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Tradeoff between energy and error in the discrimination of quantum-optical devices
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We address the problem of energy-error tradeoff in the discrimination between two linear passive quantum
optical devices with a single use. We provide an analytical derivation of the optimal strategy for beamsplitters
and an iterative algorithm converging to the optimum in the general case. We then compare the optimal strategy
with a simpler strategy using coherent input states and homodyne detection. It turns out that the former requires
much less energy in order to achieve the same performances.
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I. INTRODUCTION

There are many contexts in which one wishes to use as little
energy as possible in order to perform a desired task. Consider
the case in which one wants to gather information about an
unknown device. The most general approach to the problem is
to probe the target and to measure its response. This implies an
undesired perturbation of the system. Often such perturbation
depends on the energy of the probe, and one can ask what is the
minimum amount of energy the probe must have in order to
perform the desired task. Exploiting the distinctive features of
quantum theory, such as entanglement, one could in principle
achieve better performances with respect to a classical strategy
with the same energy. For example, in the context of quantum
illumination [1–3], one discovers that the use of entangled light
allows to enhance the detection and the imaging of an object.

The task we are considering in this paper is the discrimi-
nation between two quantum optical devices (such as beam-
splitters or phase shifters). An optical device is represented
by a unitary transformation U acting on a system described
by a Fock space H. The general problem in which one
wants to discriminate between two unitaries has been widely
investigated in the literature [4–8] and can be summarized as
follows. Suppose we are provided with a single use [9] of an
unknown device randomly chosen in a set of two U1 and U2,
with equal prior probability. Our task is to distinguish between
U1 and U2 with a probability of error not greater than a given
threshold q. One sends an input state |ψ〉 that undergoes the
unitary evolution described either by U1 or U2. Finally, one
applies the optimal POVM [10] in order to distinguish the
two possible output states U1 |ψ〉 or U2 |ψ〉 with minimum
error probability. This error probability depends on the input
|ψ〉, so one can optimize on |ψ〉. In the case at hand, U1

and U2 describe optical devices and the input state |ψ〉 is
a quantum state of light, with a well-defined mean value of
the energy. Since in general many states allow to discriminate
with an error probability Pe � q, one can wonder which state
|ψ∗〉 accomplishes this task with minimum mean value of the
energy.

Here we analyze the energy-error tradeoff in the case
in which the optical devices to be discriminated are linear,
passive, and lossless. This discrimination is useful for example
when reading classical digital information encoded in the
reflectivity of a media, such as conventional CDs or DVDs.
This particular application has first been suggested in [11]

for the discrimination of quantum channels affected by loss
and noise. In particular, there it is shown that, for fixed
mean number of photons irradiated, nonclassical light can
outperform any classical source in terms of the amount of
information retrieved. Recently, the discrimination of lossy
beamsplitters has been considered in [12], in the scenario
where one has access to only one of the input and output modes
and to a restricted class of input states. A similar scenario,
namely the discrimination of a lossy quantum channel from an
ideal one, has been studied also in [13].

The paper is organized as follows. In Sec. II we review
some basic notions of linear optics and introduce the problem.
The analytical derivation of the energy-error tradeoff when
the devices are beamsplitters is given in Sec. III A, while
a numerical algorithm for the solution in the general case
is presented in Sec. III B. In Sec. III C we analyze the
energy-error tradeoff in the restricted scenario in which only
coherent states and homodyne detections are available. We
will then quantify the advantages that one has by adopting the
optimal quantum strategy. Section IV concludes the paper with
a discussion of the results.

II. DISCRIMINATION OF LINEAR PASSIVE
OPTICAL DEVICES

A M-modes quantum optical device [14,15] is described
by a unitary operator U relating M input optical modes with
annihilation operators ai on Hi , to M output optical modes
with annihilation operators a′

i on Hi ′ , where Hi denotes the
Fock space of the optical mode i. We denote as H = ⊗

i Hi .
An optical device is called linear if the operators of the

output modes are related to the operator of the input modes by
a linear transformation, namely

a′ := UaiU
† =

N∑
j=1

Aijaj +
N∑

j=1

Bija
†
j , i = 1, . . . ,N.

