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State protection under collective damping and diffusion
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In this paper we provide a recipe for state protection in a network of oscillators under collective damping and
diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together,
the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free
channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs.
Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the
conventional method: it enables the derivation of all the network-protected states at once, and also reveals,
through the network normal modes, the mechanism behind the emergence of these protected domains.
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I. INTRODUCTION

The effects of temperature on the dynamics of quantum
states in dissipative networks is a less explored subject
that deserves attention due to its prominent role in the
process of decoherence of quantum states and in devising
strategies to overcome this undesirable phenomenon. Most
developments on this topic focus on the case where the
network is coupled to reservoir(s) at 0 K, where diffusion
is absent [1–4]. However, exploiting the case of finite-
temperature reservoir(s), we have recently studied a chain
of harmonic oscillators when either each one is coupled to
its own reservoir or all of them are coupled to a common
reservoir [5]. Based on the development presented in [5],
here we demonstrate that both decoherence sources, the
collective damping and diffusion, can be circumvented through
the manipulation of the network topology, i.e.,the way the
oscillators are coupled together, the strength of their couplings,
and their natural frequencies. We show how to build a
decoherence-free subspace (DFS) for a nonzero-temperature
reservoir(s), thus extending DFS for a 0 K reservoir(s)
[6] in order to include the diffusion mechanism arising
from temperature effects. We provide a technique to build
DFSs, adapted in a dissipative bosonic network, that is an
alternative to those already presented in literature where
temperature effects are taken into account [7,8]. We mention
that in Ref. [7] a generalized theory of DFSs is developed,
while in Ref. [8] the authors restrict their analysis to a
system of two qubits in a common non-Markovian squeezed
reservoir.

Despite the expected more restrictive character of the
DFS for a nonzero-temperature reservoir(s), due to diffusion,
we demonstrate that its protected states turns out to be
essentially those belonging to the associated 0 K DFS, with
the conditions for building the latter automatically accounting
for the former. Therefore, our development also furnishes an
alternative approach to build DFSs that offers two advantages
over the conventional method [6]: it enables the derivation
of all the network-protected states at once, and also reveals,
through the network normal modes, the mechanism behind
the emergence of such protected domains. More precisely,
we construct a relaxation-diffusion-free channel composed

of a particular set of noiseless network normal modes by
transferring these decoherence mechanisms to the remaining
normal modes. A main result of the present work, which
contributes to the analysis in Ref. [7], is the elucidation of
the mechanism leading to the DFSs for nonzero temper-
ature(s), whose protected states are expanded by a set of
normal-modes states that are effectively decoupled from the
reservoir(s).

Displaying connections with other fault-tolerant techniques
for information processing, such as quantum error correction
[9], the quantum Zeno effect [10], and dynamical decoupling
[11], the DFSs emerge from symmetries in the system-
reservoir(s) coupling that shield a subset of the Hilbert
space against fluctuations. A recent contribution [12] has
deepened our understanding of the emergence of DFSs,
showing that a correlation between the reservoir modes,
induced by the system itself, is the mechanism that supports
such protected domains. In the present analysis we advance
further in the understanding of this mechanism by exploring
the symmetries occurring in the matrix weighting the rules of
dissipation and diffusion in the incoherent Lindblad dynamics.
We finally stress that the experimental implementation of
DFSs in linear optics [13], trapped ions [14], and nu-
clear magnetic resonance [15] indicates that the DFSs is
a promising resource for information processing. Quantum
computational operations within DFSs have been already
accomplished in optics [16] and NMR [17]. The possibility
of circumventing nonzero-temperature effects as well, as we
demonstrate here, is certainly an additional useful mechanism
enlarging perspectives on realistic protocols for information
processing.

II. DENSITY OPERATOR AND WIGNER FUNCTION

We start from the Hamiltonian of a network where all
N dissipative oscillators are coupled together in addition
to interacting with a common reservoir. From this general
scenario we derive any other topology, including the case
where each oscillator is coupled to its own reservoir [5].
Assuming, from here on, that the subscripts m,n,m′,n′ run
over all the oscillators, from 1 to N , the Hamiltonian
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reads

H = h̄

2

∑
m

[
ωma†

mam +
∑

n(�=m)

λmna
†
man

+
∑

k

(ωkb
†
kbk + 2Vmkb

†
kam) + H.c.

