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All possible coupling schemes in XY spin chains for perfect state transfer
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We investigate quantum state transfer in XY spin chains and propose a recursive procedure to construct
the nonuniform couplings within these chains of arbitrary length in order to achieve perfect state transfer. We
show that this method is capable of finding all possible coupling schemes for perfect state transfer. These
schemes, without external control fields, involve analytically identified engineered couplings without the need
for dynamical control. The analytical solutions provide all information for coupling design.
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I. INTRODUCTION

Quantum computation allows to address tasks which are
intractable with classical technologies. Many schemes have
been proposed to realize quantum computation [1] and a
quantum computer will likely need a channel, often known as a
quantum wire, to transmit or exchange quantum states between
the components of the machine. The latter objective calls for
implementing the transmission of an unknown quantum state
from one place to another, which is often referred to as quantum
state transfer. In a seminal paper [2], Bose proposed a spin
chain model for this purpose and considered the fidelity of state
transfer. Similar results were also derived from studying the
dynamical properties of entanglement in Heisenberg XY spin
chains [3]. This model, in which two processors are connected
through a spin chain as quantum wire, is useful for quantum
computation based on Heisenberg interactions [4] or special
measurements [5].

Although some important and significant results have been
found for state transfer (see for example [2,3]), all of the
prior studies are concerned with uniform interactions; i.e.,
the couplings between all nearest-neighbor sites are the same.
Under this restriction, however, it was shown that when N � 4
(where N is the number of the sites in the XY chain), perfect
state transfer (PST) is not possible [6]. This drawback of a
uniform interaction has motivated efforts to find modified
models for achieving “long”-distance PST. Some works
considered long-range interactions [7] and explored some
numerical properties of PST [8]. Another route is to engineer
the couplings [6] (i.e., create special nonuniform couplings
to achieve PST), and some specific analytically identified
coupling schemes were found [6,9,10]. The necessary and
sufficient conditions for the PST couplings were derived
from a systematic treatment of the problem [11] by mirror
inversion [9] and computational treatment. However, all these
analytical engineered schemes are based on verification and
do not present a constructive means to find the couplings.
Thus, these prior works have left wanting the means to get all
possible coupling schemes for PST.

In this paper, we start from the necessary and sufficient
conditions of PST. After preselecting the eigenvalues of
an XY spin chain Hamiltonian, we propose two recursive
formulas to determine the couplings for both even and odd

N cases and prove the validity of the scheme by mathematical
induction. We demonstrate that this method is capable of
finding all possible coupling schemes for PST in an XY chain
of arbitrary length. Experimentally, the resultant PST schemes
could be realized, for example, by superconducting circuits
and quantum buses [12], nanoelectromechanical resonator
arrays [13], or cold-atom optical lattices [14].

II. SPIN CHAIN FOR STATE TRANSFER

We first review some basic concepts of the state transfer
protocol using a spin chain as the channel [2,15]. An unknown
qubit, as encoded in site 1, is attached to one end of a spin chain
with the chain initialized to the all spin-down ground state. In
practice, however, state initialization is not necessary for some
spin chain models [16]. Due to the coupling between the spins
of the chain, free evolution of the system causes the unknown
state to distribute along the chain. After a specific interval, the
goal is to recover this unknown state at the opposite end of the
chain and thereby achieve state transfer.

A reasonable Hamiltonian for this task is of the XY

form

H = 1

2

N−1∑
i=1

Ji

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) − 1

2

N∑
i=1

Bi

(
σ z

i − 1
)
, (1)

where Ji is the coupling strength between sites i and i + 1, and
Bi is the external control field at site i. σx, σ y, and σ z are the
three Pauli matrices. Since the Hamiltonian (1) commutates
with the total z-spin operator

∑N
i=1 σ z

i , the evolution of
the system will just involve the subspace spanned by the
ground state and N one-site excited states. By the Jordan-
Wigner transform, the Hamiltonian in (1) can be mapped
to

H =
N−1∑
i=1

Ji(a
†
i ai+1 + a

†
i+1ai) +

N∑
i=1

Bia
†
i ai, (2)

which presents an exactly solvable model. Hamiltonian (2)
describes an N -site hopping model with nonuniform external
fields. Let |i〉 denote the single excited state at site i, then
the Hamiltonian (2) can be expressed in the N -dimensional
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subspace spanned by {|i〉},

HN =

⎛
⎜⎜⎜⎜⎜⎜⎝

B1 J1 0 · · · 0

J1 B2 J2 · · · 0

0 J2 B3 · · · 0
...

...
...

