuum in a conventional Fano-Feshbach [5–8]
treatment of atomic or molecular resonances. With it one
obtains the complex energy shift, �(E) − i�(E)/2, charac-
teristic of the theory and within the limitations of the various
approximations.

One of the requirements of the Fano-Feshbach approach is
the construction of a function representing the quasi-bound
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state (QBS) corresponding to the resonance. In an exact
calculation, the details of this function do not affect the
outcome. When approximations are required, however, the
details matter. We have found that using a properly constrained
basis provides an appropriate QBS. In this paper we discuss
the construction of bases for the FEDM method, and finally
applications to several systems are given.

In assessing a theory such as this, it is useful, for vetting, to
have experimental results to compare with. It must be admitted
that this is difficult, since our principal interest is in molecular
shape resonances, where Franck-Condon and other nuclear
motion effects can obscure the purely electronic part of the
phenomenon. This does not happen with single atoms, and thus
our first application in Sec. III treats comparisons with the 2P

shape resonance in Mg, which, among smaller nonrelativistic
systems, arguably has the best experimental values for a shape
resonance yielding both energy and width values. Results are
given for further applications to the diatomic molecule N2,
where in Sec. III B we comment further on effects of nuclear
motion. In addition the polyatomic molecules formaldehyde,
CH2 =O, and uracil, C4H4N2O2, are treated

II. THEORY

A. The finite-element-discrete-model method

The Fano-Feshbach theory of the lifetime of a decaying
state is closely related to the “Golden Rule” [17–19] and is
given by

�(E) = 2π |〈φ|H |ψP (E)〉|2, (1)

where φ is the function corresponding to the decaying state
and defines the projectors

Q = |φ〉〈φ| (2)

and

P = I − Q. (3)

In addition, for the version of the Golden Rule shown in
Eq. (1), ψP (E) must be energy normalized and have the density
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of states factor folded into it. ψP (E) must also satisfy the
equations

(PHP − E)ψP (E) = 0, (4)

〈ψP (E)|ψP (E′)〉 = δ(E − E′), (5)

and ∫
dE|ψP (E)〉〈ψP (E)| = P. (6)

One also defines ψ(E), which is the total continuum wave
function corresponding to the Hamiltonian and satisfies

(H − E)ψ(E) = 0, (7)

〈ψ(E)|ψ(E′)〉 = δ(E − E′), (8)

and also ∫
dE|ψ(E)〉〈ψ(E)| = I. (9)

When translating these expressions into the FEDM approxi-
mation, it appears most convenient to deal with the cumulated
function

F (E) =
∫ E

0
�(E′) dE′. (10)

The FEDM method involves approximating the exact
cumulative function at the energies, En, with the expression

F (En) ≈ Fn (11)

= 2π

n∑
i=0

|V (Ei)|2 (12)

= 2π

n∑
i=0

∣∣∣∣V (Ei)√
di

∣∣∣∣
2

di, (13)

where

V (Ei) = 〈φ|H |ui〉, (14)

di = 1
2 (〈ui+1|H |ui+1〉 − 〈ui−1|H |ui−1〉), (15)

and ui is one of a set of L2 functions that are orthogonal
to φ. We shall call the ui pseudo-continuum (PC) functions.
The interpretation of Eq. (13) is clear, representing a trapezoid
rule integration approximation. The necessary energy density
normalization is produced by the

√
di in the denominator.

As pointed out by Nesbet, the FEDM method is actually
an ansatz based upon Eq. (12), with the expectation that the
approximation is improved as the En become closer together.
There has apparently been no rigorous proof that a PC set
satisfying these conditions can exist. The PC functions we use
in practice are described in Sec. II B and consist of a set of
Gaussian functions that do not necessarily have the correct
limiting properties guaranteeing that Eq. (12) becomes more
exact as the energy density of the discrete functions increases.
The idea is nevertheless intuitively appealing.

