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Quantum effects in thermal conduction: Nonequilibrium quantum discord and entanglement
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We study the process of heat transfer through an entangled pair of two-level systems, demonstrating the role
of quantum correlations in this nonequilibrium process. While quantum correlations generally degrade with
increasing the temperature bias, introducing spatial asymmetry leads to an intricate behavior: connecting the
qubits unequally to the reservoirs, one finds that quantum correlations persist and increase with the temperature
bias when the system is more weakly linked to the hot reservoir. In the reversed case, linking the system more
strongly to the hot bath, the opposite, more natural behavior is observed, with quantum correlations being strongly
suppressed upon increasing the temperature bias.
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I. INTRODUCTION

Understanding thermal energy transfer at the nanoscale has
recently become a topic of great interest in nanotechnology [1],
with proposals for new devices that can actively control heat
conduction and information storage: thermal rectifiers [2],
thermal logic operators [3], and memory devices [4]. As some
of these devices have already been realized [5,6], one should
note that these thermal elements typically have been analyzed
within the principles of classical mechanics, operating at room
temperature. Assessing the role of quantum effects in the
operation of such systems is of fundamental and practical
importance, for building quantum devices fighting relaxation
and decoherence processes, operating under nonequilibrium
conditions.

The typical setup of interest in this context includes a
small system, with few degrees of freedom (nanobeam; linear
molecule; spin chain), connected at its ends to two large
reservoirs (solids; metals), maintained at different tempera-
tures. In the steady-state limit, a constant heat current flows
through the system. The thermal conductance of such a
nanoscale junction has been primarily simulated using either
of the following three approaches: (i) Landauer’s formula [7]
combined with first-principles calculations of the Hamiltonian
force constants [8], (ii) the nonequilibrium Green’s func-
tion method [9,10], or (iii) classical molecular dynamics
simulations [11]. The Boltzmann-Peierls phonon transport
theory [12,13], mixed classical-quantum simulations [14], and
quantum master equation methods [15–17] are other methods
developed for predicting the conductance properties of dif-
ferent objects. For systems with few degrees of freedom, the
latter method is of particular interest, as the kinetic equations
of motion can be derived, under some approximations, from
the fundamental quantum equations of motion, as explained
below. For simple model systems, these equations can be
analytically solved, providing insight on the microscopic
dynamics [16].

Entanglement and quantum discord [18] are quantum
correlations with no classical counterpart, which can be used as
tools for identifying and distinguishing the quantum aspects in
the thermal transport process from the classical ones [19–21]. It

is our objective here to consider a simple (yet involving many-
body interactions) thermal conducting junction, to study its
transport characteristics within the quantum master equation
method, and to evaluate the role of quantum effects in the
energy transport process through the entanglement and discord
measures. In particular, as the steady-state concurrence in
quantum open systems has been already analyzed [19–21],
it is of interest to explore its relation to the steady-state
discord measure, quantifying nonclassical correlations beyond
entanglement.

The particular system examined here includes a pair of a
two-level system under a magnetic field, placed in between
two thermal reservoirs. We use this model as a case study for
illustrating the intricate role of the nonequilibrium condition
on quantum correlations in the system. We analytically
calculate the amount of entanglement and discord in this
model at different bath temperatures, demonstrating that
even at relatively high temperatures quantum correlations
play a role in the energy transfer process. Furthermore,
by introducing asymmetry, we show that, counterintuitively,
quantum correlations may be enhanced upon increasing the
temperature bias across the system, depending on the bias
polarity.

II. MODEL

Our model includes a quantum system coupled to two
different thermal reservoirs. The system incorporates two
interacting qubits in a magnetic field subjected to the XY

interaction. These qubits, 1 and 2, are separately coupled to
independent reservoirs HL and HR , respectively, maintained
in thermal equilibrium at temperatures Tν , ν = L,R. The total
Hamiltonian is given by

H = HS +
∑

ν

Hν + VL + VR, (1)

where the two-qubit Hamiltonian is

HS = ε

2

(
σ z

1 + σ z
2

) + κ

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
. (2)
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Here σ i (i = x,y,z) are the Pauli matrices. The system
Hamiltonian can be diagonalized to produce the “system
diagonal” basis with four states n = 1,2,3,4,

|1〉 = 1√
2

(|↓↑〉 − |↑↓〉), E1 = −κ,

|2〉 = |↓↓〉 , E2 = −ε,
(3)

|3〉 = |↑↑〉 , E3 = ε,

|4〉 = 1√
2

(|↓↑〉 + |↑↓〉), E4 = κ.

