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We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers.
We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for
DD-protected gates to outperform unprotected gates. Under suitable conditions, fault-tolerant quantum circuits
constructed from DD-protected gates can tolerate stronger noise and have a lower overhead cost than fault-tolerant
circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that
couples to the quantum computer and can be expressed either in terms of the operator norm of the bath’s
Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance
of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply
to Hamiltonian noise models with limited spatial correlations.
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I. INTRODUCTION

Two well-known methods for protecting quantum systems
from noise are dynamical decoupling (DD) and quantum error
correction (QEC). In DD, pulses are applied to the protected
system, chosen so that the damaging effects of the noise nearly
average away. In QEC, protected logical qubits are encoded
as collective states of many physical qubits, chosen so that
damage due to noise can be detected and reversed.

Each method has advantages and disadvantages. On the
plus side, resource requirements for DD are relatively modest
[1–13]. Only unitary control operations need be applied to
the system; there is no need to perform measurements or to
replace used ancillary qubits with fresh qubits. Furthermore,
a single physical qubit suffices for each protected logical
qubit, and protected quantum gates can be implemented using
relatively short sequences of pulses. DD pulse sequences are
simple enough that experiments on a wide variety of quantum
systems have convincingly demonstrated the effectiveness
of DD [14–25]. On the minus side, DD is effective only
against low-frequency noise, slowly varying on the time scale
set by the interval between pulses, and its effectiveness is
intrinsically limited by imperfections in the timing and shape
of the pulses. Furthermore, DD is not an efficient scheme for
flushing entropy from the system if no qubits are replaced or
refreshed; thus, it seems that DD does not by itself provide a
feasible route to scalable quantum computing.

For QEC, on the plus side, the quantum accuracy threshold
theorem establishes that QEC, through judicious design of
fault-tolerant gadgets acting on code blocks, suffices for accu-
rate simulation of arbitrarily long quantum computations, if the
noise is sufficiently weak and reasonably local [26–33]. QEC
can succeed against high-frequency noise, where DD methods
fail. On the minus side, though, the resource requirements
for QEC are quite daunting. A ready supply of fresh qubits
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is necessary; furthermore, the number of physical system
qubits needed to encode one logical qubit, and the number
of physical gates needed to execute one logical gate, can
be substantial. Because of the complexity of fault-tolerant
quantum computing protocols, and because these protocols
work only when the noise is already quite weak, experiments
showing that QEC can suppress naturally occurring noise have
not yet been performed.

Because of their complementary strengths, DD and QEC
used together should be more effective at protecting quantum
computers from noise than either used by itself. Combining
these two methods of error control is the topic of this paper.
Hybrid schemes combining DD with QEC have been proposed
previously [34–36] and even studied experimentally [37]. Our
contribution is a systematic investigation of the advantages
of hybrid schemes for fault-tolerant quantum computing,
including rigorous bounds on performance.

Our main technical results are analytic expressions for the
“effective noise strength” of quantum gates implemented using
DD pulse sequences. The effective noise strength is (an upper
bound on) the deviation in the operator norm of the noisy
protected gate from an ideal gate. In the Hamiltonian noise
models that we consider, the logarithm of the operator realized
by a DD-protected gate can be expanded as a power series
(the Magnus expansion) in the noise Hamiltonian; we derive
upper bounds on the sum of this series, obtaining formulas
for the effective noise strength in terms of parameters in the
noise Hamiltonian. We find such bounds both for general DD
pulse sequences and also for pulse sequences that have an
approximate time-reversal symmetry; in the latter case the
terms of even order in the Magnus expansion are heavily
suppressed.

Armed with our formulas for the effective noise strength, we
derive a “noise-suppression threshold condition” on the noise
parameters. When this condition is satisfied, DD-protected
gates are more accurate than unprotected gates. We also
compare fault-tolerant quantum circuits composed from DD-
protected gates with circuits composed from unprotected gates.
In either case, we express the “accuracy threshold condition”
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on the noise parameters. When this condition is satisfied,
quantum computation is scalable; accurate computations of
arbitrary size can be performed with a reasonable overhead
cost. Typically, improvements in gate accuracy achieved by
DD mean that more noise can be tolerated by QEC combined
with DD than by QEC alone and that invoking DD can reduce
the overhead cost of QEC.

Our expressions based on the Magnus expansion for the
effective noise strength depend on the operator norm of the
Hamiltonian that governs the internal dynamics of the quantum
computer’s environment (the “bath”), and the results are not
useful if this norm is large. However, we also describe an
alternative method of analysis yielding expressions for the
effective noise strength in terms of the frequency spectrum of
the bath correlations. Results derived by this method, based
on the Dyson expansion, can be applicable even if the bath
Hamiltonian has unbounded norm, as long as the typical bath
frequencies are sufficiently small.

The performance of DD can sometimes be en-
hanced by using recursively generated “concatenated” pulse
sequences [10]. Adding an extra “level” to the recursive
hierarchy further suppresses the effective noise Hamiltonian,
but at the cost of lengthening the pulse sequence, and the
minimal effective noise strength is achieved by choosing the
level that optimizes this tradeoff. We analyze concatenated DD
sequences and estimate the optimal effective noise strength,
using both our bounds on the Magnus expansion and the
correlation function viewpoint.

Our analysis of the improvement in gate accuracy that
can be achieved by combining DD and QEC applies only
to a special class of Hamiltonian noise models. These models
satisfy what we call the “local-bath assumption,” which limits
the spatial correlations in the noise. Whether our results can
be extended to more general noise models that violate this
assumption is an intriguing open question.

We formulate our noise model in Sec. II. In Secs. III and IV
we review and develop some of the tools we need to analyze
the performance of DD pulse sequences and fault-tolerant
quantum circuits using the Magnus expansion. We state our
central results relating the effective noise strength of DD-
protected gates to the properties of the noise Hamiltonian, and
their implications concerning the noise-suppression threshold
and accuracy threshold, in Sec. V; then we apply these results
to some specific pulse sequences in Sec. VI. Derivations of
these results are contained in Sec. VII and the appendixes.
We analyze concatenated DD in Sec. VIII. In Sec. IX, we
emphasize that the effective noise can be related to intensive
quantities that are independent of the spatial volume of the
bath, and in Sec. X we express the noise strength in terms
of properties of bath correlations. Section XI contains our
conclusions.

II. NOISE MODEL

A. Noise Hamiltonian

We denote by S the system consisting of all of the qubits
in our quantum computer, and we describe the noise acting
on S using a “noise Hamiltonian” H , which governs the joint
evolution of the system and its environment, the bath B. During

a computation, the Hamiltonian also contains time-dependent
terms that realize quantum gates acting on the qubits, but for
now consider the case where there are no gates; then H may
be expressed as

H ≡ HB + Herr. (1)

Here

HB ≡ IS ⊗ B0 (2)

describes the “free” evolution of the bath (how it would evolve
if it were not coupled to the system), while

Herr ≡ H 0
S + HSB (3)

includes all the terms in H that act nontrivially on the system.
The term

H 0
S ≡ S0 ⊗ IB (4)

describes the unperturbed free evolution of the system; HSB

contains terms coupling the system to the bath and also perhaps
other noise terms that act nontrivially only on the system.