B. The pseudo-continuum functions

The PC functions are symmetry-projected and spin-
projected Slater determinant (SPSD) functions based upon
neutral molecule states with added orbitals for the extra

electron. An added orbital is one of a series of Gaussian
functions,

uilm(�r) = NiYl mrl exp(−ζi�r 2), (16)

where the Yl m in our application are normally “tensorial”
(rather than spherical) harmonics, and the ζi coefficients for
a given l-m pair are in a geometric progression between
appropriate limits, that is, the ζi for different m and the same
l may differ. The constant ratio, ζi+1/ζi , between adjacent
exponential coefficients cannot normally be �1.6 without
causing numerical difficulties with calculations. It has also
been found that runs of between 15 and 20 functions for
each l-m pair appear satisfactory for our purpose. Where
appropriate, two or more overlapping runs may be used.

C. Description of the computational pathway

1. A not too flexible (see Sec. II D) atomic orbital basis is
chosen, and the standard one- and two-electron integrals are
calculated for the neutral molecule equilibrium geometry. All
our applications will be for vertical geometry processes, and
this geometry will not change throughout the application of
the FEDM procedure. With this basis conventional restricted
closed-shell Hartree-Fock (RHF) and restricted open-shell
Hartree-Fock (ROHF) treatments of the neutral molecule [20]
and its negative ion are performed, producing two sets of
orbitals that we will label MOn and MOi , respectively.

2. Integrals are evaluated for the atomic orbitals of
Step 1. augmented with the pseudo-continuum orbital (PCOs)
to be used, and these are subjected to an orbital transformation
involving selections from the MOn set, from the MOi set, and
from unmodified PCOs. At this stage the MOn and MOi sets
are internally orthonormal, and the PCO set is normalized but
not orthogonal.

3. The integrals from Step 2 are combined into two sets of
“(n + 1)”-electron configurations.

Set 1. One or more SPSDs are constructed from configura-
tions built from the MOi set of Step 1, i.e., orbitals from the
ion calculation.

Set 2. Configurations are constructed consisting of the
neutral molecule orbitals and one each of the PCOs.

This combined set produces Hamiltonian and overlap
matrices corresponding to a spatial symmetry restricted SPSD
basis of the configurations. This will include all of the possible
spin couplings and is accomplished with a non-orthogonal-
orbital matrix element generator [21].

4. At this stage the H and S matrices both have the block
structure [

AX B
†
X

BX CX

]
,

where the AX blocks are associated with the QBS states
included, the CX blocks are associated with the PCO states,
and X = H or S.

5. The AH and CH blocks of H are now diagonalized, and
the corresponding AS and CS blocks become identity matrices.

6. The C rows and columns are subjected to a transforma-
tion that converts those columns of BX corresponding to final
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QBSs to zero. That is, the QBSs are projected out of the PCO
eigenstates.

7. Now the CH -CS system is rediagonalized, and the
necessary matrix elements for use in Eqs. (12), (14), and (15)
are in the appropriate columns of BH and the diagonal elements
of CH .

1. The fitting problem

Once the discrete values of the F (E) function are available,
they must be converted to the smooth functions, �(E) and
�(E). As indicated in Sec. I the smoothing of the discrete
values is a concern with the FEDM method. Different previous
workers have used different schemes. We have found useful
a procedure utilizing the functions proposed by Mündel and
Domcke [22] that are outlined in the Appendix. In general, a
linear combination of the width functions, Eq. (A1), is used to
approximate �(E),

�(E) =
∑

k

Ak(E/Bk)αk exp(−E/Bk), (17)

and the Ak , Bk , and αk are adjusted by a least-squares pro-
cedure to minimize the difference between the corresponding
cumulated function,

F ls(E) =
∑

k

AkBkγ (αk + 1,E/Bk), (18)

and the discrete values from Eq. (12). Thus we minimize the
variance

V =
∑

n

[Fn − F ls(En)]2

wn

, (19)

where wn is a weighting denominator for the various points.
Several different choices for the weighting denominators have
been tested and wn = F 2

n appears the most satisfactory. The Fn

values can vary over two to five orders of magnitude, and this
choice results in minimizing the sum of squares of the relative
errors. The “downhill simplex” method of Nelder and Mead
[23] for minimization has proved completely satisfactory.

