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Nonperturbative relativistic calculation of the muonic hydrogen spectrum
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We investigate the muonic hydrogen 2P F=2
3/2 to 2SF=1

1/2 transition through a precise, nonperturbative numerical
solution of the Dirac equation including the finite-size Coulomb force and finite-size vacuum polarization. The
results are compared with earlier perturbative calculations of (primarily) [E. Borie, Phys. Rev. A 71, 032508
(2005); E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982); E. Borie, Z. Phys. A 275, 347 (1975) and A. P.
Martynenko, Phys. Rev. A 71, 022506 (2005); A. Martynenko, Phys. At. Nucl. 71, 125 (2008), and K. Pachucki,
Phys. Rev. A 53, 2092 (1996)] and experimental results recently presented by Pohl et al. [Nature (London) 466,
213 (2010)], in which this very comparison is interpreted as requiring a modification of the proton charge radius
from that obtained in electron scattering and electronic hydrogen analyses. We find no significant discrepancy
between the perturbative and nonperturbative calculations, and we present our results as confirmation of the
perturbative methods.
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I. INTRODUCTION

The precision measurement of the Lamb shift transition
energy between the 2P F=2

3/2 and 2SF=1
1/2 states of muonic

hydrogen by Pohl et al. [1] (see Fig. 1) has created con-
siderable interest because of a 0.31-meV discrepancy with
the value predicted by theoretical calculations (specifically
those discussed in Ref. [1], Borie [2–4], and Martynenko [5,6]
along with many others [7–10]). This Lamb shift splitting of
O(206) meV is dominated by the lowest order QED vacuum
polarization and includes a significant contribution from the
finite size of the proton. On selecting and combining the
perturbative predictions for the corresponding contributions to
the measured transition, Pohl et al. produce a cubic equation
relating their experimentally measured energy shift to the
theoretical prediction, arriving at

206.2949(32) meV = 206.0573(45) − 5.2262
〈
r2
p

〉1/2

+ 0.0347
〈
r2
p

〉3/2
meV, (1)

the only physically meaningful solution of which implies a
proton rms charge radius of rp ≡ √〈r2

p〉 = 0.84184(67) fm,
which differs from the consensus CODATA [11] value of rp =
0.8768(69) fm by 4.9 standard deviations.

Such a large modification of a basic electromagnetic
property of the proton suggests that either there may be an as
yet unrecognized problem in several other experimental efforts
(such as the electronic hydrogen spectroscopy and scattering
experiments which primarily lead to the CODATA value [11])
or in the QED calculations [12–14] or, alternatively, that some
new physics (beyond the Standard Model) contributes to this
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transition energy [15–17]. With respect to the QED calcu-
lations, we note that the predominant theoretical approach
involves perturbation theory applied to the solutions of the
nonrelativistic Schrödinger equation [2,5,6]. Since the effects
of finite size and the vacuum polarization potential are quite
large at short distance, it seems important to verify by explicit
calculation that the perturbative treatment is indeed adequate
at the level quoted.

We therefore calculate the transition energy relevant to
the aforementioned experiment using the relativistic Dirac
equation to describe the muon wave function nonpertur-
batively. We take care to control the numerical errors in
the calculations and to quantify any differences from the
perturbative nonrelativistic approach. In our work we extend
considerably the earlier work by Borie [2,3].

In the sections following, we discuss the nature of the
transition and contributing physical effects, as well as the
method by which we calculate the energies corresponding to
the various eigenstates. We then summarize any discrepancies
with respect to previous work.

II. MUONIC HYDROGEN SPECTRUM

After muon capture by hydrogen, about 1% of the muons
reach the metastable 2S state. This state is activated by laser
excitation from 2SF=1

1/2 to 2P F=2
3/2 and the signature that the

laser energy is well tuned is the appearance of a prompt E1
transition x ray of a muon from the 2P F=2

3/2 state of muonic
hydrogen to the 1SF=1

1/2 state. Given the resonance method
used to establish the energy of the Lamb shift, there appears to
be no doubt about the remarkable experimental result of Pohl
et al. [1].
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FIG. 1. (Color online) Muonic hydrogen L-shell spectrum, show-
ing the finite proton-size correction, Lamb shift splitting, fine
structure, and hyperfine structure. The 2SF=1

1/2 to 2P F=2
3/2 transition

measured by Pohl et al. [1] is shown as the green dotted line
(marked ξ ).

The L-shell level scheme explored in this experiment is
depicted in Fig. 1 for the point Coulomb potential of magnitude

VC(r) = −Zα

r
. (2)

The 2S1/2 and 2P 1/2 states are degenerate even in the
Coulomb-Dirac theory. Since the muon orbit is 200 times
smaller than the corresponding electron orbit, the S states
probe the point charge smearing effect of vacuum polarization,
which is the dominant component in the Lamb shift, �E2S–2P

Lamb ,
in Fig. 1. Of similar nature is a smaller but significant effect for
hydrogen (Z = 1) arising from the finite proton charge radius,
denoted �E2S

Finite in Fig. 1. While the vacuum polarization
effect increases the binding of the S1/2 states, pulling these
“down” in Fig. 1, the finite charge distribution acts in the
opposite direction.