The states are ordered assuming that the interspin interaction is
strong: κ > ε > 0. As the qubits are identical, the symmetric
conditions ω43 = ω21 and ω42 = ω31 follow, with ωnm = En −
Em. We assume that system-bath interactions are separable,
and use the following bipartite form:

Vν = BνS
ν, (4)

with Bν as a bath operator and Sν a system operator.
Specifically, we use SL = σx

1 and SR = σx
2 . In the basis of

Eq. (3), these operators translate to

SL = 1√
2

(−|1〉〈2| + |1〉〈3| + |2〉〈4| + |3〉〈4| + H.c.),

(5)

SR = 1√
2

(|1〉〈2| − |1〉〈3| + |2〉〈4| + |3〉〈4| + H.c.).

We next calculate the heat current and the quantum entangle-
ment and discord. Note that we have not yet specified a model
for the reservoirs, as the calculations can be formally done for
different bath realizations [17].

III. STEADY-STATE DYNAMICS

Under nonequilibrium conditions, TL �= TR , in the long
time limit, we present next the following quantities: (i) the
system’s population, (ii) the steady-state heat current, and
(iii) the resulting quantum correlations.

A. Levels’ population

We follow standard weak coupling schemes [22] and
use the Born-Markov approximation. Beginning with the
Liouville equation, the method first involves the assumption
of weak system-bath interactions. Furthermore, we apply the
Markovian limit, assuming that the reservoirs’ characteristic
time scales are shorter than the subsystem relaxation time.
Under these approximations, a master equation for the state’s
population Pn (n = 1,2,3,4) can be readily obtained,

Ṗn(t) =
∑
ν,m

∣∣Sν
mn

∣∣2
Pm(t)kν

m→n − Pn(t)
∑
ν,m

∣∣Sν
mn

∣∣2
kν
n→m. (6)

Details about this derivation (for the two-bath case) are given
in Refs. [16] and [17]. Here Sν = ∑

Sν
mn|m〉〈n|. The Fermi

golden rule transition rates are given by

kν
n→m =

∫ ∞

−∞
dτ eiωnmτ 〈Bν(τ )Bν(0)〉Tν

, (7)

where Bν(τ ) = eiHντBνe
−iHντ are interaction picture op-

erators. The thermal average is given by 〈O〉Tν
=

Tr[e−Hν/Tν O]/Tr[e−Hν/Tν ]. Note that the rates are evaluated
at a specific subsystem frequency. For example, in Eq. (7), the
relevant energy scale is ωnm = En − Em. Solving Eq. (6) in
steady state, we obtain the population

P1 = W12W13

(W12 + W21) (W13 + W31)
,

P2 = W21W13

(W12 + W21) (W13 + W31)
,

(8)

P3 = W12W31

(W12 + W21) (W13 + W31)
,

P4 = W21W31

(W12 + W21) (W13 + W31)
,

where we have introduced the short notation Wmn = kL
n→m +

kR
n→m. Since the qubits are of equal energy and |SL

mn|2 =
|SR

mn|2, we have also utilized the fact that W13 = W24 and
W34 = W12 in deriving Eq. (8).

The rate constants depend on the particular choice of the
system-bath interaction operator and the bath Hamiltonian.
For example, assuming the reservoirs include a collection of
harmonic modes and that the bath operator coupled to the
system is a displacement operator,

Hν =
∑

j

ωjb
†
ν,j bν,j , Bν =

∑
j

λν,j (b†ν,j + bν,j ), (9)

the relaxation and excitation rates with m > n reduce to

kν
m→n = 	B,ν(ωmn)

[
nν

B(ωmn) + 1
]
,

(10)
kν
n→m = 	B,ν(ωmn)

[
nν

B(ωmn)
]
,

using the definition (7). Here 	B,ν(ω) = 2π
∑

j λ2
ν,j δ(ω − ωj )

and nν
B(ω) = [eω/Tν − 1]−1 is the Bose-Einstein distribution.