Though for some purposes it may seem natural to transform
away H 0

S by working in the interaction picture (that is, by
considering the motion of the system relative to the rotating
frame determined by H 0

S ), we have included H 0
S in the term

Herr that represents the noise acting on the system. Our reason
is that the DD sequences we study are designed to remove the
effects of all “always-on” terms in the Hamiltonian that act
on the system, that is, not just HSB but also the free evolution
term H 0

S . We may by convention choose trS(Herr) = 0, where
trS denotes the system trace, since the trace of HSB may be
absorbed into the bath operator B0, and the trace of S0 can be
removed by subtracting a term proportional to IS ⊗ IB , which
just shifts the zero point of the energy and has no dynamical
effect.

Now consider modeling the noise during a nontrivial
quantum computation. A computation is a circuit containing
three types of operations: qubit state preparations, unitary
quantum gates, and qubit measurements. We model a noisy
preparation as an ideal preparation followed by evolution
according to H for a specified time interval, and we model
noisy measurements as ideal measurements preceded by
evolution according to H . We assume that quantum gates
are executed using short, hard pulses, where, as in some
experiments, the time interval between consecutive pulses is
much longer than the pulse width. Each pulse has its support
in a narrow interval of width δ, and we denote by τ0 the sum
of the pulse width and the pulse interval (see Fig. 1), where
δ � τ0. To be concrete, we sometimes assume that the pulses
are perfectly “rectangular,” that is, have vanishing rise time and
fall time. However, the details of the pulse shape are not really
used in our analysis; rather, all that matters is that the pulse
is confined to a narrow interval (and even this assumption is
relaxed in Sec. VI C). We use the same noise Hamiltonian H to
describe the noise both during a pulse and during the interval
between pulses. We neglect errors in the timing and strength
of the pulses; these are typically small in practice because the
pulses are controlled by accurate classical circuitry.
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pulse width

pulse interval

τ0

δ

FIG. 1. Parameters characterizing a sequence of uniformly
spaced rectangular pulses. δ is the pulse width, and τ0 − δ is the
interval between the end of one pulse and the beginning of the
following pulse.

B. Local-bath assumption

To further simplify our analysis, we make an additional
assumption about the noise, which we call the local-bath
assumption [30], illustrated in Fig. 2. Let us use the term
“location” to speak of an operation in a quantum circuit
that is performed in a single time step; a location may be a
single-qubit or multiqubit gate, a qubit preparation step, a qubit
measurement, or the identity operation in the case of a qubit
that is idle during the time step. Each time step has duration
t0; thus, t0 = Nτ0 if N equally spaced pulses are applied at a
particular location. For a specified location labeled by a, letQa

denote the set of qubits that participate in the operation applied
at that location (for example, a pair of qubits if the operation is
a two-qubit gate). Under the local-bath assumption, the noise
Hamiltonian can be expressed as

H =
∑

a

Ha, (5)

where the sum is over all locations occurring at a particular
time step, and where for any two distinct locations a and b

in that time step, Ha and Hb act not only on disjoint sets of
system qubits but also on distinct baths. That is, we may write

Ha = HB,a + Herr,a, (6)

with

HB,a = IS,a ⊗ B0,a,
(7)

Herr,a =
∑

α

Sα,a ⊗ Bα,a,

FIG. 2. (Color online) Illustration of the local-bath assumption.
Solid (blue) lines are system qubits, and dashed (black) lines are bath
subsystems. Each open rectangle is a quantum gate, and its associated
solid (light gray) rectangle represents the joint evolution of system
qubits and bath subsystems that are coupled by the noise Hamiltonian.
The solid rectangles do not overlap, indicating that when two gates
act in parallel on distinct sets of system qubits, the associated bath
subsystems are also distinct.

where the operators Sα,a act on Qa , and where, for a �= b,
the bath operators B0,a and Bα,a associated with location a

commute with the bath operators B0,b and Bα,b associated
with location b. Thus, [Ha,Hb] = 0 for all location pairs a

and b. Each Ha is assumed to be time-independent during the
duration of location a (this assumption is helpful because DD
pulse sequences are typically designed to cope with a time-
independent noise Hamiltonian), but Hamiltonians at different
locations need not be the same.

The local-bath assumption allows us express the time
evolution operator for a single time step as a product of unitary
operators, each associated with one particular location, and
to analyze the effectiveness of the DD pulse sequence for
each location separately. Without this assumption, a rigorous
analysis of DD-improved fault-tolerant circuits would be
far less tractable. We expect our local-bath model to be a
reasonable approximation to the noise in actual systems, if
qubits are well isolated from one another when they are not
coupled by quantum gates. However, interactions between
qubits (and their associated baths) at different circuit locations
are surely present at some level, and in Sec. IX we comment
further on how our analysis is affected when the local-bath
assumption is relaxed.

C. Noise parameters

To characterize the noise strength, it is useful to introduce
the parameters β, J , ε defined by

β ≡ max
a

‖HB,a‖, (8)

J ≡ max
a

‖Herr,a‖, (9)

ε ≡ β + J � max
a

‖Ha‖. (10)

The norm here is the sup operator norm

‖A‖ ≡ sup
{|v〉}

‖A|v〉‖
‖|v〉‖ , (11)

where the vector norm is the Euclidean norm ‖|v〉‖ ≡ √〈v|v〉.
Actually, our results concerning the effectiveness of DD pulse
sequences apply for any norm that is unitarily invariant (and
therefore also submultiplicative [38]), but the operator norm
is used to relate these results to the accuracy threshold for
fault-tolerant quantum computing [30,31]. We are typically
interested in the case where the noise is weak, in the sense
that the dimensionless parameter ετ0 is small compared to one
(and hence also Jτ0 � 1 and βτ0 � 1). We derive bounds
on the performance of DD-protected quantum gates expressed
in terms of these small quantities and also in terms of the
dimensionless pulse width δ/τ0 � 1.

For our analysis of fault-tolerant circuits, we find it
convenient to assume that measurements and preparations are
at least as fast as pulses, that is, can be executed in time at
most δ. However, in Sec. V D we discuss how to interpret our
results if measurements or preparations take much longer than
pulses.
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III. TOOLS

Let us next review some tools for analyzing the noise
suppression arising from DD techniques. We focus here on the
foundations of our analysis based on the Magnus expansion;
further background, needed for our analysis based on bath
correlation functions, is discussed in Sec. X. We also provide
here a brief discussion of fault tolerance, including the notion
of the effective noise strength at a circuit location, a central
quantity in our analysis.