]
, (1)

where a
†
m (am) is the creation (annihilation) operator for the

mth network oscillator ωm, which is coupled to the nth one
with strengths λmn, in addition to interacting with the reservoir
modes, whose creation (annihilation) operator reads b

†
k (bk),

with strengths Vmk . The reduced master equation deduced in
Ref. [5] for the bosonic network modeled by Eq. (1) is given by

d

dt
ρ(t) =

∑
m,n

{i[ρ(t),a†
mHmnan] + Lmnρ(t)}, (2a)

Lmn ◦ = �mn + ϒmn

2
[an ◦ ,a†

m] + ϒmn

2
[a†

n ◦ ,am] + H.c.,

(2b)

where Hmn = ωmδmn + λmn(1 − δmn) stands for the elements
of matrix H associated with the ideal network: the first
two terms on the right-hand-side of Eq. (1). The dynamical
damping and the diffusion mechanisms are weighted,
respectively, by matrices

�(t) =
∫ t

0
dτ

∫ ∞

0

dν

π
e−iντ γ (ν)eiHτ , (3a)

ϒ(t) =
∫ t

0
dτ

∫ ∞

0

dν

π
n̄(ν)e−iντ γ (ν)eiHτ , (3b)

expressed in the continuum limit of the reservoir frequencies.
We have also defined, through the correlation 〈b(ν)b†(ν ′)〉 =
1 + 2πn̄(ν)δ(ν − ν ′), the average excitation of the reservoir
n̄(ν) in addition to the decay factors γmn(ν) = σ (ν)Vm(ν)Vn(ν)
which give the elements of matrix γ (ν), with σ (ν) being the
density of states of the reservoir.

Instead of a common reservoir, we can automatically
assign a particular reservoir to each network oscillator by
considering diagonal decay factors γmn(ν) → γmm(ν)δmn and
average excitations n̄(ν) → n̄m(ν), which imply that there are
no indirect (m �= n) decay factors. However, as we conclude
from the integrals in Eqs. (3), even when the oscillators are
coupled to their own reservoirs, we can recover the indirect
decay and diffusion channels (nondiagonal elements �mn and
ϒmn) when non-Markovian reservoirs are adopted together
with strong interoscillator coupling strengths, i.e., Nλmn ≈ ωm

[2,5]. As will be demonstrated below, the indirect decay and
diffusion channels play a central role in the emergence of DFSs
for a nonzero-temperature reservoir(s).

For a network initially in the superposition of the product of
coherent states |(0)〉 = ∫

dr�(r)|β(r; 0)〉, where |β(r; 0)〉 =⊗
m |βm(r; 0)〉, the Wigner-function representation of Eq. (2)

is written as

WS({ξm},t) =
∫

dr

∫
ds �(r)�∗(s)�rs(t)〈{βm(s; t)}.

× |{βm(r; t)}〉 (2/π )N

det J
exp{−2[β†(s; t) − ξ †]J−1

× [β(r; t) − ξ ]}, (4)

where the decay function associated with the interference
terms (r �= s) is given by

�rs(t) = 〈{βm(s)}|{βm(r)}〉
〈{βm(s; t)}|{βm(r; t)}〉 . (5)

Moreover, the evolution β(r; t) = U(t)β(r; 0) of the excita-
tions of the network oscillators follows from the nonunitary
evolution U(t) = exp(−iHt) defined by the non-Hermitian
matrix H = H − i�/2. Note that the coherent states form a
privileged basis for treating our dissipative bosonic network.
The matrix

J(t) = I +
∫ t

0
U(τ )(ϒ + ϒ†)U†(τ ) dτ (6)

in Eq. (4) accounts for the diffusion dynamics associated with
temperature effects, with I being the identity.

III. DFS

In order to analyze the conditions leading to the emergence
of a DFS for a nonzero-temperature reservoir, we observe
that, in the ideal case where the reservoir does not interact
with the oscillators (�mn = ϒmn = 0), the decay of the inter-
ference terms and the diffusion process are absent, such that
(i) �rs(t) = 1 and (ii) J = I. In what follows we verify the
possibility of attaining both these conditions for the realistic
(nonideal) case through the manipulation of the network
topology. To this end, assuming J = I, we verify that condition
(i) is satisfied for two distinct situations: The first is the
well-known trivial case (r = s), where the initial state is a
direct product of coherent states |(0)〉 = |η〉, ensuring a
noise-free dissipative dynamics; we use η instead of β to label
the initial protected states. The second is the nontrivial case
(r �= s) following from the eigenvalue equation

