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The reduced-mass dependence of relativistic and radiative effects in simple muonic bound systems is
investigated. The spin-dependent nuclear recoil correction of order (Za)* u®/m? is evaluated for muonic
hydrogen and deuterium and muonic helium ions (u is the reduced mass and m y is the nuclear mass). Relativistic
corrections to vacuum polarization of order a(Za)*u are calculated, with a full account of the reduced-mass
dependence. The results shift theoretical predictions. The radiative-recoil correction to vacuum polarization of
order a(Za)® In?(Za)pu?/my is obtained in leading logarithmic approximation. The results emphasize the need
for a unified treatment of relativistic corrections to vacuum polarization in muonic hydrogen, muonic deuterium,
and muonic helium ions, where the mass ratio of the orbiting particle to the nuclear mass is larger than the

fine-structure constant.
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I. INTRODUCTION

In muonic hydrogen and muonic deuterium, the mass ratio
&y = m,/my of the orbiting particle (muon mass m,,) to the
mass of the atomic nucleus m y is not really small against unity.
It evaluates to

m, 1
=2 =0.112609...~ —, 1
= 5 (1)
1
Eg= 2 =0.0563327... ~ —, (1b)
m 18

d
where the latest recommended values of the masses have been
used [1]. For muonic helium ions, we have

m, 1

Epe = —— = 00376223 ... ~ — (10)
mye3 26
1

Eer = —& = 0.0283465... ~ — . (1d)
Mmyet 35

In all cases, &y is larger than the fine-structure constant
a ~ 1/137.036 that governs the relativistic and quantum elec-
trodynamic (QED) effects. Consequently, the reduced-mass
dependence of all QED effects that influence the spectrum must
be taken into account exactly, i.e., to all orders. In calculations,
one must first take into account &y (if possible) to all orders
before advancing to the next order in the Z« expansion;
otherwise, the higher-order effects in Z« will be shadowed by
the unknown reduced-mass dependence of lower-order terms
in the Za expansion.

Hence, particular emphasis has been laid in Ref. [2] on the
correct treatment of the reduced-mass dependence of all rela-
tivistic and QED corrections. The statement made in the text
preceding Eq. (17) in Ref. [2], which says “the external field
approximation does not give an accurate result,” can hardly be
overemphasized. Here the external field approximation refers
to the Dirac equation, which is appropriate for heavy muonic
atoms, where the parameter Z« (with Z denoting the nuclear
charge number) is much larger than the mass ratio m,/my,
where my is the mass of the heavy nucleus. Even a tiny
conceivable error in the handling of, say, the reduced-mass
dependence of the one-loop vacuum polarization (VP) shift in
muonic hydrogen could drastically influence the comparison
of theory and experiment: the current discrepancy [3] of theory

1050-2947/2011/84(1)/012505(6)

012505-1

PACS number(s): 36.10.Ee, 12.20.Ds, 14.20.Dh, 31.30.jf

and experiment for the muonic hydrogen Lamb shift amounts
to roughly 0.3 meV, which is about one part per thousand of
the leading vacuum-polarization contribution and thus smaller
than a conceivable additional reduced-mass correction to the
leading VP effect of relative order & ;,

In comparison to previous studies on heavy muonic atoms
and ions (excellent theoretical overviews are provided in
Refs. [4,5]), the magnitude of the mass ratio is the main
characteristic property of muonic hydrogen and deuterium.
In this paper, we thus revisit the precise treatment of the
vacuum-polarization contribution to the Lamb shift in muonic
hydrogen (;«H) and muonic deuterium (uD) as well as muonic
helium ions (uHe® and pHe*), with a full account of the
two-body structure of the bound system. Starting from the
nonrelativistic Hamiltonian (Sec. II), we proceed to discuss
the nuclear-spin-dependent terms in the Breit Hamiltonian
(Sec. III) before proceeding to the radiatively corrected Breit
Hamiltonian (Sec. IV) and the radiative-recoil correction
(Sec. V). Conclusions are drawn in Sec. VI.