The above equation can be rewritten in the more compact form(
a′

a′†

)
= S

(
a
a†

)
, (1)

where S is the 2N × 2N scattering matrix defined as

S :=
(

A B

B̄ Ā

)
(2)
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(X̄ is the complex conjugate of X), a = (a1, . . . aN ) is the
vector of annihilation operators of the input mode, and
analogously a′ for the output modes. If B = 0 in Eq. (2) the
device is called passive and conserves the total number of
photons, that is

〈ψ | N |ψ〉 = 〈ψ | U †NU |ψ〉 (3)

with N := ∑
i a

†
i ai the number operator on H.

Suppose now that we want to discriminate between two
linear optical passive devices U1 and U2. If a single use of
the unknown device is available, the most general strategy
consists of (i) preparing a bipartite input state ρ ∈ B(H ⊗
K) (K is an ancillary Fock space with mode operators bi),
(ii) applying locally the unknown device, and (iii) performing
a bipartite POVM � = {�1,�2} on the output state (Ux ⊗
IK)ρ = (Ux ⊗ IK)ρ(U †

x ⊗ IK) (x can be either 1 or 2)

ρ

H
Ux

K Π .

(4)

When the device is randomly chosen from the set {U1,U2} with
equal probabilities p1 = p2 = 1/2, the minimum probability
of error in the discrimination can be proved to be [16]

Pe(ρ,U1,U2) = 1
2 [1 − ||(U1 ⊗ IK)ρ − (U2 ⊗ IK)ρ||1] . (5)

where ||X||1 = Tr[
√

X†X]. If we define as NK = ∑
i b

†
i bi the

number operator on the ancillary modes bi , the energy of the
state ρ is proportional to

E(ρ) := 1
2 + Tr[ρ(N ⊗ IK + I ⊗ NK)], (6)

while clearly the energy that flows through the unknown device
is Ed (ρ) := 1

2 + Tr[ρ(N ⊗ IK)].

Since we have Pe((U†
1 ⊗ IK)ρ,I,U2U

†
1 ) = Pe(ρ,U1,U2)

and Eq. (3) implies E((U†
1 ⊗ IK)ρ) = E(ρ), we can restrict

our analysis to the case in which U1 = I and U2 = U . We
consider now the problem to find the minimum energy input
state ρ∗ that allows us to discriminate between I and U

with probability of error not greater than a given threshold q,
that is

ρ∗ = arg min
ρs.t.Pe(ρ)�q

E(ρ). (7)

Sometimes one is more interested in minimizing the energy
Ed (ρ) flowing through the device, rather than the total energy
E(ρ) of the input state. In the following we show that no
ancillary modes are required for optimal discrimination, so
these minimization problems lead to the same optimal input
state.

The following lemmas allow us to simplify Eq. (7).
Lemma 1. Without loss of generality the minimization in

Eq. (7) can be rewritten as

ρ∗ = arg min
ρs.t.Pe(ρ,U )=q

E(ρ). (8)

Proof. Suppose that for the optimal state ρ∗ one has
Pe(ρ) < q. Since Pe(ρ) is a continuous function there exists
a 0 < α � 1 such that Pe((1 − α)ρ + α |0〉 〈0| ) = q, where

|0〉 〈0| denotes the vacuum state. By observing that E((1 −
α)ρ + α |0〉 〈0| ) < E(ρ) we have the thesis. �

Lemma 2. The optimal state achieving the minimum in
Eq. (7) can be chosen pure.