Another physical setup is the spin reservoir, including a
collection of P noninteracting spins,

Hν =
P∑

p=1

hν,p, Bν =
P∑

p=1

bν,p. (11)

hν,p and bν,p are single-spin operators. Each spin is described
by the two eigenstates (i = 0,1) |i〉p and eigenenergies εp(i).
In this case, the relaxation rate becomes

kν
m→n = 	S,ν(ωmn)nν

S(−ωmn), (12)

with the spin occupation factor nν
S(ω) = [eω/Tν + 1]−1

and the effective spin-bath-system coupling 	S,ν(ω) =
2π

∑
p |〈0|pbν,p|1〉p|2δ(ω + εp(0) − εp(1)). For details, see

Ref. [17].

B. Heat current

Formally, the expectation value of the current,
calculated, e.g., at the left contact, is given by
JL = i

2 Tr([HL − HS,VL]ρT ), where ρT is the total density
matrix [23]. In steady state, the expectation value of the
interaction is zero, Tr( ∂VL

∂t
ρT ) = iTr([HL + HS,VL]ρT ), and

this expression reduces to JL = i Tr([VL,HS]ρT ). Using the
system-diagonal representation, it is straightforward to show
that the steady-state current becomes [17]

JL = i
∑
m,n

ωmnS
L
mnTrB[BL(ρT )mn], (13)
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where ωmn=Em−En. Under the Born-Markov approximation
used above to resolve the population dynamics, a second-order
expression for the steady-state current can be further
obtained [17]:

JL = 1

2

∑
ωmn

∣∣SL
mn

∣∣2
Pn

(
kL
n→m − kR

n→m

)
. (14)

We apply this expression on the two-qubit model. A somewhat
tedious calculation shows that the current is given by a sum
of two terms,

JL = ω21
(
kL

1→2k
R
2→1 − kL

2→1k
R
1→2

)
2
[
kL

1→2 + kR
2→1 + kL

2→1 + kR
1→2

]

+ ω31
(
kL

1→3k
R
3→1 − kL

3→1k
R
1→3

)
2
[
kL

1→3 + kR
3→1 + kL

3→1 + kR
1→3

] . (15)

C. Concurrence

The entanglement of formation is a monotonically increas-
ing function of Wootters’ concurrence [24]. We calculate next
the nonequilibrium concurrence in the two-qubit model. The
states |1〉 and |4〉 are entangled, and the nature of the entangle-
ment may remain in the final steady state, which is described by
the diagonal reduced density matrix ρd = diag(P1,P2,P3,P4),
in the eigenbasis of the system Hamiltonian HS . On the other
hand, in the uncoupled basis |↓↓〉 , |↓↑〉 , |↑↓〉, and |↑↑〉, the
reduced density matrix is given by a nondiagonal form,

ρ =

⎛
⎜⎜⎜⎜⎝

P2 0 0 0

0 P1+P4
2

P4−P1
2 0

0 P4−P1
2

P1+P4
2 0

0 0 0 P3

⎞
⎟⎟⎟⎟⎠ . (16)

Using the general form given in, e.g., [25], the concurrence
can be expressed in the uncoupled basis by

C(TL,TR) = max(2Pmax − P1 − P4 − 2
√

P2P3,0), (17)

where Pmax = max(P1,P4,
√

P2P3). This function in general
depends on the temperatures of both thermal baths.

D. Discord

Quantum discord [18], quantifying nonlocal correlations,
is given by the difference between the quantum mutual
information I(ρ) and the classical correlation C(ρ),

Q(ρ) = I(ρ) − C(ρ). (18)

The analytical expressions for the classical correlation and
the quantum discord were obtained for a class of X states
in Ref. [25]. Adjusting these expressions to our model, the
quantum mutual information can be written in terms of the
steady-state populations (8) as

I(ρ) = 2 − log2[(1 − P2 + P3)1−P2+P3 (1 + P2 − P3)1+P2−P3 ]

+P1 log2 P1 + P2 log2 P2 + P3 log2 P3 + P4 log2 P4,

(19)

whereas the classical correlation is given by

C(ρ) = 1 − 1
2 log2[(1 − P2 + P3)1−P2+P3

× (1 + P2 − P3)1+P2−P3 ] − min{S1,S2}. (20)

Here

S1 = −P2 log2

(
2P2

1 + P2 − P3

)

−
(

P1 + P4

2

)
log2

(
P1 + P4

1 + P2 − P3

)

−
(

P1 + P4

2

)
log2

(
P1 + P4

1 − P2 + P3

)

−P3 log2

(
2P3

1 − P2 + P3

)

(21)

and

S2 = 1 − 1
2 log2[(1 − K)1−K (1 + K)1+K ]. (22)

The coefficient K is defined as K =√
(P2 − P3)2 + (P1 − P4)2.