II. NONRELATIVISTIC HAMILTONIAN

The nonrelativistic ©#H Hamiltonian is separable, and the
nonrelativistic (Schrodinger) Hamiltonian in the center-of-
mass system, where the muon and the nuclear particle carry
opposite momenta p and — p, respectively, reads (in natural
units, i =c =€y =1)

H p? p? Za  p?  Za _ My

- 2m,  2my ro2n r

2

This equation can be solved exactly in terms of Schrédinger
eigenstates. The nonrelativistic spinor wave functions for the
2812 and 2Py, states are exact eigenstates of H and read,
explicitly,

. 7 3/2 .
Vs = % @ — Zaure 7 xM ¢y, (3)
. 7 5/2 .
Yap,,(r) = % em 17y M (7, 4)
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where M = i% is the magnetic projection, xM(7) is the
standard two-component spin-angular function [6], and s =
(—1)/+¢+1/2 is the Dirac angular quantum number. The
reduced-mass dependence of the wave functions in Eq. (3)
is exact.

The one-loop vacuum-polarization potential V,, can be
expressed in terms of the action of a linear operator K on
a screened Coulomb potential vy, as follows:

Za —AT
Vip(r) = Klvwp(me p;r)], vyp(Asr) = - (&)

2 [ 24p2 | 4
K[f(p]= 3—a/ dp +3p == flp), (6
T )y p P

where m, is the electron mass. In the following, we often use
the identification A = m, p and define the ratio

with

(Zap)’

which evaluates to 8, = 0.7373836... for uH and B; =
0.7000861 ... for uD (proton and deuteron nuclei, respec-
tively). For muonic helium ions, the values are By =
0.3438429... and By = 0.3407691.... (We here refrain
from assigning a subscript to the reduced mass u, even though
it, of course, depends on the nucleus N because the symbol py
isreserved, canonically, for the nuclear magnetic moment.) We
then use the exact nonrelativistic unperturbed wave functions
defined in Eq. (3) and calculate the leading VP energy
shifts as

Bw @)

2By 0* +1

2812 Veol2810) = —(Za) p K | =8P T~
(28121 Vyp281,2) (Za)y |:4(ﬂ1v,0+1)4

} (8a)
and

(2P 2| Vipl2P1 ) = —(Za)* u K [ (8b)

1
41+ By p)“] '

A numerical evaluation of these compact expressions is found
to be in agreement with the literature (see Refs. [2,3,7,8]) and
confirms that the reduced-mass dependence of the leading VP
effect is correctly described by Schrodinger wave functions
scaled with the reduced mass of the system. It is even possible
[9,10] to carry out the integration over the spectral parameter
p analytically, with the result

2P Vip|2P12) — (281/2|1Vipl281)2)
8nBy 1 —26B% + 3528y — T68B%
3 18(1—482)°

. 4p4 (15— 80p3 +1288%) 1=/ 1—4B%

3(1-4p2)" 2

o

= —(Za)zu[

T

€))

for the Lamb shift difference of the leading VP energy correc-
tion. For reference, the 2 P;,-2S5,, difference of the leading
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nonrelativistic vacuum polarization effect is 205.0073 meV
for uH, 227.6346 meV for uD, 1641.885 meV for uHe?, and
1665.772 meV for uHe*. The latter value differs by 0.010 meV
from the value of 1665.782 meV given in Eq. (10) of Ref. [11];
the difference probably is due to updated physical constants
used in our calculation (see also Ref. [1]).