Proof. First, let us prove that the minimization of E(ρ) for
a given value of Pe is equivalent to the minimization of the
convex combination

F (ρ) = pPe(ρ) + (1 − p)E(ρ) (9)

for a fixed value of p. Suppose that we find ρ∗ that minimizes
F (ρ). It is then clear that for q := Pe(ρ∗), E(ρ) gives the
minimum possible value for the energy because any lower
energy would decrease F . From Eq. (5) and the convexity of
the trace distance, it follows that Pe(ρ) is a concave function of
ρ. Since Pe(ρ) is concave and E(ρ) is linear, F (ρ) is a concave
function of ρ and its minimum is attained on the boundary of
its dominion, that is, for pure states. �

Lemma 2 allows us to rewrite Eq. (5) as

Pe = 1
2 (1 −

√
1 − |〈ψ |(U ⊗ IK)|ψ〉|2). (10)

We now prove that no ancillary modes are required.
Lemma 3. Without loss of generality, the minimum in (7) is

achieved without using ancillary modes.
Proof. Due to Lemma 2 the input state can be written

as |ψ〉 = ∑
i ci |i〉 |χi〉 where |i〉 is an orthonormal basis

in H and |χi〉 are normalized states in K. If we define∣∣ψ ′〉 := ∑
i ci |i〉 |0〉 (|0〉 is the vacuum state), it is easy to

verify that Pe(ψ) = Pe(ψ ′) while E(ψ) � E(ψ ′). �
After these consideration and disregarding some irrelevant

constant factors, Eq. (7) can be rewritten as

|ψ∗〉 = arg min
|ψ〉s.t.|〈ψ |U |ψ〉|=K

〈ψ |N |ψ〉, (11)

where from Eq. (10) it follows that K = √
4q(1 − q).

III. THE OPTIMAL TRADEOFF

A. The case of beamsplitters

In this section we derive an analytical expression for the
optimal energy-error tradeoff for the case in which the devices
to be discriminated are two beamsplitters. A beamsplitter
is a two-mode linear passive quantum optical device whose
scattering matrix S has the form

S :=
(

A 0
0 Ā

)
A ∈ SU(2). (12)

In the following we will use the basis {|nm〉} with respect to
which U is diagonal, that is,

A =
(

eiδ 0
0 e−iδ

)
, 0 � δ � π. (13)

With this choice, for any |ψ〉 = ∑∞
n,m=0 αnm |n,m〉, we

have U |nm〉 = eiδ(n−m) |nm〉 and it is easy to observe
that 〈ψ | U |ψ〉 = ∑∞

n,m=0 |αnm|2eiδ(n−m) and 〈ψ | N |ψ〉 =∑∞
n,m=0 |αnm|2(n + m). We notice that both these expressions

only depends on the squared modulus of the coefficients
αnm and so we can assume αnm to be real and positive.
The assumption that the devices are beamsplitters allows us
to simplify the structure of the optimal input state for the
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tradeoff. First, we show that it is not restrictive to consider
superpositions of the so called NOON [17] states.

Lemma 4. If U is a beamsplitter, the optimal state |ψ∗〉 in
Eq. (11) can be taken of the form

|ψ∗〉 =
∞∑

n=0

αn|φn〉, |φn〉 =
√

1

2
(|n,0〉 + |0,n〉). (14)

Proof. We show that for any state |ψ〉 = ∑∞
n,m=0 αnm|n,m〉

there exists a state |ψ ′〉 = ∑∞
l=0 α′

l|φl〉 such that 〈ψ ′|N |ψ ′〉 �
〈ψ |N |ψ〉 and |〈ψ ′|U |ψ ′〉| � |〈ψ |U |ψ〉|. Upon defining
|α′

l|2 = ∑
|n−m|=l |αnm|2, one can verify

〈ψ ′|N |ψ ′〉 =
∞∑

n,m=0

α2
nm|n − m| � 〈ψ |N |ψ〉, (15)

|〈ψ ′|U |ψ ′〉| =
∣∣∣∣∣

∞∑
n,m=0

α2
nm cos(δ|n − m|)