. . . JN−1

0 0 0 JN−1 BN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

The fidelity of this transfer process is |〈N |e−iHN τ |1〉|, where
τ is the time interval of the evolution. The conditions for
PST, i.e., |〈N |e−iHN τ |1〉| = 1, are (a) reflection symmetry
Bi = BN+1−i and Ji = JN−i and (b) after sorting the eigen-
values of HN

τ
π

in decreasing order, the difference between
any two adjacent eigenvalues must be an odd integer [11].
All prior schemes required (a) as part of their protocols
and designated the eigenvalues of HN

τ
π

to be {−k, − k +
1, . . . ,k − 1,k} for 2k ∈ N [6,9], {q(k2 + k) + (2p + 1)k}
for k = 0, . . . ,N [9], or {−k + 1

2 − n, . . . , − k − 3
2 , − k −

1
2 ,k + 1

2 ,k + 3
2 , . . . ,k − 1

2 + n} [10], which all satisfy (b).

III. ALL POSSIBLE COUPLING SCHEMES FOR PST
WITHOUT CONTROL FIELDS

All of the coupling schemes listed above are particular
solutions for PST, and the main result of this paper is to
attain all possible couplings for PST in the absence of external
fields, i.e., Bi = 0; the prospect of fields being present will
be discussed at the end of the paper. By utilizing the perfect
transfer condition (a) and Bi = 0, the Hamiltonian (3) becomes

HN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 J1 0 · · · 0 0

J1 0 J2 · · · 0 0

0 J2 0 · · · 0 0
...

...
...

. . . J2 0

0 0 0 J2 0 J1

0 0 0 0 J1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

whose eigenvalues are symmetric about zero. Owing to this
symmetry, there are only N

2 (N−1
2 ) independent couplings and

N
2 (N−1

2 ) independent eigenvalues in (4) for even (odd) N

cases (0 is always an eigenvalue when N is odd). The goal
is to construct the couplings {Ji} from a set of preselected
eigenvalues {�i} that satisfy (b). We will first consider even N

and show how to derive {Ji}. Then, these results are generalized
to odd N , and we finally show how to attain all possible
coupling schemes for PST.

For even N , we write the eigenvalues of HN as
{±�1, . . . , ± �n}, where n = N/2, �i ∈ N, and �1 > �2 >

· · · > �n > 0 (if none of the {Ji} is zero, then the eigenvalues
of HN are nondegenerate [17]), and we omit the scale factor
τ
π

. {Ji} and {�i} are connected through the characteristic
polynomial of the Hamiltonian (4),

Det(HN − λI ) =
n∏

i=1

(
λ2 − �2

i

)
, (5)

which, by expanding in powers of λ2, is equivalent to a set of
equations

N−1∑
i=1

J 2
i =

n∑
i=1

�2
i , (6a)

...∑
ki+1−ki�2

J 2
k1

· · · J 2
kn

=
∑

ki+1>ki

�2
k1

· · ·�2
kn

, (6b)

...
∏

J 2
1 J 2

3 · · · J 2
N−1 =

n∏
i=1

�2
i . (6c)

We want to derive {Ji} from {�i}. We retain JN−i rather
than Ji when i � N/2 in Eq. (6), despite they being equal, for
clarity of the analysis and introduce the following notation for
convenience. Denote

j [N]
n = J [N]

n , (7a)

j
[N]
i = (J [N]

i )2, 1 � i � n − 1, (7b)

whose meaning will become clear shortly. Here, the superscript
N indicates the dimension of the matrix HN and we imply
that the eigenvalues of HD are {±�1, . . . , ± �D/2} and
its couplings are {J [D]

i }. The main concept underlying the
procedure is to obtain {j [D]

i } from {j [D−2]
i }, requiring that the

Hamiltonians are constructed to respectively share the same
eigenvalues {±�1, . . . , ± �(D−2)/2}. Further, we denote

�N
k = j

[N−2]
n−1 j

[N−2]
n−2 · · · j [N−2]

k−1

j
[N]
n j

[N]
n−1 · · · j [N]

k+1

, 1 � k < n, (8a)

�N
k = j

[N−2]
k j

[N−2]
k+2 j

[N−2]
k+4 · · ·

j
[N]
k+2j

[N]
k+4j

[N]
k+6 · · · , 1 � k < n − 1, (8b)

where j
[D]
0 ≡ 0, �N

n = j
[N−2]
n−1 and �N

n−1 = j
[N−2]
n−1 , �N

n = 1.
The products in the numerators and denominators of Eq. (8)
contain terms with indices no larger than n − 1 and n, re-
spectively. With this notation, we will show that the following
equation allows us to directly attain {Ji} from {�i}:

j
[N]
i = �N

i − (−1)i�n�
N
i , i = 1, . . . ,n. (9)