The spin-orbit fine-structure splitting of the 2P 1/2 and
2P 3/2 eigenstates is predicted by the Dirac equation. It is
denoted by �E2P

FS in Fig. 1. As the measured transition does
not involve the 2P 1/2 state, we shall only calculate the relevant
energy levels for the purpose of comparison with perturbative
results.

The spin-spin coupling of the muon to the proton adds
hyperfine splitting to the spectrum. For the case of the
2S1/2 eigenstate, this leads to hyperfine eigenstates with total
angular momenta F = 0 and F = 1. The muon involved in
the measured transition decays to the 2SF=1

1/2 state, and thus
we address an accurate determination of the energy of this
state and the corresponding splitting �E2S

HFS. Similarly, the

hyperfine states are labeled by F = 0 and F = 1 for the 2P 1/2

case and F = 1 and F = 2 for the 2P 3/2 case. The hyperfine

splitting energies are denoted here by �E
2P 1/2

HFS and �E
2P 3/2

HFS for
the corresponding states. The muon in the measured transition
decays from the 2P F=2

3/2 eigenstate, so we require an accurate
determination of the energy of this state. We note that the
muon-proton tensor force does lead to some mixing of the two
F = 1 states but we will not make a new calculation of this
effect.

III. NUMERICAL METHOD

To calculate the theoretical energy difference corresponding
to the measured transition, previous authors have primarily
used perturbation theory with nonrelativistic wave functions,
including in the effective interaction terms describing the
various relativistic corrections. In order to calculate the
perturbative effect on the energy produced by an operator,
δV , additional to the Coulomb potential,

Veff = −Zα

r
+ δV, (3)

we require a wave function to integrate over. If we follow the
methods of previous authors, we can use exact Schrödinger
wave functions for states with quantum numbers n,�,m and
the lowest order correction to the energy is

�En�m
V′ ≈

∫ ∞

0
φ

n�m †
Schröd.(r) δV φn�m

Schröd.(r) d3r. (4)

An alternate approach, which we choose here, is to use
the Dirac equation with the appropriate potential in order
to calculate the perturbed wave functions. This approach is
known to be a specific limit approximation to the two-particle
Bethe-Salpeter equation [7].

We consider the muon wave function in state α to be a
spinor ψα(�r):

ψα(�r) =
(

gα(r)χμ
κ (r̂)

−ifα(r)χμ
−κ (r̂)

)
=

⎛
⎜⎝

Gα(r)

r
χμ

κ (r̂)

−iFα(r)

r
χ

μ
−κ (r̂)

⎞
⎟⎠, (5)

normalized to unity, such that the probability is∫
|ψα|2d3r =

∫ ∞

0
r2[gα(r)2 + fα(r)2]dr = 1, (6)

noting that χμ
κ are eigenfunctions of the total angular mo-

mentum operator (consisting of a combination of spherical
harmonics and Pauli spinors) satisfying∫

χm†
κ χm′

κ ′ dr̂ = δκκ ′δmm′ . (7)

The separation of center-of-mass motion is not exact for a
relativistic two-body system. To lowest order in the ratio of
muon to proton mass we use the reduced mass μ in place of
the muon mass in the Dirac equation

μ = Mpmμ

Mp + mμ

. (8)

Along with further recoil corrections treated in perturbation
theory, this should provide a very accurate description of the
system.
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The binding of the muon in this system is extremely weak
(on the scale of rest energy) and as such the eigenvalue, εα , for
each state calculated using the Dirac equation is approximately
equal to the reduced mass μ. In order to precisely calculate
the variance from this value, we rewrite the Dirac equation
to incorporate the shift of eigenvalue down by the reduced
mass, such that the eigenvalue we are now solving for is λα =
εα − μ, corresponding to the binding energy.

The Dirac equation we wish to solve is therefore given by

d

dr

(
Gα(r)
Fα(r)

)
=

(− κα

r
λα + 2μ − V

−λα + V κα

r

) (
Gα(r)

Fα(r)

)
, (9)

where the value of κα is specific to each eigenstate, namely

1S1/2 : κ = −1, 2S1/2 : κ = −1,

2P 1/2 : κ = +1, 2P 3/2 : κ = −2.

In order to integrate Eq. (9), we supply an initial guess for
the eigenvalue λα and appropriate boundary conditions for the
upper and lower components of the wave function at small
and large radii. We then integrate from each limit toward a
central matching point. The normalized discontinuity in the
wave function integrated from each limit is used as a measure
of the inaccuracy of the eigenvalue and a refined estimate is
calculated. This process is iterated until λα changes by less
than the required tolerance.