∣∣∣∣∣
� |〈ψ |U |ψ〉|, (16)

that proves the statement. �
From Eq. (14) it follows that the expectation value of U

over |ψ〉 is real. Following an argument similar to the one we
used to prove Lemma 1, the constraint |〈ψ |U |ψ〉| = K can be
changed into 〈ψ |U |ψ〉 = K and Eq. (11) becomes

|ψ∗〉 = arg min
|ψ〉s.t.〈ψ |U |ψ〉=K

〈ψ |N |ψ〉. (17)

One can observe that for any state |ψ〉 of the form of Eq. (14),
the constraint

∑∞
n=0 α2

n cos(δn) = K implies that there must
exist at least one non-null coefficient αn for n s.t. cos(δn) � K

and at least one for n s.t. cos(δn) � K . In the following lemma
we will prove that not more than two non-null coefficient αn

are needed.
Lemma 5. The optimal state |ψ∗〉 that minimize Eq. (17)

can be taken of the form

|ψ∗〉 = αn1

∣∣φn1

〉 + αn2

∣∣φn2

〉
. (18)

Proof. Let us consider the optimal state |ψ〉 = ∑
n αn|φn〉

with 〈ψ |U |ψ〉 = K and 〈ψ |N |ψ〉 = Nmin. Suppose now that
the set 
α := {αn} has N � 3 elements. Then there must exist n1

and n2 such that αn1 ,αn2 �= 0 and cos(δn1) � K � cos(δn2).
It is then possible to define |χ〉 := βn1 |φn1〉 + βn2 |φn2〉 such
that 〈χ |U |χ〉 = K . Furthermore, we can define |ξ 〉 := (1 −
ε)−1/2 ∑

n γn|φn〉, where

γn =
{
αn if n �= n1,n2√

α2
n − εβ2

n if n = n1,n2
,

and ε � min(αn1/βn1 ,αn2/βn2 ). We notice that 〈ξ |U |ξ 〉 = K

and

Nmin = ε〈χ |N |χ〉 + (1 − ε)〈ξ |N |ξ 〉. (19)

If 〈χ |N |χ〉 = Nmin the statement follows with |ψ〉 = |χ〉. If
〈χ |N |χ〉 �= Nmin, either 〈χ |N |χ〉 < Nmin or 〈ξ |N |ξ 〉 < Nmin,
that contradicts the hypothesis that |ψ〉 is the optimal state. �

Since we both require 〈ψ |U |ψ〉 = K and α2
n1

+ α2
n2

= 1 the
expression of the coefficients αn1 ,αn2 and of the mean value
〈ψ |N |ψ〉 are fixed by the choices of n1, n2 and K , that is,

αn1 =
√

cos(δn2) − K

cos(δn2) − cos(δn1)
,

(20)

αn2 =
√

1 − α2
n1

〈ψ |N |ψ〉 = n2 cos(δn1) − n1 cos(δn2) + K(n1 − n2)

cos(δn1) − cos(δn2)
.

(21)

It is now convenient to rephrase the problem at hand in a
geometrical way (see Fig. 1). Let us introduce the map f : N →
R2, defined as f(n) = ( cos(δn),n). We can associate to any
couple n1 and n2 the line Ln1,n2 := {t f(n1) + (1 − t)f(n2)|t ∈
R} and the segment ln1,n2 := {t f(n1) + (1 − t)f(n2)|0 � t �
1}. It is easy to prove that the expectation value 〈ψ |N |ψ〉 in
Eq. (20) can be rewritten as