Equation (9) allows for constructing j
[N]
i from {j [N−2]

n−1 ,

. . . ,j
[N−2]
i−1 }, {j [N]

n , . . . ,j
[N]
i+1}, and �n. Thus, when we know

{j [N−2]
i }, by adding one more eigenvalue �n, we can derive

j [N]
n ,j

[N]
n−1, . . . ,j

[N]
1 one by one explicitly. Now, we need to

prove Eq. (9) is consistent with Eq. (6). Direct calculation
shows that �n satisfies a continued fraction:

j [N]
n

j
[N]
n−1

...
j

[N]
1
�n

−�n

+�n

+ (−1)n−1�n

= 1. (10)

Equation (10) is equivalent to Det(HN − �nI ) = 0. By
expanding Det(Hi − �I ) in terms of order i − 1 determi-
nants, we will find that the original continued fraction for
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Det(HN − �nI ) = 0 is
(
J

[N]
N−1

)2

...
(J [N]

2 )2

(J [N]
1 )2

�n
−�n

+�n

− �n

+ (−1)N−1�n = 0. (11)

Due to the symmetry between Ji and JN−i , we can move the
upper half of the continued fraction to the right-hand side
of the equation. After taking a square root on both sides,
we obtain Eq. (10), which means that �n is actually an
eigenvalue of (4). The square root operation is the origin of
why we denoted j [N]

n = J [N]
n but j

[N]
i = (J [N]

i )2 for i �= n.
Next, we will prove that Eq. (9) is valid for arbitrary N

by mathematical induction. We assume that permutations
of {�1, − �2,�3, . . . ,(−1)n�n−1} leave {j [N−2]

i } invariant,
which can be shown to be explicit for {j [4]

i }. The next
step is to prove that the {j [N]

i } are also invariant under the
permutation of �n and −�n−1, which, with the assumption
above, directly implies that {±�i} for i = 1, . . . ,n are the
eigenvalues of HN when {J [N]

i } are constructed from Eq. (9).
Obviously, j [N]

n is unchanged under the permutation of �n

and −�n−1. For j
[N]
n−1, we can expand it using �n, �n−1,

and {j [N−4]
i } in which {j [N−4]

i } do not depend on �n and
�n−1. Note that this expression has a form similar to j

[N−2]
n−5

upon expansion in terms of �n−1, �n−2, and {j [N−6]
i }; if we

replace �n, �n−1, and {j [N−4]
i } in j

[N]
n−1 by −�n−1, −�n−2, and

{j [N−6]
i }, respectively, we will find they are indeed equivalent.

Owing to the assumption that the permutation of �n−1 and
−�n−2 keeps j

[N−2]
n−5 unchanged, we conclude that j

[N]
n−1 is

also unchanged under the permutation of �n and −�n−1.
This method is applicable for other j

[N]
i , and we can further

prove that the permutation of �n and −�n−1 leaves all {j [N]
i }

invariant.
Combining this proof and the fact that permutations

of {�1, − �2} form a group which leaves {j [4]
1 ,j

[4]
2 } in-

variant, we can prove that the permutations of {�1, −
�2, . . . ,(−1)n+1�n} form a group that leaves {j [N]

i } invariant.
Furthermore, if �n is an eigenvalue of (4), then, according
to Eq. (10), {±�i} for i = 1, . . . ,n are all eigenvalues of (4).
Figure 1 shows a schematic of the proof.

For odd-N cases, we assume �n > �n−1 > · · · > �1 > 0.
Let n = (N − 1)/2, and define

j [N]
n = 2(J [N]

n )2, (12a)

j
[N]
i = (

J
[N]
i

)2
, 1 � i � n − 1. (12b)

Further, define �N
k and �N

k as the same as even-N cases.
The corresponding recursive formula for odd N is

j
[N]
k = �2

n�
N
k − �N

k , (13a)

j
[N]
k−1 = �N

k−1 − �N
k−1, (13b)

where k = n,n − 2,n − 4, . . . until we get j [N]
1 . The difference

between n and k in Eq. (13a) is an even integer, which implies
that �2

n appears on the right side of Eq. (13) alternately. Just
like the even-N cases, we can directly check that �n is an
eigenvalue of (4) by the continued fraction representation when

-Λ -Λ -Λ -Λ -Λ - Λ 0 Λ Λ Λ1 2 3 4 n-1 n n n-1

-Λ -Λ -Λ 0 Λ Λ Λ Λn n-1 n-2 n-2 n-1 n

( )a

(b)

. . . . . .

. . .. . .