A. Toggling frame

For now, disregard that we want to do computation and
focus instead on quantum storage, the original context for DD
methods. In the absence of any external control, the system and
bath evolve under the time-independent noise Hamiltonian
H . A DD pulse sequence is realized via a time-dependent
control Hamiltonian Hc(t) acting only on the system so that the
system and bath evolve according to H + Hc(t). (In our noise
model, we assume that the same noise Hamiltonian H applies
during a pulse as between pulses, while recognizing that this
assumption is really an idealization.) The DD sequence can be
described using either Hc(t) itself or using the time evolution
operator Uc(t) ≡ Uc(t,0) generated by Hc(t).

For understanding the effects of the control Hamiltonian, it
is convenient to use the interaction picture defined by Hc(t),
also known as the toggling frame [1,6,7,11,34]. The toggling-
frame density operator ρ̃SB(t) is related to the Schrödinger-
picture density operator ρSB (t) by

ρSB (t) = U (t,0)ρSB(0)U †(t,0)

≡ Uc(t)ρ̃SB(t)U †
c (t), (12)

where U (t,0) is the evolution operator generated by the full
Hamiltonian H + Hc(t). Therefore the toggling-frame state
evolves according to

ρ̃SB (t) = Ũ (t,0)ρ̃SB(0)Ũ †(t,0), (13)

where the toggling-frame time evolution operator

Ũ (t,0) ≡ U †
c (t)U (t,0) (14)

is generated by the toggling-frame Hamiltonian

H̃ (t) ≡ U †
c (t)HUc(t). (15)

Since Uc(t) acts nontrivially only on the system, H̃ (t) can be
written as

H̃ (t) = HB + H̃err(t), (16)

where H̃err(t) ≡ U
†
c (t)HerrUc(t) is the toggling-frame version

of Herr. Because the operator norm is unitarily invariant, we
have ‖H̃ (t)‖ = ‖H‖ � ε and ‖H̃err(t)‖ = ‖Herr‖ � J .

We consider cyclic DD, where Uc(t) returns to the identity
(up to a possible irrelevant overall phase) at the end of a cycle
taking time tDD:

Uc(tDD) = Uc(0) = I. (17)

Therefore, at the end of the cycle, the toggling-frame and
Schrödinger-picture states coincide.

B. Finite-width pulses

In DD, the system is controlled using a sequence of pulses,
where the control Hamiltonian Hc(t) vanishes in between the
pulses. The control unitary resulting from a sequence of R

pulses can be expressed as

Uc = IPRIPR−1I . . . P2IP1I, (18)

where Pk is the unitary achieved by the kth pulse.
We have inserted the identity I between succes-
sive pulses to indicate the time intervals during
which Hc(t) = 0. For some pulse sequences, including
the ones described in Sec. VI, all pulse intervals have the
same duration, but for most of our analysis (excluding some
of the discussion of pulse-width effects in Sec. VII A 1)
we need not assume that the pulses are uniformly spaced.
(It is known that the effectiveness of DD can some-
times be improved by varying the spacing between pulses
[13,21,39–42].)

If the pulses are rectangular with width δ, then we may
write

Pk ≡ exp(−iδHPk
), (19)

where HPk
is the time-independent control Hamiltonian

that is turned on during the kth pulse. If the kth pulse
begins at time sk , then the control unitary during the pulse
[t ∈ [sk,sk + δ)] is

Uc(t) = exp(−i�kHPk
)Uc(sk)

= exp(−i�kHPk
)Pk−1 . . . P2P1, (20)

where �k = t − sk . The toggling-frame Hamiltonian H̃ (t) can
be written as

H̃ (t) = U †
c (t)HUc(t)

=
{

H̃ (k−1) for t ∈ [sk−1 + δ,sk),

e
i�kH̃

(k−1)
Pk H̃ (k−1)e

−i�kH̃
(k−1)
Pk for t ∈ [sk,sk + δ),

(21)

where

H̃ (k−1) = P
†
1 P

†
2 . . . P

†
k−1HPk−1 . . . P2P1. (22)

In the case of cyclic DD, after the last pulse of a complete
cycle we have Uc = I and H̃ = H .

C. Magnus expansion

For a given H̃ (t), the toggling-frame time evolution opera-
tor Ũ (tDD,0) can be computed using a Magnus expansion [43].
For a unitary time evolution operator UM (t,0) satisfying the
Schrödinger equation

i
∂

∂t
UM (t,0) = HM (t)UM (t,0), UM (0,0) = I, (23)

determined by Hamiltonian HM (t), the Magnus expansion at
time T is an operator series


(T ) ≡
∞∑

n=1


n(T ) (24)
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such that

UM (T ,0) = exp[
(T )], (25)

and 
n is nth order in the Hamiltonian HM (t). Thus, for the
fixed time T , time evolution generated by the time-dependent
Hamiltonian HM (t) is equivalent to time evolution generated
by the time-independent effective Hamiltonian Heff ≡ i

T

(T ).

The leading terms in the Magnus expansion are (see, for
example, [44])


1(T ) = −i

∫ T

0
dsHM (s), (26)


2(T ) = −1

2

∫ T

0
ds1

∫ s1

0
ds2[HM (s1),HM (s2)], (27)


3(T ) = i

6

∫ T

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3

×{[HM (s1),[HM (s2),HM (s3)]]

+ [HM (s3),[HM (s2),HM (s1)]]}. (28)

Higher-order terms can be computed using a recursive formula;
see Sec. VII and Appendix A. In general, 
n(T ) is the time
integral of a sum of (n − 1)-nested commutators, each with
n factors of HM (t). The Magnus expansion is thus an infinite
series in HMT ; a sufficient condition for convergence is [45]∫ T

0
dt‖HM (t)‖ < π. (29)

For cyclic DD, we can use the Magnus expansion to
compute the toggling-frame time evolution operator Ũ (tDD,0)
for one complete cycle, where HM (t) is the toggling-frame
Hamiltonian H̃ (t) = U

†
c (t)HUc(t) and Uc(tDD) = I. In first

order we obtain


1(tDD) = −i

∫ tDD

0
dtH̃ (t) = −i

∫ tDD

0
dtU †

c (t)HUc(t).

(30)

For group-based DD schemes, like the examples we discuss in
Sec. VI, the integral Eq. (30) averages H over a finite group
G if the pulses are ideal, projecting H into the commutant
of G [3]. If G acts irreducibly on the system Hilbert space,
the commutant contains only the identity operator acting on
the system, and therefore 
1(tDD) acts nontrivially only on the
bath. In that case we say that 
1(tDD) is a “pure bath” term.