〈ψ |N |ψ〉 = (
�n1,n2 ∩ rK

)
y
, (22)

where we defined the line rK := {(K,y)|y ∈ R} and the
mapping (a,b)y = b. For any K it is then possible to define
a partial ordering <K among the segments ln1,n2 for which
cos(δn1) � K � cos(δn2), as follows:

ln1,n2 >K ln′
1,n

′
2

if
(
ln1,n2 ∩ rK

)
y

>
(
ln′

1,n
′
2
∩ rK

)
y
. (23)
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FIG. 1. (Color online) Geometrical representation of the opti-
mization problem. For fixed values n1 and n2, each state of the form
(18) is represented by a point of the line segment ln1,n2 which extrema
are (cos(δn1),n1) and (cos(δn2),n2). The x and y coordinates represent
the expectation values 〈ψ |U |ψ〉 and 〈ψ |N |ψ〉, respectively. From the
picture it is clear that the line segment l0,n∗ lies below any other line
segment ln1,n2 , and so it identifies the family of optimal states, as we
prove in Prop. 1.
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FIG. 2. (Color online) Optimal tradeoff between the energy E

and the probability of error Pe in the discrimination of I and U =
exp[i(δa†

1a1 − δa
†
2a2)] for various values of δ.

We are now ready to proof the following Proposition. Here
�x�(�x�) denotes the minimum (maximum) integer number
greater (smaller) than x.

Proposition 1. For any K , 0 � K � 1, the optimal state
|ψ∗〉 that minimizes Eq. (17) is

|ψ∗〉 = αn∗ |φn∗ 〉 + α0|00〉, (24)

where n∗ = arg min�ñ�,�ñ�〈ψ∗|N |ψ∗〉, with ñ the minimum
positive solution of δn = tan(δn/2).

Proof. First let us introduce the set � := {n ∈ N|π/2δ �
n′ � π/δ}. Since δ < π we observe that � must be nonempty.
Consider now the lines Ln′,0 and Ln′,m. It is easy to verify
that for all m we have (Ln′,m ∩ r1)y > (Ln′,0 ∩ r1)y which
implies (Ln′,m ∩ rK )y > (Ln′,0 ∩ rK )y for all cos(δn′) � K �
1 and finally ln′,m >K ln′,0 for all cos(δn′) � K � cos(δm).
Similarly one can verify the bound ln′,0 <K lπ/δ,0 <K ln1,n2

that holds for cos(δn1) � K � cos(δn2), n′ ∈ �. We can then
restrict the optimization over the finite set of states S :=
{|ψ〉||ψ〉 = αn′ |φn′ 〉 + α0|00〉,n′ ∈ �}. As a consequence, the
mean value 〈ψ |N |ψ〉 becomes

〈ψ |N |ψ〉 = (1 − K)n

1 − cos(δn)
. (25)

The right-hand side of Eq. (25) can be proven to be a convex
function [18] for π/2 � δn � π and achieves its minimum
for ñ minimum positive solution of δn = tan(δn/2). Since
ñ is in general not integer the optimal value n∗ is given by
arg min�ñ�,�ñ�〈ψ∗|N |ψ∗〉. �

Figure 2 shows the optimal energy-error tradeoff obtained
with the discrimination strategy of Prop. 1.

B. An iterative algorithm for the general case

Here we provide an iterative steepest-descent algorithm
[19] to find a state |ψ〉 that solves the optimization problem
in Eq. (11). With the same argument we use in the proof of
Lemma 2 we can rephrase the optimization problem in Eq. (11)
as the minimization of the convex combination

C(ψ) := p〈ψ |N |ψ〉 + (1 − p)|〈ψ |U |ψ〉|2. (26)

We are now ready to introduce the iterative procedure.

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5

E

Pe

δ1=π/4, δ2=-π/4 (upper line)
δ1=π/2, δ2=0 (lower line)

FIG. 3. (Color online) Optimal tradeoff between the energy E

and the probability of error Pe in the discrimination of two linear
passive optical devices I and U . We consider the case in which U is
a two mode device, namely U = exp[i(δ1a

†
1a1 + δ2a

†
2a2)].