4 Λ Λ Λ3 2 1

3 542Λ1 Λ Λ Λ

FIG. 1. (Color online) Recursive procedures for (a) even and
(b) odd N cases. Permutations of {�i} with the same color form one
group. Although 0 is always an eigenvalue in (b), the permutation
group does not contain it. Arrows on the straight lines indicate the
recursive directions; e.g., the rightmost arrow in (b) implies that if
�n is an eigenvalue of (4) when {Ji} are constructed from Eq. (13),
then so is �n−2 an eigenvalue.

the {Ji} are expressed by Eq. (13), and the factor 2 appearing
in the definition of j [N]

n also comes from the continued fraction
structure. Although the main concept of the proof is the same,
there are some differences between even and odd cases. First,
the {j [N]

i } are no longer unchanged under the permutation
of �n and −�n−1 when N is odd. Instead, the permutations
of {�n,�n−2,�n−4, . . .} and {�n−1,�n−3,�n−5, . . .} form two
groups to keep {j [N]

i } invariant, respectively. (If we consider all
the eigenvalues {±�i}, then both even and odd cases have two
groups formed by interlaced eigenvalues, respectively, which

keep {j [N]
i } unchanged; see Fig. 1.) Note that j

[N]
3

j
[N]
2

j
[N]
1

�n−1
−�n−1

+�n−1

and j
[N−2]
2

j
[N−2]
1
�n−2

−�n−2

have the same structure when a similar

replacement is made as in proving the even-N cases. Utilizing
this property, we can prove that �n−1 is also an eigenvalues of
HN . Combined with the fact that �n is an eigenvalue of HN

and the symmetry property between �n and �n−2, by means
of mathematical induction, we conclude that the eigenvalues
of HN , whose off-diagonal elements are constructed from
Eq. (13), are {0, ± �i} for i = 1, . . . ,n.

The completeness of this method comes from the fact that
(3) is uniquely determined by its eigenvalues when the {Ji}
are all positive [18]. This circumstance also implies that all
real coupling schemes for (4) are uniquely determined by
its eigenvalues. Since the completeness is available only if
all {Ji} are real, we need to prove the positivity of {J 2

i } for
Eq. (9) and Eq. (13). This is more apparent when we extract
the common factors in Eq. (9) and Eq. (13). As a result, we will
find that each expression contains two factors, one positive
and the other monotonic with respect to �n. Considering
�n−1 > �n > 0 and �n > �n−1 in even and odd cases,
respectively, we see that the {j [N]

n } are all positive and the {Ji}
are all real, which satisfies the completeness condition. Thus,
Eq. (9) and Eq. (13) are complete for all possible coupling
schemes.

The constructive method presented here permitted calcu-
lating the couplings from a set of preselected eigenvalues.
As a numerical test, we chose several sets of 50 eigenvalues
whose interval between any two adjacent ones in each set is
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a random odd integer in the domain [1,100]. The recursion
algorithm was accomplished just on a common PC (2.50 GHz
CPU and 2 GB memory) and the running time is gener-
ally within 10 s. Following the recursion algorithm readily
identified the couplings in the Hamiltonian. The resultant
couplings often have large numerators and denominators in
the continued fractions, but it is possible to choose specific
eigenvalues to avoid this circumstance. For example, choosing
the eigenvalues as {±[T + 1

2 + i(2S + 1)]}, where T and
S are two non-negative integers, for i = 1,2 . . . ,N

2 when

N is even, we will find that the J 2
i are i(N−i)(1+2S)2

4 and
[(1+2T )+(1+i)(1+2S)][(1+2T )+(N+1−i)(1+2S)]

4 for even and odd i,
respectively.

The model used here is also similar to that encountered
in population transfer in an N -level system in which N

discrete energy levels are equivalent to N single excited states
{|i〉}. In this case, by assuming that the only interaction is
electric-dipole coupling and the laser is close to resonance
with all adjacent states, then after applying the rotating
wave approximation [19], the Hamiltonian of this problem
is identical to Eq. (4) when we treat the dipole interactions
analogously to the couplings in the XY chain. In this case our
results for PST can also be used to design the amplitude of each
frequency of the control laser to achieve perfect population
transfer.

IV. CONCLUSION

In this paper, we have considered the problem of trans-
ferring an unknown state from one end of a spin chain to the
other end, and we presented recursive formulas for determining
the couplings, since uniform coupled XY chains cannot
afford PST. Although this method is numerically effective,
there are still some interesting remaining issues. We set the
diagonal elements of the Hamiltonian to be zero; i.e., there
is no external control field in the spin chain or analogously
the laser resonances between adjacent levels in an N -level
system. These conditions are not necessary for PST or perfect
population transfer. Nonzero diagonal elements break the
symmetry of the Hamiltonian spectrum, and the eigenvalues
no longer appear in pairs. Nevertheless, the continued fraction
approach is also valid when we replace � by Bi − �. We
expect similar formulas for cases that involve control fields,
which will contain N recursive equations for an N -site spin
chain.
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