As stated above, the smoothing of the Fn values has always
been an issue with the FEDM method. Most of the earlier
studies involved cases where the QBS was well represented
by one partial wave. In our cases several lm waves may be
important at once. This can produce what appears to be a small
interference effect. We show an example of this in Fig. 1, which
displays Fn versus En data on a log-log graph. The QBS here
corresponds to the C=O antibonding orbital of formaldehyde
and consists of a sum of p and d waves. A definite oscillatory
behavior is evident at low energy, and the graph also shows a
typical fitted F ls using just one term in Eq. (18).

D. GTO basis flexibility

Section II C contains the assertion that the Gaussian-type
orbital bases used to represent the QBS must be “not too
flexible.” This imprecise terminology reflects the well-known
phenomenon of variational collapse when temporary (decay-
ing) negative ions are described using excessively diffuse basis
sets. It also reflects the imprecise definition of the QBS within
the Fano-Feshbach theory at the outset. Froelich and Brandäs
[24] have suggested a definition of an optimal QBS, but it
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FIG. 1. (Color online) A fit of the Fn values for a QBS
corresponding to the C=O antibonding π orbital of formaldehyde at
equilibrium geometry. The red crosses are the Fn points, the curved
green line is the F ls curve for one term, and the straight blue line
shows the expected threshold slope of E2.43 (see text). It is seen that
the best-fit threshold slope is very close to the ideal.

involves matrix elements of 〈b|(H − E)2|b〉 that present severe
difficulties with many-electron systems. The R-matrix method
indirectly solves the problem by (for example) using the Bloch
operator [25] to prevent variational collapse. The present
technique uses the constraints inherent in the standard GTO
basis set, 6-31G(d), for most calculations. The lower energy
lowest unoccupied molecular orbitals (�5 eV) provide our
ingredients to construct the QBSs needed for shape resonances.
The higher energy lowest unoccupied molecular orbitals are
less satisfactory.

III. APPLICATIONS

A. The p-wave resonance in Mg

As stated before, the experimental results for the 2P shape
resonance in the Mg atom are the best known among the lighter
atoms. It therefore provides a good testing ground for the
current method, as it has none of the complications due to
nuclear motion present in molecules.

The 2P resonance in Mg has been measured by Burrow and
Comer [26] and again by Burrow et al. [27]. In the earlier work,
focusing on the lowest energy range, the values reported for
the resonance position are Er = 0.15 eV and width �(Er ) =
0.16 eV.

We use a conventional 6-31G(d) Gaussian basis for the Mg
core. The F (E) function was calculated using 15 PCOs ranging
in kinetic energy from 15.0 to ≈0.0052 eV, and, following the
computational path outlined in Sec. II C the values are shown
in Table I.

The analytic functions of the Appendix were used for fitting
F (E) and associated quantities from the data in Table I with
the value of α constrained to be 3/2. The results are shown in
Fig. 2, which shows plots of the resulting �(E), �(E), and E −
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TABLE I. Calculated E and F (E) values.

En (eV) F (En) (eV2)

1.2544×10−2 1.220 023×10−4

3.0995×10−2 8.438 343×10−4

6.3631×10−2 4.015 035×10−3

1.2028×10−1 1.575 346×10−2

2.1900×10−1 5.443 744×10−2

3.9342×10−1 1.699 031×10−1

7.0889×10−1 4.862 681×10−1

1.2969 1.246 161
2.4142 2.570 280
4.4778 3.509 513
7.2753 3.729 412
9.6424 4.216 745
1.5014 5.183 965
2.8813 5.884196a

aThere are only 14 values because of the averaging procedure of
Eqs. (12) and (15).

Eb − �(E) functions. The last of these shows a graphical so-
lution for the resonance energy Er in terms of the QBS energy
Eb and the real part of the energy shift �(E). In this case the
Eb value is determined from the sum of the self-consistent field
�(SCF) (1.10273 eV) energies of Step 1 and the MP2 value
for the polarization interaction (−0.16935 eV), which gives
0.93338 eV.