III. BREIT HAMILTONIAN AND BARKER-GLOVER
TERMS

The Breit equation and the corresponding Hamiltonian
follow from the Bethe-Salpeter equation in the limit on an
instantaneous interaction kernel [12] and describe the bound
states of general two-body systems of arbitrary mass ratio
&wn, including higher-order relativistic corrections [13]. For
the 2P;/5-251, Lamb shift in muonic bound systems, the
relevant terms in the Breit Hamiltonian read [§; = 1 (§; = 0)
for half-integer (integer) nuclear spin; see [14]]

4 =4 =4
14 P
SHZ (SH, SHI = — -,
jzz; 8m? 8m3,
1 1) 7 Za83(r
e (b )
miy o my 2
(10)
Za o b
SHy=————|\p +5r'r'p'p/ ).
2m, myr r

sy =22 (s L )51
YT 4m?  2mymy 7

where we use the summation convention for the superscripts i
and j, which denote the Cartesian components of the position
and momentum operators. Using the relations

V2 G) = —47 83(r) (11

and

o xtxd
ViV (x a ) — 147 83(r), (12)
r
one may transform § Hz to a more symmetric form,

Za (1 rird .
pl-+ p’. (13)

SHy = —
3 2m,my r r3

After some algebra, the expectation values of the eigenstates
given in Eq. (3) of the Breit Hamiltonian read

S+ Ev(11+ 13£y)
128 (1 + &n)?
(Zo)* &}

161 +&0)2°

15+ En(33 + T£x)

384 (14482
(14b)

(281218 H|2S1 2) = —(Za)* 1

+4 (14a)

QP plSHI2P p) = —(Zat)u
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and the 2P, »-2S) , difference (2P;/; is energetically higher)
amounts to

7 4 2
LQPys —251) = %(4 _358)
7 4.3
% 6=,
N
| @t (1

The Barker-Glover [15] correction L given in Eq. (15)
evaluates to 0.05747 meV for uH and to 0.12654 meV
for pHe?, in full agreement with the literature [Eq. (46)
of Ref. [2]]. Because the zitterbewegung term is absent for
the spin-1 deuteron nucleus [14] and for the spin-zero alpha
particle, the shift evaluates to L = 0.06722 meV for uD and
to L = 0.29518 meV for uHe* [cf. Eq. (61) of Ref. [11] and
Eq. (10) of Ref. [16]]. It constitutes a nuclear spin-dependent
recoil correction to the Lamb shift, which is essential for the
correct description of the muonic isotope shift. Equation (15)
is exact to all orders in &y .

IV. RADIATIVELY CORRECTED BREIT HAMILTONIAN

The massive Breit interaction uses a strictly static timelike
photon propagator component

1
Go(g) = ———— 16
00(q) ENRY (16)
and spatial components
. i 4
Giig)=—5—— |8 —=5——=| . 17
i@ quz[ qzﬂz} (17)

The spatial components are no longer transverse. One then
follows the standard derivation of the Breit interaction given in
Chapter 83 of Ref. [18] but has to avoid pitfalls. The derivation
necessitates the evaluation of Fourier transforms, the most
interesting of which is related to the interaction [cf. Eq. (83.13)
of [18] and Sec. 2 of Ref. [19]],

. dnZa [ p° (P-4
U([’J]v)\) = - ["2 2 (=2 2)2
mymy [g*+21> (g7 + 1)
)\’2_’2 )\2". =
+ *2q22_*2q 1272 : (18)
4g*+27)* (g7 + 212

For A = 0, the Fourier transform of this expression with respect
to g gives the term § H3 in Eq. (10). For a massive photon, we

find
[
(2m)3

where dv,(r) and dv3(r) contribute to the Breit potential §vy,
for massive photon exchange,

U(p,3,0)e 7" = suy(r) + 8u3(r),  (19)