We say that a DD pulse sequence achieves first-order
decoupling if the first-order term in the Magnus expansion
for Uc(tDD) acts trivially on the system. More generally,
the sequence achieves mth-order decoupling if 
n(tDD) is a
pure bath term for each n � m. In our analysis we at first
consider pulse sequences that achieve first-order decoupling
for ideal zero-width pulses (later we discuss the corrections to
first-order decoupling that arise when the pulses have nonzero
width, and we also describe “Eulerian” pulse sequences that
achieve first-order decoupling even when pulse widths are
nonzero [7]). In particular, these pulse sequences have the
property ∫ tDD

0
dtH̃err,0(t) = 0, (31)

where the subscript “0” on H̃err,0(t) indicates that the toggling-
frame Hamiltonian H̃err(t) is considered in the limit δ → 0,
while holding τ0 fixed. [For Eq. (31) to apply, there must
be no term in Herr,0 that acts nontrivially on the system and
commutes with Hc(t) for all t ∈ [0,tDD]; if such terms were
present they would not be removed by the DD sequence
described by Hc(t) ]. For pulse sequences satisfying Eq. (31)
it follows from Eq. (16) that the first-order term in the Magnus
expansion is


1(tDD) = −i

∫ tDD

0
dtH̃0(t)

= −iHBtDD − i

∫ tDD

0
dtH̃err,0(t) = −iHBtDD, (32)

a pure bath term, when δ = 0. For pulses with nonzero width δ,
first-order decoupling is not exact, but the deviation of 
1(tDD)
from a pure bath term is O(δ/τ0) and thus small when the
pulses are sufficiently narrow. For suitably designed pulse
sequences the deviation can be improved to a higher power
of δ/τ0 [7,46].

A pulse sequence that achieves first-order decoupling will
also achieve second-order decoupling if H̃ is time symmetric:
H̃ (tDD − t) = H̃ (t) for t ∈ [0,tDD]. This condition is satisfied
provided

Uc(tDD − t) = VtUc(t), (33)

where Vt is unitary and commutes with H (for example, if
Vt = eiφt I is a phase). In fact, when H̃ is time-symmetric, not
just the second-order term, but all even terms in the Magnus
expansion vanish [47], as we show in Appendix B.

D. Quantum accuracy threshold theorem

The quantum accuracy threshold theorem establishes that
a noisy quantum computer can operate reliably if the noise is
sufficiently weak. Under the local-bath assumption formulated
in Sec. II, the operation applied at location a in the noisy circuit
is a unitary transformation Ga acting on the system and bath,
which can be expressed as

Ga = Ga + Ba. (34)

Here Ga is the “good part” of the operation; it can be expressed
as Ga ⊗ Ba , where Ga is the ideal operation that would be
applied to the system in the absence of noise, and Ba is a unitary
transformation acting on the bath. The operator Ba is the “bad
part,” the deviation of Ga from the ideal operation, which acts
jointly on system and bath. (Recall that we model a noisy qubit
preparation as an ideal preparation followed by a noisy unitary
transformation, and a noisy qubit measurement as a noisy
unitary transformation followed by an ideal measurement; for
preparation or measurement locations, Ga denotes the noisy
transformation that follows or precedes the ideal preparation
or measurement.) In this noise model, we may characterize the
noise strength by

η̄ ≡ max
a

‖Ba‖, (35)

the maximum value of the operator norm of the bad part,
where the maximum is with respect to all locations in the
noisy circuit. The threshold theorem asserts that an ideal
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circuit of arbitrary size can be simulated accurately if η̄ is less
than a critical value η0, the accuracy threshold. The threshold
theorem proved in [31] actually applies to a broader class
of noise models that do not necessarily satisfy the local-bath
assumption, but this class includes the noise model of Sec. II
as a special case. The analysis in [48] established a lower
bound on the accuracy threshold, η0 � 10−4. If η̄ < η0, then
we say the noise is below the accuracy threshold, meaning that
scalable quantum computing is possible.

In this paper we relate the noise strength η̄ defined by
Eqs. (34) and (35) to the parameters that characterize the noise
model defined in Sec. II. We denote by ηDD the value of η̄ that
can be achieved using DD, and we denote by η the value of η̄

achieved without using DD. If ηDD < η, then we say that the
noise is below the noise suppression threshold, meaning that
DD reduces the effective noise strength.

In Sec. V we express ηDD in terms of the parameters J and
ε defined in Eqs. (8)–(10). In Sec. X we express ηDD in terms
of properties of bath correlation functions, using a different
formula than Eq. (35), based on the Dyson expansion.

IV. DD-PROTECTED GATES

A. Including the gate pulse

So far we have described how to reduce the noise in a
quantum memory using cyclic DD. Now we want to estimate
the effective noise strength achieved by DD for operations
other than the identity, so we must explain how DD is
used to suppress the noise in these nontrivial operations. We
describe nontrivial quantum gates, postponing discussion of
preparations and measurements until later.

We refer to one cycle of the DD pulse sequence for the
identity gate as the “memory” sequence. To perform a DD-
protected nontrivial gate Ga , we must modify the memory
sequence accordingly. In fact, our DD pulse sequence for the
gate is exactly the same as the memory sequence, except for
the very last pulse. If the memory sequence of R pulses ends
with a period of trivial evolution, then we append a pulse
implementing Ga to the end the memory sequence. Thus, if

the memory sequence lasts time tDD and the pulse width is δ,
then the Ga pulse sequence lasts time t0 = tDD + δ and uses
N = R + 1 pulses. If, on the other hand, the R-pulse memory
sequence ends with a nontrivial pulse implementing P , then
we combine this pulse and the gate pulse into a single pulse
implementing GaP . Again, we denote the total time for the
Ga pulse sequence by t0 and the total number of pulses by
N (= R).

While we assume for simplicity that every pulse has the
same width δ, we recognize that in some cases different
types of pulses may have different time scales. For example,
in recent experiments with quantum dot qubits, X gates
are implemented using (fast) exchange couplings and Z gates
are implemented using (slow) magnetic field gradients [17].
One may interpret δ as the duration of the longest pulse used,
or one could easily refine our analysis by allowing different
pulses to have different widths.

In a DD-protected circuit, each Ga gate is replaced by
the corresponding DD-protected gate; under the local-bath
assumption, the noisy DD-protected gate is a unitary transfor-
mation denoted Ga acting jointly on the system qubits involved
in the gate and the associated bath subsystem. Though the
duration t0 of a DD-protected gate is longer than the duration
τ0 of an unprotected gate, the DD-protected gate may be more
accurate than the unprotected gate if the noise is weak enough.