For Er the results of this calculation give 0.159 eV,
and Burrow and Comer [26] give 0.15 eV, which is quite
satisfactory agreement (see also Ref. [13]). The situation with
the width comparison is more difficult. The cross section is
very unlikely to resemble a simple Lorentz function, since
from Fig. 2 we see that � is changing rapidly in the vicinity
of Er , and the 1/E factor in the cross section is also changing
rapidly at this point. Setting up a model calculation involving
the calculated resonance parameters as well as an orthogonality
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FIG. 2. (Color online) �(E) (red, upper curve), �(E) (green,
lower curve), and E − Eb − �(E) (blue, middle curve) from the
FEDM calculation of Mg. The curves may also be identified by their
behaviors. �(E) is necessarily positive, and E − Eb − �(E) is zero
at Er . The arrows also show various values graphically.
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FIG. 3. (Color online) FEDM results for N2. The representational
details are the same as in the caption of Fig. 2.

phase shift (see Ref. [9]) and a model p-wave cross section,
we can find the second derivative. The points where this
is zero give our calculated dip-to-peak energy separation of
0.12 eV, somewhat smaller than the electron transmission
spectroscopy (ETS) measurement, but still with good agree-
ment. Burrow et al. [27] also measured the Mg resonance by
the electron transmission method, where it is seen that the
resonance peak rides on a slanted but fairly straight slope. In
addition, the orthogonality phase shift is normally proportional
to El+1/2 and small. Neither should contribute strongly to the
second derivative, so our dip-to-peak energy separation should
not be strongly affected by their neglect.

The Mg calculations were also carried out with 20 PC
functions that spanned a similar kinetic energy range. The
final results were virtually indistinguishable from the above
results with 15 functions.

B. N2

Following the same procedure, we obtained for N2 the
results shown in Fig. 3, with calculated values of Er =
2.05 eV and �(Er ) = 0.859 eV. Th �SCF energy is 3.774 eV,
which is reduced to Eb = 2.931 eV by the MP2 polarization
correction.

The shape resonance in N2 was first observed by Ramsauer
and Kollath [28] in 1931 and is probably the most studied,
both experimentally and theoretically, of any shape resonance
in molecules. The most modern measurements were obtained
by Golden [29], Ehrhardt and Willmann [30], and the latest by
Kennerly [31]. We again emphasize that we are calculating the
properties of the vertical process, and, examining Kennerly’s
tabular data for the cross section, one sees that there are two
nearly equal strength peaks at 2.219 and 2.442 eV. If the actual
vertical value is between these, as is expected by analogy with
optical spectra, we see that our calculation gives an electronic
resonance center that appears low by ≈0.25 eV. It should
be noted that this criterion may not be useful. Examination
of Eqs. (4)–(8) through (4)–(11) of Ref. [9] and references
therein shows that, theoretically, transitions between nuclear
motion states, at least one of which is associated with a
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TABLE II. Populations of different spherical l spaces in the singly
occupied molecular orbital (SOMO) of the QBS for CH2O. The
expansion point is the center of mass and the C2v and spherical z

axes coincide.

l Population

0 0.000 000 00
1 0.251 078 37
2 0.571 465 63
3 0.064 289 48
4 0.056 251 44
5 0.019 967 83
6 0.011 006 41

decaying electronic state, are governed by Franck-Condon-like
integrals modified by the R-dependent lifetime amplitude of
the electronic state. Thus, we can only say that the present
calculated electronic resonance position is certainly in the
neighborhood of the actual experimental value.

Schulz [32] has published an extensive review of the sub-
ject, and, using his measurements, Birtwistle and Herzenberg
[33] have given a theoretical analysis of the resonance profile
and vibrational excitation. Their results gave 0.57 ± 0.02 eV
for the vertical �, somewhat smaller than our value above.