Proposition 2. The following algorithm converges to a state
|ψ〉 that is optimal according to Eq. (26). Take an arbitrary state
|ψ0〉. Given |ψn〉, evaluate |ψn+1〉 by the following steps:

(1) Evaluate the derivative of the figure of merit C(ψn)

∂C(ψn)

∂〈ψn| = [pN + (1 − p)(〈ψn|U |ψn〉U † (27)

+〈ψn|U †|ψn〉U )]|ψn〉. (28)

(2) Pick up a small enough positive α and evaluate

|ψ̂n+1〉 = (1 − α)|ψn〉 − α
∂C(ψn)

∂〈ψn| . (29)

(3) Normalize |ψ̂n+1〉 according to

|ψn+1〉 = |ψ̂n+1|−1|ψ̂n+1〉. (30)

Proof. The algorithm in Prop. 2 is a steepest-descent
algorithm: we move the state in the direction of the gradient
of the figure of merit C(ψ), so by construction one has
C(ψn+1) � C(ψn). �

The parameter α controls the length of each iterative step,
so for α too large an overshooting can occur. This can be kept
under control by evaluating the figure of merit C(ψ) at the
end of each step: if C(ψ) increases instead of decreasing, we
are warned that we have taken α too large. Figure 3 shows the
optimal energy-error tradeoff obtained with the algorithm of
Prop. 2.

C. Discrimination of passive devices with limited resources

Here we consider the minimum energy discrimination
that makes use of coherent input states |αi〉 and homodyne
detections Xϕi

to discriminate a single use of a n-modes passive
linear optical device randomly chosen in the set {I,U} with
equal probabilities

α1

Ux

Xϕ1

α2 Xϕ2

α3 Xϕ3

.

(31)
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If we consider coherent input states |αi〉 on mode i the global
input state is |ξ 〉 = ⊗

i |αi〉 which corresponds to an energy
value

E(ξ ) := 〈ξ |E|ξ 〉 = 1

2
+ 〈ξ |N |ξ 〉 = 1

2
+

∑
i

|αi |2. (32)

Since for any passive linear device V we have that V
⊗

i |αi〉 =⊗
i |βi〉 with |βi〉 are coherent state, we can assume U to be

diagonal, that is, U = ∑
i e

iδia
†
i ai . The evolution of |ξ 〉 under

the action of U is then given by

U |ξ 〉 =
⊗

i

∣∣eiδi αi

〉
. (33)

A quantum homodyne detection Xϕ is described [14,20,21]
by the POVM {|x,ϕ〉〈x,ϕ|} where |x,ϕ〉 are the eigenstate of
the quadrature eiϕa + e−iϕa†. The probability of outcome x

when the system is prepared in a coherent state |α〉, α = eiφα |α|
is given by the Gaussian

pϕ(x|α) = |〈α|x,ϕ〉|2 = 1√
2π

e− 1
2 [x−2|α| cos(ϕ+φα )]2

. (34)

We notice that pϕ(x|α) depends on ϕ only through the
sum ϕ + φα . We can then fix ϕ = 0 and vary only the αi

conditional probabilities of outcome x = (xi) given I or U are
n-dimensional Gaussians, namely

p(x|I ) = (2π )−n/2e|x−v0|2/2,

p(x|U ) = (2π )−n/2e|x−v1|2/2, (35)

v0 = (2 Re αi), v1 = (2 Re eiδi αi),

Any classical postprocessing of the outcome x can be
described by a function q(X|x) that evaluates to 1 if one
guess the unitary X from outcome x, and to 0 otherwise, with
X = I,U . The probability of error is given by

Pe(ξ ) = 1

2

∫
dx p(x|I )q(U |x) + p(x|U )q(I |x), (36)

and thus the optimal postprocessing is

q(X|x) =
{

1 if p(x|X) � p(x|Y )

0 if p(x|X) < p(x|X)
. (37)

Inserting Eqs. (37) and (35) into the expression (36), the
probability of error becomes

