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Statistical correlations in the Moshinsky atom
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We study the influence of the interparticle and confining potentials on statistical correlation via the correlation
coefficient and mutual information in ground and some excited states of the Moshinsky atom in position and
momentum space. The magnitude of the correlation between positions and between momenta is equal in the
ground state. In excited states, the correlation between the momenta of the particles is greater than between
their positions when they interact through an attractive potential whereas for repulsive interparticle potentials the
opposite is true. Shannon entropies, and their sums (entropic formulations of the uncertainty principle), are also
analyzed, showing that the one-particle entropy sum is dependent on the interparticle potential and thus able to
detect the correlation between particles.
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I. INTRODUCTION

Correlation is a key concept in understanding a variety
of chemical and physical phenomena. Physically, the idea
of correlated objects (particles) stems from the interaction
between them. Mathematically, these interactions may be
studied by quantifying the extent of the dependence of the
variable representing one of the particles, on the variable
representing another particle. Quantum mechanics (QM)
provides us with a statistical interpretation of nature through
distribution functions, thus correlation can be studied from
a statistical perspective with tools such as the correlation
coefficient [1] or mutual information [2].

The position and momentum representations are different
but complementary spaces where one may formulate QM
problems. Thus one can speak about correlation between po-
sitions (position space) of the particles or correlation between
their momenta (momentum space). A natural question is how
characteristics of the system, such as indistinguishability of the
particles [3], or the potentials present, influence the statistical
correlation in the system. What are the physical constraints
on the system that impose that the correlation between the
momenta of the particles is larger than that of their positions
or vice versa? This paper is focused on the effect of potentials
on the correlation measures.

We investigate how changing the potential in an analyt-
ically solvable model influences the relative values of pair
correlations in position and momentum space. For this purpose
we calculate correlation measures in position and momentum
space as a function of the interaction between particles in the
Moshinsky atom and discuss the differences in the ground and
some excited states. We also discuss the Shannon entropies that
are interpreted as localization measures of the distributions as a
function of the interparticle and confining potentials. Shannon
entropies at one- and two-particle levels have been discussed
in the literature for models, atoms, and molecules, [4–22].
We also analyze the Shannon entropy sums that are entropic
formulations of the uncertainty principle [22,23].
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Statistical correlation can be quantified in terms of correla-
tion coefficients in position and momentum spaces

σx = 〈x1x2〉 − 〈x〉2

〈x2〉 − 〈x〉2
, − 1 � σx � 1, (1)

and

σp = 〈p1p2〉 − 〈p〉2

〈p2〉 − 〈p〉2
, − 1 � σp � 1, (2)

where the moments of the one- and two-particle densities are
defined as

〈x1x2〉 =
∫

dx1 dx2 x1x2 �(x1,x2), (3)

〈x〉 =
∫

dx x ρ(x), 〈x2〉 =
∫

dx x2 ρ(x), (4)

〈p1p2〉 =
∫

dp1 dp2 p1p2 �(p1,p2), (5)

〈p〉 =
∫

dp p π (p), 〈p2〉 =
∫

dp p2 π (p), (6)

and �(x1,x2) [�(p1,p2)] and ρ(x) [π (p)] are the pair and
one-particle (marginal) position [momentum] space densities
normalized to unity, respectively, and the suppression of
the subscripts reflects the indistinguishability between par-
ticles. Negative values of the correlation coefficient can be
interpreted as repulsive correlation while positive values are
indicative of attractive correlation. That is, negative values
occur when variables are correlated in the opposite sense
while positive values occur when the variables are correlated
in the same sense. The pair densities are defined in terms
of the wave functions �, � in each representation while the
one-particle densities are defined in terms of pair densities as

�(x1,x2) = |�(x1,x2)|2, ρ(x) =
∫

dx2 �(x,x2), (7)

�(p1,p2) = |�(p1,p2)|2, π (p) =
∫

dp2 �(p,p2). (8)

A more general measure of correlation is obtained from
information theory. It is known as mutual information and is
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defined in terms of Shannon entropies and interpreted as a
statistical (Kullback-Leibler) distance from a reference which
is separable and is formed by the product of the marginals of
the pair distribution [2]. It has been applied to study correlation
in quantum systems [24–26]. Mutual information in position
space is defined as

Ix =
∫

dx1 dx2 �(x1,x2) ln

[
�(x1,x2)

ρ(x1)ρ(x2)

]
= 2sρ − s� � 0,

(9)

where s� and sρ are the pair and one-particle Shannon entropies
in position space, respectively,

s� = −
∫

dx1 dx2 �(x1,x2) ln �(x1,x2),
(10)

sρ = −
∫

dx ρ(x) ln ρ(x).