IV. EXAMPLES

In what follows, we analyze the quantum correlations,
concurrence, and discord, for various nonequilibrium condi-
tions, showing that quantum discord survives at relatively high
temperatures where concurrence is zero. We also study an
asymmetric scenario demonstrating that quantum correlations
may exist even at large temperature biases. We will typically
use the following parameters: spin energy ε = 0.2 and large
spin-spin interaction κ = 1. We will also assume that the
relaxation rates do not depend on energy, and thus treat them
as constants, 	B,ν and 	S,ν . The factor 1/

√
2 in Eq. (5) is

absorbed into the definition of the rates 	.
We begin our analysis with an equilibrium situation,

Ta = TL = TR , and compare the concurrence and the discord
measures at different temperatures. Figure 1 shows that at
very low temperatures both measures yield the same result.
At higher temperatures (yet Ta < κ), concurrence is slightly
larger than discord. At even higher temperatures, Ta > κ ,
concurrence suddenly diminishes [26], while quantum discord
is still finite, slowly decreasing to zero. This is in accord
with the fact that discord quantifies nonclassical correlations
beyond entanglement. Generally, both quantum correlations
decay with temperature due to thermal relaxation effects.
As can be inferred from the inset, when the ground-state
population falls below ∼ 1/2, the concurrence dies. We
also found that these observations were not sensitive to the
reservoir’s properties, and similar trends were obtained using
either boson or spin baths.

Figure 2 displays the nonequilibrium thermal correlations,
keeping TL fixed and changing TR . In the classical limit,
at high temperatures (top panel) the discord overcomes the
concurrence, even when TR is low. In contrast, at low
temperatures (bottom panel), the opposite trend is observed
until a crossover value beyond which the concurrence dies [26],
yet the discord is finite. While in Fig. 2 bosonic reservoirs
have been adopted, Fig. 3 displays the nonequilibrium thermal
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FIG. 1. (Color online) Concurrence (full) and discord (dashed) in
an equilibrium system, Ta = TL = TR . The inset displays the levels
population, top (P1) to bottom (P4). The physical parameters are
ε = 0.2 and κ = 1. Bosonic reservoirs were adopted.

correlations using spin baths. The main difference noted is
that when TL is quite high and TR is low [see Fig. 3(a)], the
spin-bath case shows that concurrence is higher than discord,
while the opposite behavior is observed in Fig. 2(a). This
observation is in accord with the notion that spin reservoirs
are “more quantum” than harmonic baths in the sense that
harmonic modes can be represented by two-level systems
(spins) at low enough temperatures.

Next, we explore the role of spatial asymmetry on the
survival of quantum correlations in (temperature) driven
systems. Thermal rectification, an asymmetry of the heat
current for forward and reversed temperature gradients, has
been extensively analyzed in the past decade [2,5,17]. In a
desirable rectifier, the system behaves as an excellent heat
conductor in one direction of the temperature bias, while for
the opposite direction it effectively acts as an insulator. It is
agreed that junctions incorporating anharmonic interactions
with some sort of spatial asymmetry should demonstrate this
effect. The two-qubit model, prepared with some asymmetry,
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FIG. 2. (Color online) (a) Nonequilibrium thermal correlations
for a pair of qubits coupled to boson baths. Concurrence (full) and
discord (dashed) for TL = 1.5, TR is modified. (b) Same for TL = 0.2.
The two-qubit parameters are ε = 0.2 and κ = 1 and we set 	B,ν = 1.
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FIG. 3. (Color online) (a) Nonequilibrium thermal correlations
for a pair of qubits coupled to spin baths. Concurrence (full) and
discord (dashed) for TL = 1.5, TR is modified. (b) Same for TL = 0.2.
The two-qubit parameters are ε = 1 and κ = 0.2, and we set 	S,ν = 1.

e.g., assuming that the qubits asymmetrically couple to, e.g.,
bosonic reservoirs, 	B,L �= 	B,R , is expected to behave as a
thermal rectifier.