Pe(ξ ) = 1

2
+ (2π )−n/2

2

∫
A

dx e− |x−v0 |2
2 − e− |x−v1 |2

2 , (38)

where we defined the set

A = {x s.t. |x − v0|2 � |x − v1|2}. (39)

Within this framework it is more convenient to fix the amount
of energy, that is the average number of photons η, and find
the input state |ξ ∗〉 that minimizes the probability of error in
the discrimination, that is,

|ξ ∗〉 = arg min
〈ξ |N |ξ〉=η

Pe(ξ ). (40)

With a little machinery it is possible to prove that Pe(|ξ 〉) is a
nonincreasing function of |v0 − v1|2 and then the minimization
of Pe(|ξ 〉) can be rephrased as a maximization of |v0 − v1|2.
We have then

|v0 − v1|2 = 4
∑

i

[Re(αi) − Re(eiδαi)]
2

= 4
∑

i

[( cos(φi) − cos(φi + δi))|αi |]2

� 4
∑

i

[(2 sin(δi/2))|αi |]2 � 16 sin2(δ/2)η,

(41)

where δ∗ := arg maxδi
|δi |, and i∗ labels the corresponding

mode. The bounds in Eq. (41) are achieved for

|ξ ∗〉 =
⊗
i �=i∗

|0i〉 ⊗ |α∗
i∗ 〉, (42)
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FIG. 4. (Color online) Optimal tradeoff between the energy E

and the probability of error Pe in the discrimination of I and
U = exp[i(δa†

1a1 − δa
†
2a2)] [δ = π/4 in (a) and δ = π/12 in (b)].

The upper line represents the discrimination with coherent states
and homodyne detections, while the lower line represents the optimal
discrimination. Comparing (a) and (b) we notice that the improvement
provided by the optimal strategy increases as δ decreases.
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where α∗
i∗ = √

η exp(i π−δ∗
2 ). The corresponding optimal dis-

crimination strategy is

α∗
i∗

Ux

X0

0 I

0 I

,

(43)

where I means that the corresponding mode is discarded.
With this choice of the input state the probability of error
becomes

Pe = 1

2

[
1 + �

(
−2

√
η sin

|δ∗|
2

)

−�

(
2
√

η sin
|δ∗|
2

)]
, (44)

where �(x) = 1√
2π

∫ x

−∞ dt exp(−t2/2) denotes the normal
cumulative distribution function.

From Eq. (44) one can obtain the tradeoff between the
energy and the probability of error, which is plotted in Fig. 4
for some choices of U1 and U2. If we consider the case in
which we want to discriminate a 50 : 50 beamsplitter from
the identity, one can notice that, for Pe = 0.1, the coherent
state–homodyne detection discrimination strategy requires a
factor of ∼4 more photons that the optimal strategy. Moreover,
this factor increases as the two devices get closer, that is, for
small values of δ. For example, when δ = π/12, the factor is
∼12. As expected, one notice that this factor increases when
the probability of error decreases.

IV. CONCLUSION

In this paper we studied the energy-error tradeoff in the
discrimination of two linear passive optical devices. We
derived the optimal strategy when no restrictions in the input
state and in the final measurement are assumed. It is shown
that the input state can be taken as pure and no ancillary modes
are needed. For the beamsplitter case the input state is proved
to be a coherent superposition of a NOON state |φn∗ 〉 and the
vacuum |00〉. It is worth noting that the choice of |φn∗ 〉 depends
only upon the reflectivity of the beamsplitter. We provided
an iterative algorithm to solve the problem in the general
case.

In Sec. III C we considered the practical scenario in which
one performs the discrimination with coherent input states
and homodyne detections. This strategy, when compared
with the optimal one, turns out to be largely suboptimal.
For example, for a 50 : 50 beamsplitter the energy required
for the discrimination when the probability of error is 0.1
is 4 times smaller with the optimal strategy than with the
coherent-homodyne one.
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