Similarly, mutual information can be defined for the momen-
tum space densities

Ip=
∫

dp1 dp2 �(p1,p2) ln

[
�(p1,p2)

π (p1)π (p2)

]
= 2sπ − s� � 0,

(11)

and s� and sπ are the pair and one-particle Shannon entropies
in momentum space, respectively,

s� = −
∫

dp1 dp2 �(p1,p2) ln �(p1,p2),
(12)

sπ = −
∫

dp π (p) ln π (p).

Shannon entropies are measures of uncertainty and hence
of the extent of (localization) delocalization, or spread in
the distributions. The delocalization of a distribution is an
important concept in QM. On comparing two distributions
that with a smaller entropic value is the more localized one
and which has less uncertainty.

As measures of uncertainty, there are entropic uncertainty
relations at the one- [23] and two-particle [22] levels

sρ + sπ � 1 + ln π, (13)

s� + s� � 2(1 + ln π ). (14)

These entropy sums have been related to and shown to be
sensitive to electron correlation [26,27].

II. MOSHINSKY ATOM

The Moshinsky atom [28,29] is the system whose Hamilto-
nian corresponds to two particles confined by, and interacting
through, harmonic potentials. In atomic units (m = h̄ = 1), the
Hamiltonian operator is (for a one-dimensional system) [30]

Ĥ = 1
2

[
p̂2

1 + p̂2
2 + ω2x̂2

1 + ω2x̂2
2 + ω2κ(x̂1 − x̂2)2], (15)

where subscripts label the particles, ω is the harmonic oscilla-
tor confining potential, and κ can be identified as the controller
of the harmonic frequency of the interparticle interaction.

This system is analytically solvable in relative-center-of-mass
coordinates by defining

R̂ = x̂1 + x̂2√
2

, r̂ = x̂1 − x̂2√
2

, (16)

and

P̂ = p̂1 + p̂2√
2

, p̂ = p̂1 − p̂2√
2

, (17)

where R̂ and P̂ are the center-of-mass coordinates and r̂

and p̂ are relative coordinates. The Hamiltonian can then be
rewritten and is separable between center-of-mass and relative
Hamiltonians

Ĥ = Ĥc.m. + Ĥrel = 1
2 (P̂ 2 + ω2R̂2) + 1

2 (p̂2 + �2r̂2), (18)

with the new interparticle potential � = ω
√

2κ + 1, where
− 1

2 < κ < ∞ for the potential to be real valued. κ < 0 is the
repulsive case, κ > 0 is the attractive case, and κ = 0 is the
noninteracting case.

Solutions are then separable, and are well known wave
functions for the harmonic oscillator of the center of mass,
and for the relative coordinates, with the respective potential.
Position space solutions are [31]

ψnc.m. (R) =
(

ω1/2

2nc.m. nc.m.! π1/2

)1/2

e−ωR2/2 Hnc.m. (
√

ωR),

(19)

and

ψnrel (r) =
(

�1/2

2nrel nrel! π1/2

)1/2

e−�r2/2 Hnrel (
√

�r). (20)

Then

�(x1,x2) = ψnc.m. (R)ψnrel (r). (21)

Expressing the Hamiltonian in the momentum representa-
tion yields solutions

φnc.m.
(P )

=
(

1

2nc.m. nc.m.! ω1/2 π1/2

)1/2

e−P 2/2ω Hnc.m.
(P/

√
ω),

(22)

and

φnrel (p) =
(

1

2nrel nrel! �1/2 π1/2

)1/2

e−p2/2� Hnrel (p/
√

�).

(23)

Then

�(p1,p2) = φnc.m.
(P )φnrel (p). (24)

In all cases, nc.m. and nrel are the quantum numbers
associated with the center-of-mass and relative coordinates,
respectively, and Hn(x) are the nth order Hermite polynomials.
It must be noted that although solutions are separable with
the new coordinates, they are not in terms of the original
variables (x1 and x2 or p1 and p2), and we expect the statistical
correlation to arise.

This model has been extensively studied in many areas
[19,30,32–46]. In particular, it has been studied from the
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perspective of the correlation as measured by the correlation
energy [47].