At the end of the complete Ga pulse sequence, the unitary
operator Uc,a(t0) generated by the control Hamiltonian Hc(t)
(which now includes the gate pulse) is

Uc,a(t0) = GaUc(tDD) = Ga, (36)

because the cyclic memory sequence satisfies Uc(tDD) = I (up
to a possible phase). Therefore, the noisy DD-protected gate
at location a is

Ga ≡ Ua(t0,0) = Uc,a(t0)Ũa(t0,0) = GaŨa(t0,0), (37)

where Ũa(t0,0) is the toggling-frame time evolution operator.
The corresponding toggling-frame Hamiltonian is similar
to the toggling-frame Hamiltonian Eq. (21) for the memory
sequence, except for the appended gate pulse:

H̃a(t) = U †
c,a(t)HaUc,a(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
i�kH̃

(k−1)
Pk H̃ (k−1)

a e
−i�kH̃

(k−1)
Pk for t ∈ [sk,sk + δ),

H̃ (k)
a for t ∈ [sk + δ,sk+1),

ei�R+1H̃
(R)
Ga H̃ (R)

a e−i�R+1H̃
(R)
Ga for t ∈ [sR+1,sR+1 + δ),

G
†
aHaGa for t = t0.

(38)

Equation (38) applies to the case where the gate pulse is
appended to the end of the memory sequence; the memory
sequence contains R equally spaced pulses labeled by
k = 1,2, . . . ,R, and the gate pulse begins at time sR+1.

The DD-protected qubit measurement is the memory pulse
sequence followed by an ideal measurement. We assume that
the measurement takes time δ, the same as the pulse width, so
that the duration t0 of the protected measurement matches
the duration of the DD-protected gate. Similarly, the DD-
protected qubit preparation is an ideal preparation lasting time

δ followed by the memory pulse sequence. See Sec. V D for
discussion of how our analysis is modified when preparations
and measurements are slow compared to other operations.

B. Effective noise strength

To define the effective noise strength for the DD-protected
gate, we divide the noisy gate into a good part and a bad part
as in Eq. (34), obtaining

Ga = GaUB,a(t0)︸ ︷︷ ︸
≡Ga

+Ga − GaUB,a(t0)︸ ︷︷ ︸
≡Ba

. (39)
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The good part Ga describes the ideal evolution in the absence
of noise (Herr = 0); the ideal gate Ga is applied to the
system, while the bath evolves according to its unperturbed
Hamiltonian HB,a . The bad part Ba describes the effects of
noise, as modified by the DD pulse sequence.

As we discuss in more detail in Sec. VII B, we may choose a
different way of separating the pure bath dynamics into a good
and bad part than the choice made in Eq. (39). Incorporating
UB,a(t0) into Ga is convenient when we use the Magnus
expansion to analyze the performance of DD-protected gates,
but another choice is more convenient for the analysis based
on the Dyson expansion in Sec VII B.

Using Eq. (37) and the unitary invariance of the operator
norm, we obtain an expression for the noise strength of the
DD-protected circuit:

ηDD ≡ max
a

‖Ba‖ = maxa ‖Ũa(t0,0) − UB,a(t0)‖; (40)

this is just the norm of the bad part expressed in the toggling
frame. In what follows, we sometimes drop the subscript a

when context makes the intended meaning clear.
We can now estimate ηDD using the Magnus expansion. We

write

Ũ (t0,0) = exp[
(t0)] ≡ exp[−it0Heff], (41)

where Heff ≡ i
t0

(t0), and 
(t0) can be computed using the

(gate-appended) toggling-frame Hamiltonian H̃ (t) in Eq. (38).
To bound the quantity ‖Ũ (t0,0) − UB(t0)‖, we make use of
Lemma 2 in Appendix C, which gives

‖Ũ (t0,0) − UB(t0)‖ � t0‖Heff − HB‖. (42)

Inserting the Magnus expansion −it0Heff = 
(t0) =∑∞
n=1 
n(t0) we find

ηDD � t0 max
a

‖Heff,a − HB,a‖

= max
a

‖
∞∑

n=1


n,a(t0) + it0HB,a‖ (43)

� max
a

(
‖
′

1,a(t0)‖ +
∞∑

n=2

‖
n,a(t0)‖
)

,

where 
′
1,a(t) ≡ 
1,a(t) + itHB,a . For a pulse sequence

that achieves first-order decoupling with ideal zero-width
pulses, 
′

1,a(t0) vanishes in the limit δ → 0. To derive
a useful upper bound on the effective noise strength
ηDD, we will need good bounds on the other terms in
Eq. (43).

C. The effective noise strength for a time-symmetric sequence

We say that the memory pulse sequence is time symmetric
(or “palindromic”) if H̃ (tDD − t) = H̃ (t) for t ∈ [0,tDD]. We
show in Appendix B that a time-symmetric pulse sequence
that achieves first-order decoupling also achieves second-order
decoupling. However, the time symmetry is broken if we
construct the DD-protected gate by appending the gate pulse to
the memory sequence, even if the memory sequence by itself
is time symmetric.

For the purpose of estimating the effective noise strength,
we can nearly restore the time symmetry of the DD-protected
gate by a simple trick (see Fig. 3). Recalling that our goal
is to derive an upper bound on ‖Ũ (t0,0) − UB(t0)‖, we
observe that the unitary invariance of the operator norm
implies

‖Ũ (t0,0) − UB(t0)‖ = ‖Ũ (t0,0)U †
B(δ) − UB(t0 − δ)‖, (44)

where δ is the width of the gate pulse, and t0 = tDD + δ. Fur-
thermore, we may regard Ũ (t0,0)U †

B(δ) as the time evolution
operator generated by the Hamiltonian

HM (t) ≡
{−HB t ∈ [0,δ),

H̃ (t − δ) t ∈ [δ,T ],
(45)

where T = t0 + δ. If the memory sequence is time symmetric,
then HM (T − t) = HM (t) for t ∈ [δ,T − δ]. Thus HM (t) is
“nearly time symmetric” in the interval [0,T ]; the symmetry
is broken only in the small intervals [0,δ] and [T − δ,T ] at the
beginning and end of [0,T ].

The unitary operator Ũ (t0,0)U †
B(δ) ≡ exp[
(T )] can be

computed using the Magnus expansion for Hamiltonian
HM (t). Viewing Ũ (t0,0)U †

B(δ) as being generated by the
time-independent Hamiltonian i
(T )/(t0 − δ) for time t0 − δ,

δ/2

point

increasing
time

t1

time t

time t
δ

t = tDD/2

t = 0

t = t0

(b)

symmetry

δ

t = tDDt = tDD/2

t = 0t = tDD/2

t2

(a)

time t

time t

δt1 + δ

t = T

t2 + δ

t = 0

(c)

t2
t = tDDt = t0/2

t1

time t

time t B

G G

FIG. 3. Schematic representation of HM (t) for time-symmetric DD pulse sequences. The time axis is bent in half, with time flowing
counterclockwise from the upper right to the lower left, so that times aligned on the upper and lower branches are related by time symmetry.
(a) Two pulses (marked as black boxes) in a time-symmetric memory sequence with H̃ (tDD − t) = H̃ (t); the pulse on the bottom branch is the
time-reversed version of the pulse on the top branch. (b) Appending the gate pulse (box G) to the memory sequence spoils the time symmetry;
the black pulses on the upper and lower branches are no longer aligned. (c) Appending fictitious time evolution governed by −HB during
t ∈ [0,δ] (box B) restores the time symmetry of the memory sequence for t ∈ [δ,T − δ], where T = t0 + δ.
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and again using Lemma 2 in Appendix C, we obtain instead
of Eq. (43),

ηDD = max
a

‖Ũa(t0,0)U †
B,a(δ) − UB,a(t0 − δ)‖

� max
a

‖
a(T ) + i(T − 2δ)HB,a‖

= max
a

(
‖
′

1,a(T )‖ +
∞∑

n=2

‖
n,a(T )‖
)

, (46)

where 
′
1,a(T ) is now defined as 
′

1,a(T ) ≡ 
1,a(T ) + i(T −
2δ)HB,a .