U†(t)U(t)η = η (7)

(U†(t)U(t) �= I), which prevents the system relaxation since it
can be demonstrated that

∑
m〈a†

mam〉t = ∑
m〈a†

mam〉t=0, thus
ensuring the more restrictive dissipative-noise-free dynamics
of the initial state |η〉. Next, we observe that condition (7) may
be derived when imposing the restrictions

[H,�] = 0, �η = 0, (8)

which constrain the vector η to undergo, as if in the absence
of the reservoir, the unitary evolution

β(r; t) = U(t)η = exp(−iHt)η, (9)

which entails, for an absolute-zero reservoir, the emergence of
a DFS. Therefore, a protected subspace is spanned by the �

eigenvectors η(�) (with null eigenvalues), which follows from
the indirect decay and diffusion channels. The remaining �

eigenvectors (with non-null eigenvalues), let’s say ζ , thus span
the unprotected states. Assuming a set (labeled by �) of L

protected eigenvectors η, except for the N − L unprotected ζ
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(labeled �′), a general initial state reads

|(0)〉 =
∫

dr�(r)

∣∣∣∣β(r; 0) =
L∑

�=1

α�(r)η(�)
N∑

�′=L+1

α�′ζ (�′)
〉
,

where the equality �rs(t) = 1 forbids α�′ from depending on
r , which will be clear below when introducing the network
normal-mode representation. In short, whereas the eigenvalue
equation �η = 0 constrains the initial state β(r; 0) to be
prepared with a portion of its components (labeled �) within
a DFS, the condition [H,�] = 0 makes certain that these
states will be always within such a DFS despite the evolution
governed by H.

A. DFS for a nonzero-temperature reservoir

Next, under the restrictions in Eq. (8) ensuring a DFS at 0 K,
we analyze condition (ii), J = I, aiming to construct a DFS for
a nonzero-temperature reservoir. First, we note from Eq. (6)
that the equality J = I is only established for a 0 K reservoir
when n̄(ν) = 0; for the case at hand, a finite-temperature
reservoir, we cannot prevent the diffusion of the whole network
state since

det J (t) > det J (0) = 1. (10)

To demonstrate this inequality, we observe that the diffu-
sion and the damping matrices only differ from each other
by the average excitation of the reservoir n̄(ν), such that
[�,ϒ] = 0, enabling us to derive from Eq. (8) the additional
condition [H,ϒ] = 0. Using all these commutations relations,
it is straightforward to verify that Eq. (6) simplifies to the
expression

J (t) = I + 2n̄[I− exp(−�t)], (11)

showing that the eigenvalues of J(t) are always larger than or
equal to unity and, since we must have at least one nonzero
eigenvalue of �, the determinant of J(t), i.e., the product of
its eigenvalues, must satisfy Eq. (10). Moreover, Eq. (11)
also shows that the eigenstates of � with null eigenvalues,
those undergoing the dissipative-noise-free dynamics, are also
eigenstates of J with unity eigenvalues. We conclude that
the same conditions given by Eq. (8) for the emergence
of a DFS automatically apply for the case of a nonzero-
temperature reservoir, i.e., a diffusion-relaxation-free channel.
This conclusion follows always when the approximations
leading to the master equation approach holds for either a
Markovian or a non-Markovian reservoir, whose damping and
diffusion matrices satisfy Eq. (3).

IV. THE MECHANISM BEHIND THE
EMERGENCE OF A DFS

After defining the conditions for building a DFS for a
nonzero-temperature reservoir, we next discuss the physical
basis underlying the protected subspace. We start by look-
ing closely at the arbitrary initial state |(0)〉, under the
assumption made above that it encloses a set of L protected
eigenvectors. The elements of the vector β(r; 0) = Tα(r),

associated with the excitations of the network oscillators, are
thus given by

βm(r; 0) =
L∑

�=1

Tm� α�(r) +
N∑

�′=L+1

Tm�′ α�′ ,

where the transformation matrix T, whose columns are com-
posed by the η(r; 0) and ζ (0) eigenvectors of �, simultaneously
diagonalizes H, �, and J. By mapping the protected state
|(0)〉 into the normal-mode oscillators we obtain |̃(0)〉 =∫

dr�(r)|β̃(r; 0)〉, where the elements of the transformed
vector β̃(r; 0) = T†β(r; 0) = T†Tα(r) = α(r) are β̃m(r; 0) =
αm(r)δm� + αmδm�′ . Therefore, the initial state spanned by the
normal mode becomes |̃(0)〉 = ∫

dr�(r)|{α�(r)}〉 ⊗ |{α�′ }〉,
which factorizes the protected subspace from the noisy one.
Under the conditions leading to the DFS for a nonzero-
temperature reservoir,enclosing this factorized state, we verify
that the evolution of the Wigner function (4), rewritten
through the normal-mode coordinates ξ̃ (t) = T†ξ (t), remains
factorized into both the protected and the noise channels:
WS({ξ̃m},t) = WDFS({ξ̃�},t)Wnoise({ξ̃�′ },t), with