IV. QUALITY CONTROL

To convince ourselves that our method is self-consistently
accurate, we check the accuracy of our procedure using several
methods. The unperturbed point Coulomb Dirac eigenvalues
are known analytically to be

λα = εα − μ= μ

[
1 + Z2α2(

nα − |κα| + √
κ2

α − Z2α2
)2

]− 1
2

− μ,

(10)

where nα denotes the principal quantum number for state α.
We first ensured that we are able to reproduce these values
within a reasonable computation time. For the 2S1/2 wave
function, we reproduce the analytic result to within 10 neV,
the 2P 1/2 eigenstate to within 40 neV, and the 1S1/2 and 2P 3/2

eigenstates to within 10 peV, using quad-precision Fortran, a
sufficiently large grid size, and sufficiently small grid spacing.

This test does not ensure that solutions for a realistic case—
including the finite size of the proton as well as finite-size
vacuum polarization—converges with the same accuracy. For
this reason we employ the virial theorem test for our solutions
(refer to Ref. [8] for further details) by calculating the reduced
eigenvalue as

λα = 〈ψα|μ(β − 1) + V (�r) + �r · �∇V (�r)|ψα〉. (11)

The virial theorem provides a far more stringent test of the
accuracy of the muon wave function near the origin, where
| �∇V | is greatest. We find that the eigenvalues calculated using
Eq. (10) and Eq. (11) for the 2S1/2 wave function differ by 180
neV for a point Coulomb potential and by 450 neV for the finite
Coulomb plus finite vacuum polarization potentials discussed
in Sec. VI. We therefore conservatively take our errors to be

less than ±500 neV. Propagating this error, we find that in
principle we could determine the required proton rms charge
radius to within approximately 0.05 am (5 × 10−5 fm). This
should be sufficient to provide a reliable, independent test of
the accuracy of the perturbative approach; however, we note
that the determination of the proton rms charge radius cannot
be performed to this precision as the error in that analysis is
dominated by experimental error in the determination of the
transition energy.

V. 2S 1/2–2P1/2 LAMB SHIFT

The Lamb shift is the splitting of the otherwise degenerate
2S1/2 and 2P 1/2 eigenstates attributed to the vacuum polariza-
tion potential VVP, which for a point source is given in [18]
as

VVP(r) = −Zα

r

α

3π

∫ ∞

4

e−meqr

q2

√
1 − 4

q2

(
1 + 2

q2

)
dq2,

(12)

where me is the electron mass. We can calculate the effect that
this has on the eigenvalues by assuming that this potential is
a small perturbation of the Coulomb potential, and thus using
Eq. (4) we find

�Enlm
Lamb ≈

∫ ∞

0
VVP(r)|�nlm

Schröd.(r)|2d3r, (13)

to which we must also add higher order perturbation theory,
relativistic, recoil, and radiative corrections and generally
higher order (in α) corrections.

Alternatively—and more accurately—we can calculate the
shift in eigenvalues using converged Dirac wave functions
in response to the combined effect of the Coulomb and
vacuum polarization potentials. In this case we simply take the
difference between the converged eigenvalues for the 2S1/2 and
2P 1/2 eigenstates calculated in the presence of point Coulomb
and point vacuum polarization potentials,

�E2S−2P
Lamb = λ2P1/2 − λ2S1/2 = 205.1706(5) meV, (14)

Care must be taken when comparing this calculation to
that of Eq. (13) since our calculation includes relativistic
corrections, which are treated as corrections to Eq. (13) in
Ref. [2]. A summary of this comparison and the calculated
values for the Lamb shift are given in Table I, where we
note that the perturbative and nonperturbative calculations
are found to be in good agreement. For this table and those
that follow, we refer to various iterations of our calculations
in which we compute the wave function in the presence of
point Coulomb (C), finite-size-nucleus-Coulomb (FC), point
vacuum polarization (VP), and finite-size-nucleus vacuum
polarization (FVP) potentials. The dependence on 〈r2

p〉n is
extracted in each case by fitting the energy shifts calculated at
various values of rp ≡ 〈r2

p〉1/2 to a cubic of the form given in
Eq. (18) for the case of a Coulomb-only potential, and with
the addition of a term proportional to 1 when including the
vacuum polarization (to account for the 2S–2P splitting). The
values listed in the column “Pohl et al.” of Table I have their
origins in Refs. 1–5, 11, 12, 14–17, and 19–25 of Ref. [1] and
are taken to be reliable values.