More generally, we say that the Hamiltonian HM (t) is
nearly time symmetric in [0,T ] if the time symmetry holds
everywhere except in a small interval or the disjoint union of
several small intervals. We denote by � the region in which
the time symmetry is violated; thus,{

HM (T − t) = HM (t) for t /∈ �,

HM (T − t) �= HM (t) for t ∈ �.
(47)

We also use the same symbol �(� T ) to denote the total length
of this region. Thus, � = 0 for a perfectly time-symmetric
sequence. In what follows, we sometimes say that the pulse
sequence realizing a DD-protected gate is “time symmetric”
if the corresponding memory sequence is time symmetric,
even though the time symmetry may be broken by the gate
pulse appended to the memory sequence. We say that the
memory sequence and the DD-protected gates are “general”
if the memory sequence has no special time-symmetry
properties.

V. EFFECTIVE NOISE STRENGTH AND
THRESHOLD CONDITIONS

In this section, we state some of our conclusions con-
cerning the effective noise strength ηDD achieved by DD
and the implications for fault-tolerant quantum computing.
Derivations are postponed until Sec. VII. Here we focus on
results derived using the Magnus expansion; results relating
ηDD to properties of bath correlation functions derived using
the Dyson expansion are discussed in Sec. X.

A. Bounds on the Magnus expansion

Combining Eqs. (43) and (46), we can state our upper bound
on the effective noise strength ηDD as

ηDD � ‖
′
1(T )‖ +

∞∑
n=2

‖
n(T )‖, (48)

where 
′
1(T ) ≡ 
1(T ) + i(T − 2�)HB , T ≡ t0 + �, and the

maximum over all locations is understood. The Magnus expan-
sion 
(T ) = ∑∞

n=1 
n(T ) is computed using the Hamiltonian

HM (t) ≡
{−HB, t ∈ [0,�),

H̃ (t − �) = HB + H̃err(t − �), t ∈ [�,T ].

(49)

For the general case, in which we are not trying to exploit the
time symmetry of the memory sequence, we choose � = 0.

For the nearly-time-symmetric case we choose � = δ, and
HM is time symmetric in the interval [δ,T − δ].

If the memory sequence achieves first-order decoupling in
the limit δ → 0, then ‖
′

1(T )‖ vanishes apart from finite-width
corrections. The nth-order Magnus term 
n(T ) for n � 2
satisfies ‖
n(T )‖ = O((εT )n), because ‖HM (t)‖ � ε, and the
integral 
n(T ) can be bounded by the volume of the integration
region times an upper bound on the integrand. In fact, this
estimate can be improved to ‖
n(T )‖ = O((JT )(εT )n−1),
because HM (t) has the form ±HB + H ′(t), where H ′(t) is
either 0 or H̃err(t); therefore, ‖[HM (t1),HM (t2)]‖ = O(Jε),
since ‖H ′(t)‖ � J and HB commutes with itself.

We anticipate, then, that at any location a, the terms in the
Magnus expansion can be bounded as

‖
′
1(T )‖ � C1(JT ); (50a)

‖
n(T )‖ � Cn(JT )(εT )n−1, n = 2,3,4; (50b)
∞∑

n=5

‖
n(T )‖ � C5(JT )(εT )4, (50c)

where C1,C2,C3,C4,C5 are constants. Note that the last of
these results bounds the sum of all high-order Magnus terms
with n � 5. Combining Eqs. (48) and (50) we find

ηDD � (JT )
5∑

n=1

Cn(εT )n−1. (51)

The constants Cn, derived in Sec. VII, are listed in Table I for
both general and time-symmetric pulse sequences. Our value
of C5, obtained by bounding an infinite series, holds only for
εT � 0.54, a condition likely to be satisfied when DD works
effectively. If desired, tighter bounds can be derived on the nth-
order terms with n � 5 using results from Sec. VII. However,
we judge Eq. (50c) to be good enough for our purposes, since
this bound on the sum of higher-order terms is already rather
small for εT � 1, as in typical cases of interest. Also listed
in the last column of Table I are values of {Cn} derived in
Sec. VII using the Dyson expansion rather than the Magnus
expansion, also under the assumption εT � 0.54. These upper
bounds are weaker for n = 2,3 but stronger for n = 4,5, and

TABLE I. Constants {Cn} appearing in the upper bound Eq. (51)
on the effective noise strength ηDD, derived from the Magnus
expansion in the general case and the nearly-time-symmetric case and
from the Dyson expansion in the general case. N denotes the total
number of pulses in the DD-protected gate, δ is the pulse width, T = t0
in the general case, and T = t0 + δ in the nearly-time-symmetric case.
For the nearly-time-symmetric case, � is the size of the small region
in which the time symmetry is violated. The value of C5 applies
assuming εT � 0.54.

General Nearly time symmetric Dyson (General)

C1 2Nδ/T in general,
Nδ/T if pulses are regularly spaced in time

C2 1/2 2
(

�

T

) (
1 − 1

2
�

T

)
1

C3 2/9 2/9 1/2
C4 11/9 56

(
�

T

) (
1 − 1

2
�

T

)
1/6

C5 9.43 9.43 0.0466
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hence provide a tighter estimate of the effective noise strength
for pulse sequences that achieve third-order decoupling.

Our bounds on 
n(T ) for n odd is not improved by invoking
time symmetry, but for n = 2,4, the bounds listed in Table I
are tighter for the time-symmetric case than the general case,
assuming �/T � 1. In fact, C2 and C4 vanish in the limit
�/T → 0, reflecting the property that all even-order terms
in the Magnus expansion vanish when the time symmetry is
exact. For the time-symmetric case, we derive bounds on Cn

for even n � 6 in Appendix D, but these results were not used
in our estimate of C5.