Svyp = K[8v) + 8vp + v3 + Sual, (20)

where §v;(r) depends on the nuclear spin,

Za [ 1 5 3 A
svi= — |+ — | (4783 — =e . (21)
8 my - my r

PHYSICAL REVIEW A 84, 012505 (2011)

and the momentum operators act on the ket state in

7 )\2 —Ar A Lo
vy = — %€ (l——r+2ir-p> . (22)
dm, myr 2
Zae ™ (. 14+rr , . . .
81)3 — _ o e <p2+ + rrzr]plp]) , (22b)
2mymyr r2

whereas the spin-orbit coupling is modified to

1 1 e +Arr) . -
Svy = Za + o-L. (23)
4mi 2m my r3

In the terms §v, and dv3, all the momentum operators act
on the “incoming” wave function (Dirac ket state) and the
Hamiltonian may be used for the evaluation of diagonal
matrix elements. For off-diagonal elements, it is helpful
to symmetrize dv, and Svsz with respect to outgoing and
incoming momenta, effectively replacing terms of the form
f(#iF - p by the commutator i [ f(F)F,p] and terms of the
form fU(7) p' p/ by the anticommutator § {f"(F), p' p/}.
In a second step, using the relation %{Az,B} =ABA-+
% [A,[A, B]], one obtains an even more symmetric form, with

Swl = 81)1 , 811)4 = 81)4 , (243)
7 )\2 —Ar A

Swy = — 22 (1 _ —r> : (24b)
4m, myr 2

Za e i(éij l+ar
Swy = — 228 i (4

. rrf) p’, (240

4m,my r 7

Svyp = K[8w) + 8wy + Sws + Swy] . (24d)

The terms Sw, and dws are used in Eq. (21) of Ref. [2].
The a(Za)* u relativistic reduced-mass correction to vacuum
polarization then is the sum of four first-order perturbations

8E§1) and four second-order terms SE;Z) s

4 4
SE, =8EV +5E® =) "SE/N+ Y SEY . (25a)
i=1 j=1

SE;V = K[(nt;|sw;|nt;)],
SEY =2 K[(nt;|8H,|8v,)] .

(25b)
(25¢)

where |81,,,) is the wave-function correction due to VP,

1 /
|51/fne,») = (EM——H) Uyp L) . (26)

Using a generalization of techniques outlined in Ref. [20], the
perturbation §v,,,, can be evaluated analytically. The detailed
expressions for the reduced Green functions (indicated by
a prime) of the 251, and 2Py, states have been given in
Egs. (23) and (24) of Ref. [2]. All individual contributions are
listed in Table I in order to facilitate a numerical comparison
with independent calculations. For pwH, we obtain a re-
sult of AEVp = 3EVP(ZP]/2) — 5Evp(2S]/2) = 0.018759 meV.
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TABLE I. Detailed breakdown of the first-order and second-order individual contributions 8 Efl) and 8 E‘(,-z) to the relativistic Breit correction
8 E,;, of vacuum polarization for uH, uD, and muonic helium ions. All units are meV.

uH uD uHe? nHe*
2P1/2 [meV]
SEV —0.000558 —0.000679 —0.020331 —0.020970
SEL 0.000064 0.000038 0.000467 0.000360
SEY —0.000290 —0.000181 —0.004587 —0.003584
SEL —0.002026 —0.002303 —0.085970 —0.087587
SEW —0.002811 —0.003125 —0.110421 —0.111781
SE? —0.001124 —0.001545 —0.099980 —0.105132
SEY 0.0 0.0 0.0
SEY —0.000269 —0.000177 —0.008427 —0.006624
SEY —0.001283 —0.001521 —0.093497 —0.095762
SE® —0.002676 —0.003243 —0.201904 —0.207518
SEyp —0.005486 —0.006368 —0.312324 —0.319300
2S1/2 [II]CV]
SE 0.029112 0.034636 0.846700 0.872150
SEL —0.001928 —0.001142 —0.014512 —0.011243
SEL —0.002280 —0.001416 —0.032734 —0.025535
SEL 0.0 0.0 0.0
SEW 0.024904 0.032078 0.799454 0.835372
SEY —0.084996 —0.108282 —2.875794 ~2.995690
SEY 0.044911 0.053594 1.361115 1.402803
SEY —0.009064 —0.005539 —0.106444 —0.082889
SEY 0.0 0.0 0.0
SE® —0.049149 —0.060227 —1.621122 —1.675776
SEyp —0.024245 —0.028149 —0.821668 —0.840404
2Py >-28,, [meV] and comparison to other work

AE,, (this work) 0.018759 0.021781 0.509344 0.521104
Ref. [17] 0.0169
Ref. [11] —0.202
Ref. [16] 0.0169 0.0214 0.495 0.508

*A conceptually different approach is used in Ref. [16].