012506-3



CARROLL, THOMAS, RAFELSKI, AND MILLER PHYSICAL REVIEW A 84, 012506 (2011)

TABLE I. Contributions to the 2S–2P Lamb shift with comparison to values presented in Pohl et al. [1], which themselves are selected
values from various theoretical sources (Refs. 1–5, 11, 12, 14–17, and 19–25 of Pohl et al.). Values are all in meV. Errors in the Dirac
calculations are taken to be ±500 neV as per Sec. IV. We refer to various iterations of our calculations in which we compute the wave function
in the presence of point Coulomb (C), finite Coulomb (FC), point vacuum polarization (VP), and finite vacuum polarization (FVP) potentials.
The dependence on 〈r2

p〉n is extracted in each case by fitting the energy shifts calculated at various values of rp to a cubic of the form given in
Eq. (18) for the case of a Coulomb-only potential, and with the addition of a term proportional to 1 when including the vacuum polarization. The
listed corrections are already included in our Dirac calculations, namely lines 3 and 5 of Table I in Ref. [1] and the nuclear size contributions
of Table II from that reference. All further corrections to both the perturbative calculation and our calculation are contained in “Remaining
corrections,” which in this case encompasses all remaining contributions of Table I and the radiative correction of Table II of Ref. [1].

Contribution Pohl et al. Present work

Dirac (V = VC + VVP) 205.1706
Dirac (V = VFC) −5.2000 〈r2

p〉 + 0.0350 〈r2
p〉3/2

Dirac (V = VFC + VVP) 205.1706 − 5.2169 〈r2
p〉 + 0.0353 〈r2

p〉3/2

Dirac (V = VFC + VFVP) 205.1822 − 5.2519 〈r2
p〉 + 0.0546 〈r2

p〉3/2

Relativistic one-loop VP 205.0282
Polarization insertion in

two Coulomb lines 0.1509
Finite-size effects −5.1987 〈r2

p〉 + 0.0347 〈r2
p〉3/2

Subtotal 205.1791 − 5.1987 〈r2
p〉 + 0.0347 〈r2

p〉3/2 205.1822 − 5.2519 〈r2
p〉 + 0.0546 〈r2

p〉3/2

Remaining corrections 0.8782 − 0.0275 〈r2
p〉

Total 206.0573 − 5.2262 〈r2
p〉 + 0.0347 〈r2

p〉3/2 206.0604 − 5.2794 〈r2
p〉 + 0.0546 〈r2

p〉3/2

VI. PROTON FINITE-SIZE CORRECTIONS

The perturbative leading-order contributions associated
with the finite size of the proton arise from consideration of
the proton form factor. These are introduced by Borie [4] and
considered in Friar [9] [Sec.VI below Eq. (64b)]. These terms
appear in Pohl et al. [1] as quoted from Ref. [2] and are given
by

�EFinite = −2Zα

3

(
Zαμ

2

)3 [〈
r2
p

〉 − Zαμ

2

〈
r2
p

〉3/2
]

. (15)

To calculate this effect in our fully relativistic, nonpertur-
bative calculation, we consider the replacement of the point
Coulomb potential with the finite-size Coulomb potential in
Eq. (9),

VC(r) = −Zα

r
→ −Zα

∫
ρ(r ′)

|�r − �r ′|d
3r ′, (16)

where ρ(r) is the proton charge distribution (or, more accu-
rately, the Fourier transform of the Sachs electric form factor).
In response to concerns that the shape of the form factor may
significantly influence the theoretical calculations [19], we
have studied the dependence of the finite-size correction on
the form of this term (always normalized to unity) and this
will be summarized in an upcoming publication [20], though
the dependence on the choice of charge distribution—whether
it be exponential, Yukawa, or Gaussian in form—appears to
be extremely weak.

The exponential form for the charge distribution, normal-
ized to unity such that

∫
ρ(r)d3r = 1, is given by

ρ(r) = η

8π
e−ηr ; η =

√
12

/〈
r2
p

〉
. (17)

We calculate the Lamb shift by taking the difference
between the appropriate eigenvalues calculated using the Dirac
equation with the potential given by Eq. (16) with the charge

distribution given by Eq. (17) for various values of 〈r2
p〉. We

then interpolate the energy shifts and fit the data to a cubic of
the form

f (x) = A
〈
r2
p

〉 + B
〈
r2
p

〉3/2
, (18)

which provides the relevant parametrization. The 〈r2
p〉n depen-

dence in the presence of an exponential finite-sized Coulomb
potential and point vacuum polarization potential,

V (r) = −Zα

∫
ρ(r ′)

|�r − �r ′|d
3r ′ + VVP(r), (19)

is given by

�EFinite = 205.1706 − 5.2169
〈
r2
p

〉 + 0.0353
〈
r2
p

〉3/2
meV.

(20)

A further important effect of the finite size of the proton
arises through the convolution of the vacuum polarization
potential [Eq. (12)] with the proton charge distribution. This
leads to the replacement of the point vacuum polarization
potential by

VVP(r) → −2Zα2

3π

∫
ρ(r ′)

|�r − �r ′|Z0(|�r − �r|)dτ ′, (21)

where we use the expression given in Ref. [10],

Zn(|�r|) =
∫ ∞

1
e− 2

λ̄
|�r|ξ

(
1 + 1

2ξ 2

)
(ξ 2 − 1)

1
2

ξnξ 2
dξ, (22)

and where λ̄ denotes the electron Compton wavelength
(divided by 2π ), λ̄ = 386.15926459 fm. When discussing
this potential, it should be assumed that we are using a
normalized exponential charge distribution. We once again
calculate the eigenvalues using various values of 〈r2

p〉 in
the charge distribution and fit the resulting energies to a
cubic [as per Eq. (18)], except that in this case the vacuum
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polarization induces the Lamb shift, and we must include a
term proportional to 1. Thus we find

�EFinite = 205.182 − 5.2519
〈
r2
p

〉 + 0.0546
〈
r2
p

〉3/2
meV,

(23)

which is the expression which is compared to the perturbative
calculation in Table I. We note that the finite vacuum
polarization induces a small but nontrivial shift and that the
results are otherwise essentially the same as those of Pohl
et al. [1].