WDFS({ξ̃�},t)
= (2/π )L

∫
dr

∫
ds �(r)�∗(s)〈{β̃�(s; t)}|{β̃�(r; t)}〉,

accounting for the relaxation-diffusion-free channel, associ-
ated with the evolved pure state

∫
dr�(r)|{β̃�(r; t)}〉, while the

remaining noisy normal modes are described by the mixture

Wnoise({ξ�′ },t) =
∏
�′

2

πD�′ (t)
exp

(
− 2

D�′
|ξ̃�′ − α�′ |2

)
.

The transformation to the normal-mode coordinates thus
reveals that the protected states are confined to a set of normal-
mode oscillators completely decoupled from the reservoir. All
the noisy effects are transferred to the unprotected normal
modes. To illustrate this transfer mechanism we sketch in
Fig. 1(a) a network of N oscillators (of frequencies ωm), one
coupled to the other apart from interacting with a common
reservoir R. The network normal-mode scheme is given in
Fig. 1(b), where the noninteracting modes (of frequencies
�m) are only coupled to the reservoir. A DFS for a nonzero-
temperature reservoir is represented in Fig. 1(c), where a set
of protected normal-mode oscillators (from �L+1 to �N , for
example) is decoupled from the reservoir. Since the diffusion
necessarily increases with time, as demonstrated above, the
noiseless DFS for a nonzero-temperature reservoiris built on
at the expense of enhancing the relaxation and diffusion rates
of the remaining �1 and �L noisy normal modes.

We finally note that in the case where α�′ (the excitations
of the noisy normal modes) equals the average excitation
n̄ of each reservoir mode, there is no energy drained from
the system. However, the injection of noise into the network
cannot be stopped since the inequality Tr � > 0 imposes that
there must be at least a single unprotected normal mode
(N − L > 1) even for a 0 K reservoir. In the case of a
nonzero-temperature reservoir the incoherent dynamics of the
noisy normal modes is even enhanced by the diffusion process
according to Eq. (10). Therefore, the set of noisy normal modes
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FIG. 1. (a) Sketch of a dissipative network of N oscillators,
each interacting with each other separately from being coupled to
a common reservoir. (b) As an alternative picture, the noninteracting
normal modes (of frequencies �m) are only coupled to the reservoir.
(c) Finally, the DFS is represented by a set of protected normal-mode
oscillators (from �L+1 to �N , for example) decoupled from the
reservoir.

becomes an absolutely necessary ingredient for the emergence
of DFSs.

V. TRANSFERENCE OF NOISE TO THE UNPROTECTED
NORMAL MODES

We next pursue, under the conditions underlying the DFS
for a nonzero-temperature reservoir, a better understanding of
the transference of the noise mechanism to the unprotected
normal modes. We first observe that the net energy drained
by the reservoir and the amount of noise introduced into
the network (from relaxation and diffusion) are obviously
independent of the schemes in Figs. 1(a) and 1(c). Conse-
quently, the emergence of a set of protected normal modes
in Fig. 1(c), with null relaxation and diffusion rates, must be
balanced by the increase of the relaxation and diffusion rates
related to the remaining unprotected modes. A crude analysis
of the dissipative process of both states |(0)〉 and |̃(0)〉
in the schemes in Figs. 1(a) and 1(c) provides a qualitative
means to visualize this balancing mechanism. Regarding the
state |(0)〉, there is an amount of excitation in each natural
oscillator, given by

∑N
�′=L+1 Tm�′ α�′ , which is out of the DFS.

These excitations are drained out of the oscillators by their
couplings to the reservoir, as sketched in Fig. 1(a). From
the perspective of the normal-mode representation, however,
where the state is described by |̃(0)〉, the whole amount
of excitation out of the DFS is entirely confined to N − L

noisy normal modes. Consequently, in order to attain, with
this reduced number of decay channels, the same amount of
energy drained from the natural oscillators, the decay rates
associated with the noisy normal modes must, on average, be
larger than their corresponding values when the conditions
in Eq. (8) are not fulfilled. The same analysis applies to the
diffusion process.