This result is not in perfect agreement with published values
[2,16,17]. For comparison, the result indicated in Eq. (25) of
Ref. [2] reads 0.059 meV; and in Eq. (25) of Ref. [17] a result
of 0.0169 meV has been indicated. In Table 1 of Ref. [16],
a numerically equivalent result of 0.0169 meV is given.
(We note that Ref. [16] contains many unnumbered tables;
the referenced table is numbered). The matrix elements of the
relativistic recoil operator given in Eq. (7) of Ref. [16] are
evaluated using unperturbed wave functions. All values given
in Table I are nonperturbative in the mass ratio and take the
wave-function correction into account. A precise comparison
of individual contributions to the approach of Ref. [16] is not
possible at present. As evident from Table I, there are quite
significant differences with published values for uHe*: e.g.,
the entries in Egs. (26)—(29) and Eq. (41) of Ref. [11] add up
to a correction of —0.202 meV for the 2 P;>-25 /> Lamb shift
in uHe*, whereas we obtain 4+0.521 meV.

A very important question concerns the verifiability of the
results. In self-energy calculations [21], a cross-check of the
calculation consists in the cancellation of an overlapping pa-
rameter that separates different momentum and energy regions
of the physical process. For VP effects in muonic systems, no

such checks are immediately available. Here we note that the
entries for the first-order matrix elements in Table I for ;He*
are in full agreement with the results given in Egs. (26)—(29) of
Ref. [11]. For the matrix elements needed for § EV, the limit
as A — 0 of the matrix elements (n{;|Sw;|n€;) can be verified
independently, and the calculation can otherwise be performed
analytically, with ease. For the matrix elements needed in the
evaluation of the second-order effects s E®, we can verify
the first few terms in the asymptotic limit as A — 0, using the
relation

1 ’

1 ' Gl

—(nt;|6H (ﬁ) Zar|ntj) 2> + 003, 27)

In deriving this relation, the Hellmann-Feynman theorem is
useful for the zeroth-order term in A. The wave-function per-
turbation in the term of order A% can be evaluated analytically.
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FIG. 1. Feynman diagrams for the radiative-recoil correction
in two-body muonic bound systems. The three given diagrams
correspond to the vacuum-polarization insertion in the seagull and
two-photon exchange and lead to the leading double logarithm given
in Eq. (29).

V. RECOIL CORRECTION TO VACUUM POLARIZATION

Beyond the radiative modifications of the static Breit
Hamiltonian, the recoil correction to vacuum polarization
can be obtained by the insertion of vacuum polarization
loops into the Salpeter recoil correction [22-24]. The recoil
correction is the sum of four terms [24]; two of these (low- and
middle-energy parts) describe the frequency-dependent part of
the Breit interaction, beyond the static Breit Hamiltonian given
in Eq. (10), and two further terms (seagull and high-energy
part) correspond to two-photon exchange.

The seagull term corresponding to Fig. 1 (left), with a
vacuum polarization insertion in the exchange photon, leads
to the integral

64 d3k1 d3k2 1 1
SEy = ——
2mMmN (27‘[)3 (27‘[)3 wirky w1 + ko
kK kKK e e
X 81]_ 1™ 81]_ 2™ jI(ngjlel(k]-kkz)'}"nKj)7
( of ) ( K
(28)
where | = ,/l_é% + A2 is the frequency of the massive photon

in the vacuum-polarization loop. An ultraviolet cutoff A is in-

troduced via multiplication of the integrand by a multiplicative
regularization factor kffAz k%j\r—j\z The auxiliary parameter A
cancels when the high-energy part from two-photon exchange
(see Figs. 1, middle, and 1, right) is added to the result (see
also Ref. [24]). From the integral (28), we extract a leading
double-logarithmic correction,