B. Noise suppression threshold

DD-protected gates will outperform unprotected gates if
the noise is weak enough. In a circuit of unprotected gates,
each gate is realized by a single pulse, where the pulses are
separated in time by the pulse interval τ0. For the noise model
of Sec. II, the effective noise strength for this computation may
be expressed as [30,31]

η = (max
a

‖HSB,a‖)τ0. (52)

Equation (52) is not derived using the Magnus expansion;
rather, it follows directly from Lemma 2 in Appendix C. The
noise strength η does not depend on the pulse shape; all that
matters is the strength of the noise Hamiltonian HSB,a and
the time τ0 allotted for executing the gate. If we assume that
H 0

S = 0, Eq. (52) becomes

η = Jτ0. (53)

We say that the noise model satisfies the noise suppression
threshold condition if the effective noise strength can be
reduced by using DD-protected gates instead, that is, if

ηDD < η. (54)

In our noise model, this condition can be expressed in terms
of the parameters ετ0, δ/τ0, and τ0/t0.

For example, continuing to assume that H 0
S = 0, suppose

in addition that δ/τ0 is negligible and εT is small enough so
that the Magnus expansion is well-approximated by the lowest-
order nonzero term. Then, in the general (non-time-symmetric)
case, using C1 = 0 and C2 = 1/2, we can approximate ηDD by

ηDD � 1

2
(JT )(εT ) = 1

2

(
Jτ0

τ0/t0

)(
ετ0

τ0/t0

)
; (55)

we use the � symbol to emphasize that higher order corrections
in δ/τ0 and εt0 are neglected. The noise suppression threshold
condition ηDD < η = Jτ0 is satisfied for

ετ0 � 2

(
τ0

t0

)2

, (56)

or

ετ0 � 2N−2 (57)

for a sequence of N equally spaced pulses. As the pulse se-
quence grows, the duration t0 of DD-protected gates increases
relative to the duration τ0 of unprotected gates, and Eq. (56)
imposes a stronger restriction on ε.

Note that ηDD depends on the norm of the bath Hamiltonian
β (which contributes to ε), while η does not. Technically,
this difference comes about because the second-order Magnus
term exhibited in Eq. (55) contains a contribution from the
nonvanishing commutator between HSB and HB , while η

is computed directly as a difference between the ideal and
noisy Hamiltonians, differing only by HSB (see Appendix C).
Physically, ηDD depends on β because DD works effectively
only if the bath dynamics is sufficiently slow. Alternatively,
we could estimate ηDD in terms of parameters other than β

that characterize the speed of the bath dynamics; for example,
we derive in Sec. X an expression for ηDD involving the bath’s
frequency spectrum rather than the operator norm β.

In the limit of zero-width pulses, a time-symmetric pulse
sequence that achieves first-order decoupling achieves second-
order decoupling as well, so that C1 = C2 = 0. Imposing
time symmetry may lengthen the pulse sequence; we denote
the duration of a DD-protected time-symmetric gate by t ′0,
to contrast with the duration t0 of the gate when the pulse
sequence is not time symmetric. In the time-symmetric case,
the effective noise strength becomes (assuming δ = 0 and thus
T = t0, and using C3 = 2/9)

ηDD � 2

9
(JT )(εT )2 = 2

9

(
Jτ0

τ0/t ′0

)(
ετ0

τ0/t ′0

)2

. (58)

Therefore, the noise suppression threshold condition ηDD <

Jτ0 is satisfied if

ετ0 � 3√
2

(
τ0

t ′0

)3/2

, (59)

or

ετ0 � 3√
2

(N ′)−3/2 (60)

for the case of N ′ equally spaced pulses. Even though
t ′0 > t0, Eq. (59) places a less stringent condition on ε

than Eq. (56), provided t ′0/t0 � (9t0/2τ0)1/3. We emphasize
again that Eqs. (56) and (59) are derived using lowest-order
approximations in an expansion in δ/τ0 and ε.

The expression Eq. (55) for ηDD indicates that to achieve
effective noise suppression we should favor short DD pulse
sequences (with t0/τ0 not too large) to minimize the exposure
to noise during the DD-protected gate. On the other hand,
Eq. (58) illustrates that a longer pulse sequence can pay off
if it allows us to achieve higher-order decoupling. These
results exemplify a more general tradeoff between shorter
sequences and better decoupling that must be optimized to
design DD-protected gates with the smallest possible effective
noise strength. The tradeoff is also manifested by the analysis
in Sec. VIII of concatenated DD pulse sequences.

C. Accuracy threshold and overhead cost

A quantum computation unprotected by DD is
scalable if the noise strength of unprotected gates is below
the accuracy threshold, η < η0. For DD-protected gates, the
accuracy threshold condition becomes ηDD < η0. If the noise
suppression threshold condition is satisfied, so that ηDD < η,
it may be that η > η0 and ηDD < η0; in that case, arbitrarily
large quantum circuits can be simulated accurately with
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noise strength

threshold(a)

DD 0

noise strength

threshold(b)

DD 0

FIG. 4. Two scenarios where DD-protected gates outperform
unprotected gates. (a) Quantum computing is scalable with DD-
protected gates, but not with unprotected gates. (b) Quantum com-
puting is scalable with either DD-protected gates or with unprotected
gates, but DD reduces the overhead cost of fault tolerance.

DD-protected gates, but not with unprotected gates. This is
illustrated in Fig. 4(a).

Even when η < η0, DD may reduce the overhead cost
of fault-tolerant quantum computing if ηDD < η [Fig. 4(b)].
Suppose that we wish to simulate an ideal quantum circuit
containing L gates. If our noisy gates have noise strength
η̄, which is below the threshold value η0, the simulation is
possible using L∗ noisy gates, where [31]

L∗

L
=

(
log(cη0L/θ )

log(η0/η̄)

)a

; (61)

here c and a are constants, and θ is the “error” in the simulation
(the L1 distance between the ideal probability distribution
of outcomes and the simulated distribution). Denote by L∗

un
the number of pulses in the fault-tolerant circuit built from
unprotected gates and by L∗

DD the number of pulses in
the fault-tolerant circuit built from DD-protected gates and
suppose that each DD-protected gate uses N pulses, while
each unprotected gate uses a single pulse. Then the ratio

L∗
DD

L∗
un

= N

(
log(η0/η)

log(η0/ηDD)

)a

(62)

is independent of the size L of the simulated circuit. If
using DD substantially improves the effective noise strength,
L∗

DD/L∗
un may be small, especially if η is only slightly below

the threshold value η0. Even though each DD-protected gate
requires multiple pulses, the total number of pulses used in
the simulation may be reduced, because DD improves the gate
accuracy.

Of course, we have reached this conclusion using the local-
bath assumption, which allows us to assign a well-defined
effective noise strength to the DD-protected gate. Furthermore,
our results are useful only if the Hamiltonian of the local
bath has finite norm (so that ε < ∞). However, we see that
the correlation function analysis in Sec. X can provide useful
upper bounds on ηDD even if ε is infinite.