Quantitatively, the unitary transformation leading from
Figs. 1(a) to 1(c) ensures the invariance of Tr � and Tr J;
the elements whose sums lead to these invariant traces

come from the direct coupling of the natural [for Fig. 1(a)]
and the normal-modes oscillators [for Fig. 1(c)] with the
reservoir, exactly those couplings sketched in Fig. 1. For the
particular case where we assign the same decay rate � to
all the natural oscillators, we obtain Tr � = N� and Tr J =
N + 2n̄(1 − e−Nγ t ), and assuming the maximum enabled
number L = N − 1 of protected normal modes, we verify that
the single remaining unprotected mode presents the highly
enhanced relaxation and diffusion strengths given by Tr � and
Tr J, respectively.

VI. ILLUSTRATIVE EXAMPLES AND CONCLUSION

To illustrate our protocol for the construction of a DFS
for a nonzero-temperature reservoir, we consider a degenerate
network (ωm = ω), where all N oscillators interact with each
other (λmn = λ) in addition to being coupled to a common
reservoir. We also assume a Markovian white-noise reservoir
whose spectral density is invariant over translation in fre-
quency space, such that γmn(ν) = γmn. Under these conditions,
the elements of both matrices in Eq. (3) become �mn = �

and ϒmn = n̄� [5], thus resulting in the eigenvalues N�δmN

and 1 + 2n̄(1 − e−N�t )δmN of matrices � and J, respectively.
Therefore, the specific network parameters considered above
turn out to be particularly convenient since only one of the
normal-mode oscillators is under relaxation and diffusion,
thus giving the protected state |̃(0)〉 = ∫

dr�(r)|α(r)〉 =∫
dr�(r)|{α�(r)}〉 ⊗ |αN 〉, where the components of the vec-

tor α(r) = (α1(r),α2(r), . . . ,αN−1(r),αN )� are the excita-
tions of the normal-mode oscillators. Alternatively, within
the natural oscillators we have |(0)〉 = ∫

dr�(r)|β(r; 0)〉,
with β(r) = Tα(r) and the elements of the transforma-
tion matrix satisfying the relations TmN = 1/

√
N , Tmm =

−√
(N − m)/(N − m + 1) for m < N , Tmn = 0 for m < n <

N , and Tmn = 1/
√

(N − m)(N − m + 1) for n < m < N . We
observe that other DFSs, following from topologies with a
small number of protected normal modes, necessarily fall into
a subclass of the above-obtained larger DFS.

As another example we consider the same degenerate
network defined above (ωm = ω), where all N oscillators
interact with each other (λmn = λ). However, instead of
being coupled to a common reservoir, we now assume that
each oscillator is coupled to its own Markovian white-noise
reservoir. In this case we have only diagonal elements in
both matrices in Eq. (3), i.e., �mn = �δmn and ϒmn = n̄�δmn.
Since none of these diagonal elements is zero, we have no
DFSs in this case. However, by assuming structured [1,20]
instead of white-noise reservoirs, we may generate DFSs by
manipulating the network topology, the natural frequencies
{ωm} and coupling strengths {λmn}, so as to shift the network
normal modes to regions where the spectral density of the
reservoir is negligible. In this way we minimize the effects of
the reservoirs on the coherent evolution of the network states,
and the greater the number of normal modes displaced to these
regions is, the greater the dimension of the DFS generated is.

We have thus presented a protocol to construct a relaxation-
diffusion-free channel, a DFS where finite-temperature reser-
voirs are considered, by manipulating the network topology,
particularly through the parameters giving rise to indirect
decay and diffusion rates. We explored the issue of protected
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states, deepening our understanding of the mechanisms under-
lying the emergence of protected subspaces by focusing on
the relaxation and diffusion rates associated with the network
normal-mode scheme. We believe that our approach, extending
the DFSs to encompass diffusion effects, contributes to the
efforts toward realistic protocols for information processing.
Finally, we observe that recent networks, such as circuit
QED [18] and arrays of microcavities coupled by optical fibers
[19], have attracted considerable attention as candidates for

information processing. The efficiency in handling the strength
of the parameters involved in these promising networks
is an advantageous characteristic that has motivated our
efforts.
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