VII. 2P FINE STRUCTURE

The O(Zα)4 perturbative 2P fine structure splitting is
calculated in Ref. [6] to be

�E2P
FS = μ3(Zα)4

32m2
μ

(
1 + 2mμ

mp

)
, (24)

along with higher order corrections. Taking this splitting as
the difference between the converged eigenvalues of the 2P 1/2

and 2P 3/2 eigenstates gives

�E2P
FS = λ2P 3/2 − λ2P 1/2 , (25)

which we can also calculate in the presence of the various
potentials. For the case of an exponential finite Coulomb
potential with finite vacuum polarization, the 2P fine structure
splitting is

�E2P
FS = 8.4206(5) meV. (26)

A comparison of this value with perturbative calculations
of Borie [2] is presented in Table II. The effect of the finite-size
Coulomb potential (as compared to the point case) is negligible
at the level of errors of our calculation. Similarly, the effect
of the finite-size vacuum polarization is also negligible at our
level of errors. The vacuum polarization itself increases the

TABLE II. Contributions to the 2P fine-structure splitting with
comparison to values found in Borie [2]. Subscripts are defined in
Table I. Values are all in meV. Errors in the Dirac calculations are
taken to be ±500 neV as per Sec. IV. The listed correction (Uehling
or vacuum polarization) is already included in our Dirac calculations.
All further corrections to both the perturbative calculation and
our calculation are contained in “Remaining corrections,” which
are detailed in Table II of Ref. [2]. Finite-size effects in either
the Coulomb or vacuum polarization potentials provide no shift
above the level of errors here, as expected for P states. The
perturbative calculation prediction is reproduced within errors.

Contribution Borie Present work

Dirac (V = VC) 8.4156 8.4156
Dirac (V = VFC) 8.4156
Dirac (V = VC + VVP) 8.4206
Dirac (V = VFC + VVP) 8.4206
Dirac (V = VFC + VFVP) 8.4206
Uehling (VP) 0.0050
Subtotal 8.4206 8.4206
Remaining corrections −0.06852
Total 8.3521 8.3521

fine structure splitting by 5μeV. We note that the perturbative
and nonperturbative calculations are in perfect agreement to
the level of errors presented here.

VIII. HYPERFINE STRUCTURE

The hyperfine structure is a measure of the �� · �σ coupling.
Following the lead of Ref. [21], the appropriate Hamiltonian
is given by

H = 2βμγh̄
�(� + 1)

j (j + 1)

〈
1

r3

〉
�I · �J + 16π

3
βμγh̄|ψ(0)|2 �I · �S,

(27)

comprising a dipole term and a contact term, for which the
following definitions apply for the muon Bohr magneton βμ,
proton Bohr magneton βp, and proton gyromagnetic ratio γ :

βμ = √
α/2mμ, βp = √

α/2Mp, γ = 2(1 + κ)βp. (28)

Here κ = 1.792847351 is the proton anomalous magnetic
moment. ψ(0) represents the muon wave function at the center
of the proton. We now investigate the two terms of Eq. (27)
separately.

A. 2S 1/2 hyperfine structure

There exist several methods by which the 2S hyperfine
structure can be calculated. The perturbative 2S hyperfine
structure calculated in Ref. [5] is given by

�E
2S1/2

HFS = 1

3
(Zα)4 μ3

mμmp

(1 + κ). (29)

For � = 0 the contact term in the Hamiltonian [Eq. (27)] is
nonzero, while the dipole term vanishes:

E2S
HFS = 16π

3
βμγh̄|ψ(0)|2〈FmF | �I · �S|FmF 〉, (30)

where |FmF 〉 is the eigenfunction belonging to �F = �I + �J ,
such that

〈FmF | �I · �S|FmF 〉 = 1
2

[
F (F + 1) − 3

2

]
. (31)

Thus, the splitting between the 2S F = 0 and F = 1 hyperfine
levels is given by

�E
2S(F=1−F=0)
HFS = 16π

3
βμγh̄|ψ(0)|2, (32)

We note an important, relevant typographical correction: In
Ref. [21] Eq. (18.2-17b), the sign should be positive and the
second 9 in the denominator should not appear.