III. RESULTS AND DISCUSSION

A. Ground state

1. Localization measures

Analytical expressions for entropies in position and mo-
mentum space may be obtained as

s� = 1 + ln π − [
ln ω + 1

4 ln (2κ + 1)
]
, (25)

sρ = 1

2
(1 + ln π )

+ 1

2

{
− ln 2 − ln ω + ln

[
1 + (2κ + 1)1/2

(2κ + 1)1/2

]}
, (26)

s� = 1 + ln π + [
ln ω + 1

4 ln (2κ + 1)
]
, (27)

sπ = 1
2 (1 + ln π ) + 1

2 {− ln 2 + ln ω + ln [1 + (2κ + 1)1/2]}.
(28)

All entropies depend on both potentials and are given in
the logarithmic unit of information (nats). In position space,
pair, and one-particle entropies are monotonic decreasing
functions of the confining ω and interparticle κ potentials while
in momentum space the entropies are monotonic increasing
functions of them.

Figure 1(a) shows plots of pair entropies as functions of
κ for three cases of the confining potential ω = 0.7,1,1.2.
s� increases as the magnitude of the repulsive interparticle
potential (κ < 0) is increased, that is, the position space
pair distribution delocalizes as the intensity of the interac-
tion increases. In momentum space, s� decreases, thus the
momentum space pair distribution localizes as the potential
is increased. The inverse behavior between position and
momentum space may be interpreted as a consequence of

the uncertainty-type relationships. For attractive potentials
(κ > 0), the behavior is opposite to that observed for the
repulsive potentials. s� decreases with the strength of the
potential (i.e., a more localized distribution) while s� increases
and the momentum space distribution delocalizes. The same
type of behavior is observed for the one-particle entropies,
which are not presented for brevity.

The crossover point, where s� = s�, separates regions
where s� > s� (left of this point) and where s� < s� (right of
this point). This point, which is also the same in the one-particle
entropies, occurs when

κ = 1 − ω4

2ω4
. (29)

Summing Eqs. (25) and (27), one can see that the entropy
sum at the two-particle level does not depend on any of the
potentials

s� + s� = 2(1 + ln π ), (30)

and is exactly its lower bound. Whereas from Eqs. (26) and
(28), one observes that the one-particle entropic sum is

sρ + sπ = 1 + ln π − ln 2 + ln

[
1 + (2κ + 1)1/2

(2κ + 1)1/4

]
, (31)

which only depends on the interparticle potential and not on
the confining potential ω. Its lower bound is obtained for
κ = 0 and increases for other values of κ . Previous numerical
work has related this entropy sum with the effects of electron
correlation in real atomic systems with Coulomb potentials
[27]. Equation (31) provides an analytical expression which
shows that the entropy sum does depend on the harmonic
interparticle potential in this particular model.
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FIG. 1. (Color online) Shannon pair entropies s� (blue dashed line) and s� (red solid line) for the (a) ground (0,0) and (b) excited (0,1)
states as functions of interparticle potential κ for confining potentials ω = 0.7,1,1.2. Entropies are given in nats and κ in atomic units.

012502-3



H. G. LAGUNA AND R. P. SAGAR PHYSICAL REVIEW A 84, 012502 (2011)

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

κ

C
C

FIG. 2. (Color online) Correlation coefficient (CC) σx (blue
dashed line) and σp (red solid line) for the ground state of the
Moshinsky atom (0,0) as functions of the interacting potential κ

(in atomic units).

2. Correlation measures

Expressions for the correlation coefficient of the ground
state in both spaces are

σx = (2κ + 1)1/2 − 1

(2κ + 1)1/2 + 1
= −σp. (32)

Thus the correlation coefficient indicates the same magnitude
of correlation between positions or momenta of the particles,
independent of the particular value of κ . However, correlation
between positions is different from those between momenta
since they are opposite in sign. It must be stressed that
the correlation coefficient does not depend on the confining
potential ω, but only on the interparticle potential κ . Plots
are given in Fig. 2. For a repulsive potential (κ < 0), there
are repulsive correlations between particle positions (σx < 0)
and attractive correlations between their momenta (σp > 0).
For an attractive potential (κ > 0) the inverse situation is true.
Note also that σ increases in magnitude as we move away from
κ = 0, the noncorrelated case (σ = 0).