4a(Za)’ 112 80
3n2mymy n’

SEg = In* (4Zapy) . (29)
which is nonvanishing only for S states (¢ = 0). This correction
evaluates to 0.0003 meV for the 2 Py /,-2S5 , Lamb shiftin uH,
0.0002 meV for uD, 0.0072 meV for /LH63, and 0.0056 meV
for uHe*. Because subleading logarithmic terms and nonlog-
arithmic terms are missing, the theoretical uncertainty of the
results in Eq. (29) should be taken as 100 % of the leading
logarithmic correction calculated here.

VI. CONCLUSIONS

Our theoretical investigations are motivated by the necessity
to shed light on the recently observed discrepancy of theory
and experiment in i H (see Ref. [3]). By an explicit evaluation
of the matrix elements of the two-body Breit Hamiltonian, we
obtain the nuclear-spin-dependent recoil contributions to the
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Lamb shift in wH and uD given in Eq. (15) and confirm that
the results are exact in the mass ratio, so that the existence of
further recoil corrections [15] can be ruled out at order (Zx)*.
The calculation of the relativistic reduced-mass corrections to
vacuum polarization using the massive Breit Hamiltonian is
shown to involve a nontrivial nuclear-spin-dependent term [see
Eq. (21)]. Our detailed numerical investigation (see Table I)
slightly decreases the observed experimental-theoretical dis-
crepancy [3] (in contrast to a recent investigation [25], where
the authors obtained an increase of the discrepancy based on
a treatment that is perturbative in the mass ratio).

A detailed breakdown of the relativistic corrections to
vacuum polarization, including the reduced-mass corrections,
is given in Table I for muonic hydrogen, muonic deuterium,
and muonic helium ions. For muonic hydrogen, the sum
of the entries in rows 3 and 19 of the theory in the
supplemental material to Ref. [3] minus the entry in row 1
of the same supplemental material amounts to (205.0282 —
0.0041 — 205.0074) meV = 0.0167 meV; this is close to the
result indicated in Table 1 of Ref. [16], which is 0.0169 meV.
Apparently, the second entry in the mentioned combination
(—0.0041 meV) of the supplemental material of Ref. [3] has
been referred to in Refs. [7,16] as a “recoil correction to
vacuum polarization,” whereas we here refer to the effect as
a relativistic correction to vacuum polarization with a proper
account of the reduced-mass dependence. Our approach is
nonperturbative in the mass ratio £y and isolates the terms
of order « (Za)*, while treating the two-body aspects of the
problem to all orders.

Our calculations lead to significant shifts of theoretical
predictions for uHe* with respect to published values (experi-
ments are planned for the near future). Specifically, for uHe*,
our nuclear-spin-dependent Barker-Glover-type correction L
of 0.295 meV differs from the value of 0.074 meV given
in Refs. [11,16] by +0.221 meV. For puHe*, our result for
the relativistic correction to vacuum polarization, with a full
account of the reduced-mass dependence, is 0.521 meV for
the 2P-2S difference, compared with a value of —0.202 meV
given in Ref. [11]. This leads to a total upward shift of
theoretical predictions for the 2 Py »-2, Lamb shift in /,LH64
by +0.934 meV relative to Ref. [11] and by +0.234 meV
relative to Ref. [16]. Here, we include the small correction
of the reference value of the leading VP correction and the
difference in the relativistic correction to vacuum polarization
from Table L.

The radiative-recoil correction obtained in Eq. (29) is nu-
merically small; however, this two-loop bound-state correction
has traditionally been one of the most elusive effects in bound-
state quantum electrodynamics for two-body systems. Its
calculation in leading logarithmic approximation helps to de-
termine the overall uncertainty of theoretical predictions with
regard to the conceptually involved higher-order recoil correc-
tions to VP, given by the two-body nature of the bound system.
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