The value of the 2S hyperfine splitting, as calculated using
Eq. (32), with the wave function calculated with the Dirac
equation in the presence of the combined exponential finite
Coulomb and finite vacuum polarization potentials is

�E2S
HFS = 22.7690(5) meV. (33)

We note that the effect of including the exponential
finite-size Coulomb potential as compared to the point case
reduces the splitting by 0.1269(5) meV; introducing the
point vacuum polarization potential increases the splitting by
0.0747(5) meV for the point Coulomb and 0.0742(5) meV for
the finite Coulomb cases. Using the combined finite vacuum
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polarization and finite Coulomb potentials reduces the splitting
by 0.0012(5) meV to give the value above.

Alternatively, one can follow Ref. [3] in which case we can
calculate this splitting to be

�E2S
HFS = κgμ

κ2 − 1
4

[�(� + 1) − I (I + 1) − j (j + 1)]

× α

2Mp

∫
r−2g(r)f (r) dr. (34)

In that case, we calculate

�E2S
HFS = 22.7640(5) meV, (35)

provided we correct for the reduced mass in the formula such
that the magnetic moment of the muon is not defined in terms
of reduced mass but rather defined in terms of the free space
mass.

A comparison to perturbative calculations is given in
Table III, where we note the finding of a finite-size-dependent
contribution in this splitting, which is neglected in the
summary of Pohl et al. (though finite-size effects sans a
parameterization are calculated in studies by Borie [2] and
Pachucki [18]) and which differs from results obtained using
the standard Zemach treatment [18]. We note that for 〈r2

p〉1/2 =
0.8768 fm, the 2S1/2 hyperfine splitting is calculated here to be
22.8496 meV (22.8547 meV for 〈r2

p〉1/2 = 0.84184 fm), which
indicates a 0.0087(5) meV [0.0100(5) meV] correction to the
perturbative calculation (once the factor of 1/4 is taken into
account), or 2.8–3.2% of the 0.31 meV quoted discrepancy.

B. 2P 1/2 hyperfine structure

The 2P1/2 hyperfine structure is of no consequence for
the transition which we are investigating here. Nonetheless,
we calculate the energy of the 2P F=0

1/2 and 2P F=1
1/2 levels as a

confirmation of our method, and to compare to the perturbative
results. Following Ref. [6], to O(α4) the 2P 1/2 hyperfine
structure splitting is given by

�E
2P 1/2

HFS = EF

[
1

3
+ aμ

6
+ mμ(1 + 2κ)

12mp(1 + κ)

]
, (36)

for which the Fermi energy is

EF = μ3(1 + κ)

3mμmp

(Zα)4, (37)

and where αμ is the muon anomalous magnetic moment. We
note another important, relevant typographical correction: In
Ref. [6] the factors of 2 in the denominators of the third terms
of Eqs. (27) and (28) should read 12. The calculations are
performed correctly however. For � �= 0, the dipole term in
the Hamiltonian [Eq. (27)] is nonzero, while the contact term
vanishes. The energy for the dipole term is thus given by

E
2P 1/2

HFS = 2βγh̄
�(� + 1)

j (j + 1)

〈
1

r3

〉
〈FmF | �I · �J |FmF 〉, (38)

where the nonzero terms in the dot product are given by

〈FmF | �I · �J |FmF 〉 = 1
2 [F (F + 1) − I (I + 1) − j (j + 1)].

(39)

For Schrödinger wave functions, the vacuum expectation value
of r−3 is analytic, in that〈

1

r3

〉
=

[
a3

0n
3�(� + 1)

(
� + 1

2

)]−1

. (40)

Inserting the appropriate values of F, n, �, I, and j for each
of the F = 0 and F = 1 states, one obtains the energy of the
2P 1/2 hyperfine structure to be

�E
2P 1/2

HFS = 2
9βγh̄/a3

0 . (41)

TABLE III. Contributions to the 2S1/2 hyperfine splitting calculated via Eq. (32) with comparison to values found in Martynenko [5].
Subscripts are defined in Table I. Values are all in meV. Errors in the Dirac calculations are taken to be ±500 neV as per Sec. IV. The
listed corrections are already included in our Dirac calculations and are listed by their descriptions in Ref. [5]. All further corrections to both
the perturbative calculation and our calculation are contained in “Remaining corrections,” which encompass the muon AMM, among other
corrections listed in Ref. [5]. We note that the “Proton structure corrections of O(α5)” pertains to the Zemach contribution (which we shall
explore in an upcoming publication) and does not include considerations of finite size in the wavefunction and that the polynomial dependence
on 〈r2

p〉n of this splitting is not discussed in the literature.