C. Formaldehyde, CH2O

Formaldehyde is a molecule with a π∗ resonance [34,35]
that has lower symmetry than that in N2. CH2O also possesses
an electric dipole moment of 2.85 D, considerably above the
fixed nucleus critical value of 1.6238 . . . D. For such a value
one expects the s-wave (strictly speaking, a1-wave) �(E →
0) > 0. The π∗ resonance is, however, associated with |m| =
1, and a moment of � 9.631 . . . D is required before a finite
threshold behavior is expected.

Table II gives a population analysis of the QBS SOMO and
shows that it is over 50% l = 2 and approximately a quarter
l = 1. Components for l > 2 comprise the remainder. A further
discussion for the m = 0 case of supercritical dipole moment
molecules is in Sec. III D.

The results for the cumulated function have been shown
in Fig. 1, where we see that F (E → 0) ∝ E2.43. Thus,
�(E → 0) ∝ E1.43, consistent with the dipole moment and the
populations. Figure 4 shows γ (E), �(E), and E − �(E) − Eb

curves for CH2O.
The present FEDM values for the electronic part of the

resonance are Er = 0.682 eV and �(Er ) = 0.429 eV. The
�SCF value is 2.302 eV and this is reduced to 1.454 eV
by the polarization correction. The experimental results show
several resonance peaks associated with molecular vibrations.
In electron volts the energies of the first two are given
by Burrow and Michejda [34] as 0.65 ± 0.05 and 0.86, by
van Veen et al. [36] as 0.66 and 0.86, and by Benoit and
Abouaf [35] as 0.67 and 0.89, all in good agreement. No
direct experimental value for � has been found, but, from
their vibrational excitation measurements, Benoit and Abouf
argue that it is neither very much larger nor very much smaller
than 0.216 eV, the ν2 (C=O stretch) vibrational frequency
of the neutral molecule. The Franck-Condon factors here are
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FIG. 4. (Color online) The FEDM results for CH2O. The
representational details are the same as in the caption of Fig. 2.

subject to the same complications discussed in Sec. III B and
the FEDM procedure yields satisfactory results.

D. Uracil and σ ∗ resonances

Uracil is a biologically important molecule that appears in
the coding for RNA. It is a heterocyclic six-membered ring
compound, and we are interested particularly in the shape
resonance associated with the N1–H (there being two N atoms
in the ring, N1 and N2) antibonding orbital. This bond is
ruptured in production of the (M-H)− negative ion at low
energies. The electric dipole moment is fairly large at ≈4.8 D
and is directed only about 8◦ from the N1–H bond direction in
the neutral molecule.

Recent measurements show π∗ shape resonances [37].
These are expected to behave similarly to the π resonance in
formaldehyde and have a zero energy threshold proportional
to E1.26 with this dipole moment and |m| = 1. Uracil also
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FIG. 5. (Color online) Uracil F (E) function fit. See Fig. 1 caption
for represntational details. The solid straight line shows the expected
slope of the E vs E line.
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FIG. 6. (Color online) FEDM results for uracil. The representa-
tional details are the same as in the caption of Fig. 2.

undergoes DEA to form an (M-H)− by loss of the H atom
attached to N1, and the cross section was determined by
Aflatooni and Burrow [38]. The FEDM was applied to DEA to
uracil by Gallup and Fabrikant [39]. Here, the application of
tha FEDM to the N1-H σ ∗ “resonance” for the neutral molecule
equilibrium geometry is discussed in detail.

Proceeding as before, with a set of 15 s functions and
15 pσ functions, we obtain the results of Fig. 5, which shows
the F (E) function and the data points on a log-log graph where
it is seen that the threshold is finite since F (E) ∝ E. It is well
known that the point dipole potential predicts in the fixed
nucleus approximation (FNA) an infinite number of dipole
bound states (DBSs) when its magnitude is above the critical
value of 1.6239 . . . D. Fabrikant [41,42] has also shown that
the threshold law becomes finite at this value. More recently
the present author [43] has shown that a physical dipole model
shows similar but not sharp behavior. The physical dipole
system has wave functions regular at the origin and at the
point charges. Thus our FEDM correctly produces a �(E)
function emulating this threshold behavior.
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FIG. 7. (Color online) A blown-up view of a region near the
origin of Fig. 6. The crossings are at −36, −0.59, and 0.29 meV.