The relations for mutual information are

Ix = ln

[
1 + (2κ + 1)1/2

2(2κ + 1)1/4

]
= Ip. (33)

Similar to the correlation coefficient, the magnitude Ix is equal
to Ip and does not depend on the confining potential ω, but only
on the interparticle potential κ . Ix and Ip are shown in Fig. 3.
Also, the magnitude of I increases as one moves away from
the noncorrelated case κ = 0. Mutual information is different
from the correlation coefficient since it is greater than or equal
to zero and thus no physical interpretation can be made based
upon its sign.

B. Excited state (nc.m.,nrel) = (0,1)

1. Localization measures

Entropies of the excited states were obtained by numerical
integration of Eqs. (10) and (12). Figure 1(b) compares s� and
s� as functions of κ for three different values of the confining
potential ω = 0.7,1,1.2 in this excited state. First, the overall
trends and interpretation as a function of the interparticle
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FIG. 3. (Color online) Mutual information (MI) Ix and Ip for
the ground state of the Moshinsky atom (0,0) as functions of the
interacting potential κ . Note that Ix = Ip for this state. MI is given in
nats and κ in atomic units.

potential are the same as those in the ground state. Compared
to the ground state, the excited-state entropies are larger
(more delocalized densities) in both position and momentum
space.

It is relevant that the relative localization (i.e., s� < s� or
s� > s�) is controlled by both potentials as in the ground
state. We numerically verified that the crossover points are
the same as in the ground state. This also occurs for other
excited states (nc.m.,nrel) = (1,2),(1,3). This suggests that the
crossover point (where s� = s�) is a function of the potentials
and not dependent on the particular state we are addressing.
We also mention that the same trends are observed for the
one-particle Shannon entropies, which are not shown for
brevity.

The symmetry (with respect to the interchange of the
original variables x1 and x2 or p1 and p2) of the wave function
is controlled by nrel, the quantum number associated with the
relative coordinates. If nrel is even the wave function is sym-
metric. If it is odd the wave function is antisymmetric. Hence
it is relevant to note that the relative localization between
position and momentum distributions seems to be controlled
only by potentials. Qualitative changes are not observed for
different symmetries. The argument is based on noting that
the crossover point is the same for the ground state [(0,0),
symmetric wave function], for the excited state discussed in
this section [(0,1), antisymmetric wave function], and also
for the other calculated excited states [(1,2), symmetric wave
function and (1,3), antisymmetric wave function].

The results for entropy sums (numerically obtained) at the
one- and two-particle levels are consistent with those of the
ground state and are not presented for conciseness. The pair
entropy sum is a constant and does not depend on any of the
potentials. The one-particle entropy sum does not depend on
the confining potential ω, but only on the interparticle potential
κ , and thus sensitive to interparticle correlations. Its value
increases as one departs from κ = 0, which is consistent with
the ground state. Both one-particle and pair entropy sums are
larger in this excited state than in the ground state.
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FIG. 4. (Color online) CC σx (blue dashed line) and σp (red solid
line) for an excited state of the Moshinsky atom (0,1) as functions of
the interacting potential κ (in atomic units).

2. Correlation measures

The correlation coefficients for this state are

σx = (2κ + 1)1/2 − 3

(2κ + 1)1/2 + 3
, (34)

and

σp = 1 − 3(2κ + 1)1/2

1 + 3(2κ + 1)1/2
. (35)

Both correlation coefficients are equal for κ = 0. At this point,
correlation is nonzero because we are treating an excited
state and these functions are not separable in terms of the
original variables (x1 and x2 or p1 and p2). The correlation
coefficients do not depend on the confining potential only on
the interparticle one, consistent with the behavior of the ground
state.

Plots of the correlation coefficients are shown in Fig. 4.
For a repulsive interparticle potential (κ < 0) correlation is
greater in position space than in momentum space (|σx | >

|σp|), whereas for an attractive interparticle potential (κ > 0)
correlation is greater in momentum space (|σp| > |σx |). Hence,
the kind of interaction between particles (if it is attractive or
repulsive) is the unique parameter that controls the relative
magnitude of the correlation between the particles positions or
between their momenta (i.e., which one of them is greater).

The interpretation regarding the sign of the correlation
coefficient is not as clear as in the ground state. This behavior
is summarized in Table I. In momentum space, a small-enough
value of the repulsive potential [κ ∈ (− 4

9 ,0)] can provoke
that there is a repulsive correlation (unlike the ground state)
while for attractive potentials [κ ∈ (0,4)] there is a repulsive

correlation in position space (unlike the ground state). Note
that correlation is predicted to be zero in position space for
κ = 4 and in momentum space for κ = −4/9. This does not
mean that there is no correlation, but rather that the correlation
coefficient does not detect the correlation at these points. Thus
the magnitude of correlation decreases from the left toward
these points and increases to the right.