Contribution Martynenko Present work

Dirac (V = VC) 22.8229
Dirac (V = VC + VVP) 22.8976
Dirac (V = VFC) 22.7774 − 0.1746 〈r2

p〉 + 0.0709 〈r2
p〉3/2

Dirac (V = VFC + VVP) 22.8510 − 0.1701 〈r2
p〉 + 0.0667 〈r2

p〉3/2

Dirac (V = VFC + VFVP) 22.8521 − 0.1795 〈r2
p〉 + 0.0739 〈r2

p〉3/2

Fermi energy EF 22.8054
Relativistic correction 17

8 (Zα)2EF 0.0026
VP corrections of orders α5 and α6 in the

second order of perturbation series 0.0746
Proton structure corrections of order α5 −0.1518
Proton structure corrections of order α6 −0.0017
Subtotal 22.7291 22.8521 − 0.1795 〈r2

p〉 + 0.0739 〈r2
p〉3/2

Remaining corrections 0.0857
Total 22.8148 22.9378 − 0.1795 〈r2

p〉 + 0.0739 〈r2
p〉3/2
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TABLE IV. Contributions to the 2P 1/2 hyperfine splitting with
comparison to values found in Martynenko [6]. Subscripts are defined
in Table I. Values are all in meV. Errors in the Dirac calculations are
taken to be ±500 neV as per Sec. IV. The listed corrections are already
included in our Dirac calculations. The “Leading contribution” is
extracted from the O(Zα)4 line in Table II of Ref. [6] and includes
only the EF /3 term of Eq. (36). The relativistic correction is
listed as O(Zα)6 in that reference. All further corrections to both
the perturbative calculation and our calculation are contained in
“Remaining corrections,” which encompass the muon AMM, proton
MM, and all other lines of Table II in Ref. [6] not already listed. We
note the minor error in the last digit of the summary contribution of
Ref. [6] for this state, likely arising from round-off error.

Contribution Martynenko Present work

Dirac (V = VC) 7.6141
Dirac (V = VC + VVP) 7.6159
Dirac (V = VFC + VVP) 7.6204
Dirac (V = VFC + VFVP) 7.6204
Leading contribution 7.6018
O(Zα)6 contribution 0.0011
Subtotal 7.6029 7.6204
Remaining corrections 0.3615
Total 7.9644 7.9819

Equation (41) corresponds to the leading term of Eq. (36), to
which the anomalous magnetic moments provide additional
corrections. Using the converged Dirac wave functions with
exponential finite Coulomb and finite vacuum polarization po-
tentials (rather than Schrödinger wave functions) we calculate
the expectation value of r−3 and find

�E
2P 1/2

HFS = 7.6204(5) meV. (42)

The results of this calculation are summarized in Table IV,
where we note that the addition of the (point) vacuum polar-
ization potential to the point Coulomb potential increases the
splitting by 0.0017(5) meV, and the introduction of the finite
Coulomb potential increases this further by 0.0045(5) meV
to arrive at the value above. The effect of finite vacuum
polarization is essentially zero here.

C. 2P 3/2 hyperfine structure

Following the same method as in the previous section, we
can calculate the energy levels for the 2P F=1

3/2 and 2P F=2
3/2 levels.

The 2P 3/2 hyperfine structure, as derived in Ref. [6], is given
by

�E
2P 3/2

HFS = EF

[
2

15
− aμ

30
+ mμ(1 + 2κ)

12mp(1 + κ)

]
, (43)

where EF is given in Eq. (37) (where we note again the ty-
pographical correction detailed in Sec. VIII B). Alternatively,
inserting the relevant values for this state into Eq. (39) and
using the converged Dirac wave functions we find

�E
2P 3/2

HFS = 3.0415(5) meV (44)

when the potential consists of the exponential finite Coulomb
and point vacuum polarization potentials. For this state,
the addition of the (point) vacuum polarization potential

TABLE V. Contributions to the 2P 3/2 hyperfine splitting with
comparison to values found in Martynenko [6]. Subscripts are defined
in Table I. Values are all in meV. Errors in the Dirac calculations
are taken to be ±500 neV as per Sec. IV. The details of the listed
corrections are the same as those of Table IV.

Contribution Martynenko Present work

Dirac (V = VC) 3.0408
Dirac (V = VC + VVP) 3.0415
Dirac (V = VFC + VVP) 3.0415
Dirac (V = VFC + VFVP) 3.0415
Leading contribution 3.0407
Relativistic correction 0.0001
Subtotal 3.0408 3.0415
Remaining corrections 0.3518
Total 3.3926 3.3933

to the point Coulomb potential increases the splitting by
0.0007(5) meV to the value listed in Table V; the introduction
of the finite Coulomb potential was found to have no effect
within the limits of our calculation, nor did the introduction of
the finite vacuum polarization potential.

IX. SUMMARY

We summarize the findings of these nonperturbative Dirac
calculations and compare to the previous literature values
of perturbative calculations in Table VI. We add to this a
combined expression for the cubic, which, when set equal to
the experimental value of the measured transition, is solved to
predict the proton rms charge radius, as is done in Ref. [1].

We do not include the result of hyperfine splitting calcu-
lations for the 2P 1/2 eigenstate as this is of no relevance to
the measured transition. We also note the omission here of
the energy shift attributed to a mixing between the 2P 1/2 and
2P 3/2 F = 1 states, as discussed in Ref. [18] for comparison
to Ref. [1] where it is also absent.