Figure 4 indeed shows the emergence of the thermal
rectifying effect upon turning on the asymmetry. The current
in Fig. 4(b) is symmetric, since 	B,L = 	B,R . In contrast, in
Fig. 4(d) the heat current is larger (in magnitude) when the
system is more strongly linked to the cold reservoir (TL < TR

and 	B,L > 	B,R) [2]. Here the averaged temperature is Ta = 1
with TL = Ta + �T and TR = Ta − �T . While the effect
of thermal rectification is well understood, here we demon-
strate that the transition between the fairly conducting phase
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FIG. 4. (Color online) Concurrence (full) and discord (dashed) in
symmetric (a) and asymmetric systems (c); Ta = 1 is fixed and the
temperatures at the two ends are modulated, TL = Ta + �T , TR =
Ta − �T . In the symmetric case, 	B,L = 	B,R = 1. Asymmetry is
introduced by taking 	B,L/	B,R = 20 with 	B,L = 1. Panels (b) and
(d) further display the current for the symmetric and asymmetric
cases, respectively. In all panels, ε = 0.2 and κ = 1.
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FIG. 5. (Color online) Concurrence (full) and discord (dashed) in
symmetric (a) and asymmetric systems (c). Panels (b) and (d) display
the current for the symmetric and asymmetric situations, respectively.
Parameters are the same as in Fig. 4, but the interspin interaction has
been increased to κ = 2.

(�T < 0) and the poorly conducting phase (�T > 0) cor-
responds to a turnover in the transport mechanism. In
the symmetric setup, discord and concurrence are sym-
metric functions [see Fig. 4(a)]: C(�T ) = C(−�T ) and
Q(�T ) = Q(−�T ). Figure 4(c) shows a different behav-
ior in the presence of asymmetry: when the bias is neg-
ative, quantum correlations persist; however, for the op-
posite polarity, the concurrence is zero and discord is
diminishing.

We can reason this behavior by noting that when the
system is more strongly attached to the cold bath, 	B,L > 	B,R

and TR > TL, the ground-state population is larger than that
expected in the opposite case. Since the ground state is
an entangled (singlet) state, |1〉 = 1√

2
(|↓↑〉 − |↑↓〉, its large

population reflects an energy transmission process assisted by
a quantum correlated system state.

By further increasing κ , one can extend the range over
which quantum correlations survive; see Fig. 5. For the
asymmetric setup, again we note that when TL < TR the
current is large, in comparison to the opposite polarity, and
that entanglement measures are close to unity. For the reversed

case, TL > TR , the current magnitude is lowered, and quantum
correlations are being suppressed. In particular, for TL − TR =
−2, discord is large,Q ∼ 1, while at TL − TR = 2 it is reduced
by an order of magnitude, Q ∼ 0.1. Another interesting
observation is that both discord and concurrence display a
nonmonotonic behavior at large negative bias, reflected in a
small maxima around �T ∼ −1.7 [19–21].

To conclude this section, by switching the sign of the
temperature bias, one can control the magnitude of the heat
current in asymmetric spin chains and the underlying transport
mechanism, as reflected by the survival or suppression of
quantum correlations in the system.

V. SUMMARY

We detailed here a simple model of a many-body open
quantum system that could be analytically solved, useful for
analyzing the role of the temperature gradient on quantum
correlations in a conducting nanojunction. Our calculations
manifest that, for symmetric systems under large temperature
gradients and at high temperatures, quantum discord can be
maintained, slowly decaying with �T , whereas concurrence
typically dies. In the presence of asymmetry, we found that
quantum correlations can survive in one direction of the
temperature gradient, while they diminish when reversing the
bias direction.

The present analysis could be generalized for describing
transport and quantum correlations in longer-linear spin
chains. One could also treat other systems, e.g., large spins,
or adopt unequal reservoirs at the two ends, for example,
assuming the system is coupled to both a solid and a
metal [17]. By complementing transport studies with the
calculation of quantum correlations, one can estimate and
corroborate the role of quantum effects in the transport process.
This might be useful for building quantum devices oper-
ating in noisy-thermal environments under nonequilibrium
conditions [27].
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