Calculations were performed for different values of the
confining potential ω = 0.7,1,1.2,2, with the result that
mutual information was not observed to be dependent on

TABLE I. Analysis of the correlation coefficient and mutual
information (in nats) for the excited state of the Moshinsky atom
(0,1).

Correlation coefficient

κ < 0 κ > 0
|σx | > |σp| |σx | < |σp|
σx < 0 stronger potential, σp < 0 stronger potential,
greater repulsive correlation greater repulsive correlation
κ ∈ (− 1

2 , − 4
9 ) κ ∈ (0,4)

σp > 0 stronger potential, σx < 0 stronger potential,
greater attractive correlation smaller repulsive correlation
κ ∈ (− 4

9 ,0) κ ∈ (4,∞)
σp < 0 stronger potential, σx > 0 stronger potential,
smaller repulsive correlation greater attractive correlation

Mutual information
Ix > Ip Ix < Ip

Ix stronger potential, Ip stronger potential,
greater correlation greater correlation
κ ∈ (− 1

2 , − 0.43) κ ∈ (0,3.33)
Ip stronger potential, Ix stronger potential,
greater correlation smaller correlation
κ ∈ (−0.43,0) κ ∈ (3.33,∞)
Ip stronger potential, Ix stronger potential,
smaller correlation greater correlation

the potential, similar to the ground state. Figure 5 illustrates
that Ix > Ip for repulsive interactions (κ < 0) while Ip > Ix

for attractive interactions (κ > 0). This is consistent with the
behavior of the correlation coefficient.

There are two minima where correlation increases (toward
the left or right) in both spaces, similar in interpretation to the
zeros in the correlation coefficient. These points are κ ≈ 3.33
for position space and κ ≈ −0.43 for momentum space. An
analysis of these two regions is shown in Fig. 6 where the
minima can be clearly observed. These points do not coincide
with the zeros in the correlation coefficient and are not zero
valued. Also, mutual information is nonzero at the points
where the correlation coefficient is zero (κ = 4 in r space and
κ = −4/9 in p space). At these points, mutual information
is able to detect correlation while the correlation coefficient

0 2 4 6 8 10
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0.6

0.7

κ

M
I

FIG. 5. (Color online) MI Ix (blue dashed line) and Ip (red solid
line) for an excited state of the Moshinsky atom (0,1) as functions of
the interacting potential κ . MI is given in nats and κ in atomic units.
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FIG. 6. (Color online) Analysis of the regions in MI Ix (left, blue dashed line) and Ip (right, red solid line) for an excited state of the
Moshinsky atom (0,1), which contains the points where correlation increases when varying the interparticle potential κ . MI is given in nats
and κ in atomic units.

does not. We also calculated mutual information for other
excited states (nc.m.,nrel) = (1,2),(1,3) and the same trends
were observed.

It should be emphasized that trends in correlation and
the (in)dependence on confining and interparticle potentials
seem to be independent of the state of the system and hence
independent of the symmetry of the wave function.

It remains to be determined whether these results and
concepts apply to systems with other (Coulomb) potentials
and how the correlation in each space is affected by the
presence of an external field. That is, if upon varying a control
parameter of the system, one is able to induce a crossover in
the relative magnitudes of the correlation in the respective (x
and p) spaces. Also of interest is how the correlation in each
space is related to position-momentum correlation.

IV. CONCLUSION

Shannon entropies are used to examine localization in the
pair and one-particle distribution functions of the Moshinsky
atom in position and in momentum space for ground and
excited states. The behavior of the entropies is examined as
functions of the confining ω and interparticle κ potentials.

The crossover point, where the entropies in each space are
equal in value, depends on the potentials and is independent
of the state and the symmetry of the wave function. The
ground-state one-particle Shannon entropy sum is shown to
depend explicitly on the interparticle potential and hence is
sensitive to particle correlations. Numerical results show that
these results also hold for excited states. Correlation measures
are examined and found to be independent of the confining
potential ω, but dependent on the interparticle one κ . In
the ground state, the magnitude of the correlation between
positions, and between momenta, is equal. In excited states,
the magnitude of correlation is greater between the particles
momenta than between their positions if they interact through
an attractive potential. When they interact through a repulsive
potential, correlations between the positions are greater than
between the momenta.
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