We find that the perturbative calculations are largely repro-
duced using our methods when considering the appropriate
potentials for comparison. We further find that in several cases
the use of the finite vacuum polarization potential produces
effects which are not accounted for in previous studies. The
largest of these is the finite-size contribution to the 2S1/2

hyperfine splitting, which has been neglected in the literature
up to this point.

Overall, the nonperturbative calculations do not elucidate
any missing contributions of a magnitude large enough to
resolve the proton radius problem outlined in Pohl et al. [1].

X. CONCLUSIONS

After careful consideration of the various contributions to
the measured transition energy of Pohl et al. [1], calculated
consistently using the Dirac equation with appropriate poten-
tials, and following the addition of the required corrections to
these calculations (taking further care to avoid overcounting
issues), we find no single term which leads to a discrepancy
with the perturbative results of sufficient magnitude to account
for the discrepancy reported in Ref. [1]. These calculations
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TABLE VI. Sum of perturbative and nonperturbative theoretical contributions to the measured experimental transition energy shown in
Fig. 1. Subscripts are defined in Table I. Values are all in meV. The individual perturbative contributions (listed under “Various”) are taken from
Tables I–V. In each case, the value given for the Dirac calculation is calculated using the combination of finite Coulomb and finite vacuum
polarization potentials (V = VFC + VFVP). The fractional factors for the hyperfine splittings are inserted for relevance to the measured transition
and are calculated via angular-momentum splitting rules.

Contribution Various Present work

2S1/2–2P 1/2 Lamb shift (constant) 206.0573 206.0604

2S1/2–2P 1/2 Lamb shift (finite size) −5.2262〈r2
p〉 + 0.0347〈r2

p〉3/2 −5.2794〈r2
p〉 + 0.0546〈r2

p〉3/2

2P fine structure 8.3521 8.3521
1
4 × 2S1/2 hyperfine (constant) −5.7037 −5.7345
1
4 × 2S1/2 hyperfine (finite size) 0.0000 0.0449 〈r2

p〉 − 0.0185 〈r2
p〉3/2

3
8 × 2P 3/2 hyperfine 1.2722 1.2725

(Various) Total (perturbative) 209.9779 − 5.2262 〈r2
p〉 + 0.0347 〈r2

p〉3/2

(Present work) Total (Dirac) 209.9505 − 5.2345 〈r2
p〉 + 0.0361 〈r2

p〉3/2

nonetheless provide useful insight into the reliability of the
perturbative calculations and allow a simpler approach to
future investigations.

While it remains possible in principle that one or more of
the higher order corrections to the terms calculated in this
work might be of sufficient magnitude to affect the analysis of
Ref. [1], the precision with which the Dirac and perturbative
calculations agree for the terms which we have calculated here
strongly suggests that this will not be the case.

In addition to the calculations presented here, we further
note that our calculations of a hitherto overlooked contribution
arising from off-mass-shell effects for the proton (which are
negligible for electronic hydrogen) provide a natural solution
to the proton radius problem [12], and as such the combination
of these two sets of calculations may be seen as a complete
description of the measured transition in muonic hydrogen
with no discrepancy in the rms charge radius of the proton.
Because of the uncertain magnitude of the off-mass-shell
effects, it is incorrect to complete the analysis of this transition
to predict a proton rms charge radius—we await the results of
current and future experiments which will help us ascertain the
strength of this contribution, after which a complete analysis
will be possible.

Nonetheless, we note that our calculations predict that the
transition energy for the 2P F=2

3/2 to 2SF=1
1/2 transition in muonic

hydrogen is larger in magnitude than that which is predicted
by the perturbative calculations and that analysis of these data
under the assumption that no further terms are required leads
to the following values for the proton rms charge radius when
fit to the experimental data:

Pohl et al.
√〈

r2
p

〉 = 0.84183(67) fm,

present work
√〈

r2
p

〉 = 0.83811(67) fm.

The value listed as present work is taken as the solution to the
cubic equation

209.9505 − 5.2345
〈
r2
p

〉 + 0.0361
〈
r2
p

〉3/2 = 206.2949, (45)

where the right-hand side corresponds to the quoted value of
the measured transition in Ref. [1], the left-hand side is taken
from the relevant conclusion line of Table VI, and for which
the errors in this calculation are dominated by the experimental
error. The extracted

√〈r2
p〉 value listed as Pohl et al. is taken

from Ref. [1] (calculated in the same fashion) and differs
from the central value quoted in [1], 0.84184(67), though the
difference is well within the quoted errors.

We note the degree to which this cubic expression [Eq. (45)]
agrees with that of Ref. [1], despite the latter not involving a
calculation of a finite-size contribution to the 2S hyperfine
splitting. Some research in progress by the authors will
elucidate some further overlooked contributions that will likely
alter the agreement between these two expressions, and we
look forward to future measurements with which we may
compare our findings.
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