The finite threshold results in a weak logarithmic singularity
in the real energy shift function at E = 0 are shown in Fig. 6.
We have altogether (in this approximation!) four roots of the
equation, E − �(E) − Eb = 0, in the range of the abscissa.
The upper root predicts that there is a very broad �(Eres)≈5 eV
resonance at 2.0 eV that might well be obscured in total
scattering eigenphases or in experiments. As seen in Ref. [39]
the energy of the root falls rapidly as the N1–H bond distance
is lengthened from the equilibrium neutral value.

The nature of the roots near zero is obscured in Fig. 6, but
a blown-up section near the origin in Fig. 7 shows the three of
them, with the lowest of the four at −0.036 eV. This reflects the
presence of a DBS, which was observed at 0.093 ± 0.007 eV
experimentally by Hendricks et al. [40]. The discrepancy here
is due at least partly to our unrelaxed geometry. Our basis
would be unable to produce any higher DBSs, the expected
natures of which are shown in Ref. [43].

The two roots of E − �(E) − Eb = 0 very near E = 0 are
a consequence of the finite threshold. The implications of these
are discussed in terms of S-matrix poles by Domcke [9] and
are at least partly responsible for the large cross sections near
zero energy found in dipolar molecules.

ACKNOWLEDGMENTS

The author sincerely thanks Professors P. D. Burrow and
I. I. Fabrikant for very useful discussions and suggestions and
the Department of Physics and Astronomy for their support.

APPENDIX: F(E), �(E), AND �(E) FUNCTIONS

For our fitting-smoothing functions we need two sorts
depending upon the dipole moment of the molecule being
treated. When the dipole moment is below the critical value, we
use a slightly modified version of the forms given by Mündel
and Domcke [22]. The primary function � is

�(E) = A(E/B)α exp(−E/B), (A1)

where A and B are parameters with energy units and α will
many times be l + 1/2. F (E), the cumulated function, is

F (E) =
∫ E

0
�(E′)dE′, (A2)

= ABγ (α + 1,E/B), (A3)

where γ (β,x) is the partial � function with limit �(β) as
x → ∞. Mündel and Domcke also give the corresponding
energy shift function

�(E) = 1

2π

∫ ∞

0

�(E′)dE′

E − E′ (A4)

= �(E)

2π

[
π

tan(απ )

−�(α)(E/B)−αM(−α,1 − α,E/B)

]
, E > 0,

(A5)
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and

= − A

2π
�(α + 1)(−E/B)αγ (−α, − E/B) exp(−E/B),

E < 0, (A6)

where M(a,b,x) is the Kummer version of the confluent
hypergeometric function [44]. Thus the width function given
in Eq. (A1) is very convenient since analytic expressions are
available for both F (E) and �(E).

For cases where the dipole moment is supercritical, the
energy threshold value for �(E) is not zero as given by the
form of Eq. (A1), but will be nonzero [45]. For this case we
use

�d (E) = A
1

n!

∫ ∞

E/B

yne−ydy, (A7)

= A

n∑
k=0

1

k!

(
E

B

)k

exp(−E/B), (A8)

which has the desired behavior. The cumulated function is
easily computed as

Fd (E) = AB

n∑
k=0

P (k + 1,E/B), (A9)

where P is the version of the partial � function given by

P (α,z) = 1

�(α)

∫ z

0
yα−1e−zdz. (A10)

The energy shift function for this � form may be represented
in terms of the exponential integral [44],

�d (E) = − A

2π

n∑
k=0

1

k!

[
e−E/BJ≶

(
E

B

)
+ φ(k − 1,E/B)

]
,

(A11)

where

J<(x) = E1(−x), x < 0, (A12)

J>(x) = Ei(x), x > 0, (A13)

φ(−1,x) = 0, (A14)

and

φ(k,x) = 0!/x + 1!/x2 + · · · + k!/x(k+1). (A15)

The principal effect of the n value among these dipole
functions is an increase in the flatness of � near E = 0 as
n increases.
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