D. Slow preparations and measurements

Another drawback of this analysis is that our model of
qubit preparations and measurements may be unrealistic in
some physical situations. In our estimates of the effective
noise strength in a DD-protected quantum computation,
we have treated preparations and measurements like gates.
We have assumed that each preparation and measurement
location in the circuit, like each gate location, has duration t0.
A DD-protected preparation location consists of a preparation
taking time δ followed by a DD memory sequence, and a

DD-protected measurement location consists of a DD memory
sequence followed by a measurement taking time δ. Thus,
we have assumed that the preparations and measurements
are just as fast as the pulses. In some physical systems,
however, preparations and measurements are relatively slow;
in solid-state devices, for example, the measurement time can
be orders of magnitude longer than the gate time.

If the actual time δ̄ required for a preparation or mea-
surement is longer than the pulse width δ but still short
compared to the pulse interval τ0, then we could still try to
improve measurements and preparations using DD sequences.
If it makes sense to model the noise during a preparation or
measurement as we have modeled the noise in the pulses, then
we could modify our analysis by using the measurement width
δ̄ in estimating the effective noise strength ηDD at preparation
and measurement locations, while continuing to use the pulse
width δ in estimating ηDD at gate locations. However, if
δ̄ � τ0, or more generally if the noise in preparations and
measurements is modeled much differently than the noise
in gates, then it may be more appropriate to consider the
preparation and measurement noise strength to be a separate
parameter in the analysis, not necessarily related to the
parameters J and ε that characterize the noise Hamiltonian
described in Sec. II and appear in the estimate of ηDD at gate
locations.

Measurement locations might be much noisier than gate
locations because gates can be improved using sequences of
fast DD pulses, while slow measurements cannot be improved
by DD. Or measurements might be noisier than gates for other
quite different reasons. Previous work has shown that scalable
fault-tolerant quantum computing is still possible, and that the
accuracy threshold is not much affected, when measurements
are much slower than gates [49]. What deserves further study,
though, is how fault-tolerant circuit design can be optimized
when measurements are much noisier than gates.

VI. EXAMPLES

Now we analyze the effectiveness of several different DD
pulse sequences, applying the results from Sec. V A. We adopt
a noise model that includes only single-qubit errors acting on
the system; thus, the noise Hamiltonian is

H = HB +
∑
i,α

σ (i)
α ⊗ B(i)

α , (63)

where i labels the qubits, σ (i)
α for α = x,y,z are the Pauli

operators acting on qubit i, and

HB = IS ⊗ B0. (64)

In some realistic situations, such as electron-spin qubits
interacting with a nuclear spin bath [17–19,40], such single-
qubit errors are the dominant noise in the system.

In principle, Herr could also contain errors that act collec-
tively on several qubits at once; for example, errors acting
jointly on two qubits might be expected to occur during the
execution of a two-qubit gate. Efficient DD pulse sequences
can be constructed that suppress multiqubit errors [50,51],
but in this section we limit our attention to single-qubit noise
and pulse sequences that combat it. The more general results
in Sec. V A can also be applied to other models that include
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multiqubit noise and to the corresponding pulse sequences that
achieve first-order decoupling for such noise.

We discuss three different DD pulse sequences that can
suppress the single-qubit noise. The first is the simplest DD
scheme that protects against arbitrary single-qubit errors. The
second is a time-symmetric sequence that achieves second-
order decoupling in the limit of zero-width pulses. The third
is the Eulerian DD scheme [7], which is more robust against
pulse errors than the other schemes.

A. Universal decoupling sequence

The shortest pulse sequence that suppresses arbitrary
single-qubit errors is called the “universal decoupling se-
quence” [6,10], or “XY-4” in the nuclear magnetic resonance

(NMR) literature [52]. For this sequence, the unitary operator
generated by the control Hamiltonian, acting on a single qubit,
can be expressed as

Uc(tDD) = ZIXIZIXI. (65)

The notation in Eq. (65) is meant to convey that one complete
cycle of the memory sequence contains four equally spaced
pulses (each of width δ) that successively apply the Pauli
operators X, Z, X, Z, where X = σx and Z = σz; therefore,
the product of the four Pauli operators is −I. Each I in Eq. (65)
represents trivial evolution during the pulse interval of width
τ0 − δ. The total duration of the pulse sequence is tDD = 4τ0.

This sequence achieves first-order decoupling. In the limit
of zero-width pulses, the toggling-frame Hamiltonian is

H̃ (t) = U †
c (t)HUc(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
IHI = HB + X ⊗ BX + Y ⊗ BY + Z ⊗ BZ for t ∈ [0,τ0),

XHX = HB + X ⊗ BX − Y ⊗ BY − Z ⊗ BZ for t ∈ [τ0,2τ0),

YHY = HB − X ⊗ BX + Y ⊗ BY − Z ⊗ BZ for t ∈ [2τ0,3τ0),

ZHZ = HB − X ⊗ BX − Y ⊗ BY + Z ⊗ BZ for t ∈ [3τ0,4τ0),

(66)

and we find


1(tDD) = −i

∫ tDD

0
dtH̃ (t)

= −iτ0(IHI + XHX + YHY + ZHZ)

= −itDDHB, (67)

a pure bath term. The first-order Magnus term (up to the factor
−itDD) is the Pauli-group average of the noise Hamiltonian H ,
which commutes with any nontrivial Pauli operator acting on
the system qubit.

In a DD-protected gate, the final pulse in the universal
decoupling sequence is modified by combining with the gate
pulse. For a single-qubit gate, the pulse sequence realizing the
gate G is

Uc(t0) = (GZ)IXIZIXI, (68)

where now GZ represents a single pulse with duration δ and
t0 = tDD. In a two-qubit gate, the universal pulse sequence is
applied in parallel to both qubits, except that the final pulse
Z ⊗ Z in the memory sequence is replaced by the two-qubit
pulse G(Z ⊗ Z).

To estimate the effective noise strength ηDD, we note that
the total number of pulses is N = 4, and that τ0/t0 = 1/4.
From the bounds in Eq. (50) and Table I (for the case where
the sequence is not time symmetric) we obtain

ηDD = (4Jτ0)

[
δ

τ0
+ 1

2
(4ετ0) + 2

9
(4ετ0)2

+ 11

9
(4ετ0)3 + 9.43(4ετ0)4

]
, (69)

where we have used C1 = Nδ/t0 because the pulses are
regularly spaced in time. Note that the parameters J and ε

include sums over all qubits in the set Qa that participate in
the gate at location a in the circuit.

In Fig. 5, ηDD/η (where η = Jτ0) is plotted as a function
of ετ0, in the limit δ/τ0 → 0. The noise suppression threshold
condition ηDD < η is satisfied when

ετ0 < 0.0711. (70)

In the limit ετ0 → 0, the noise suppression threshold condition
is satisfied for

δ

τ0
<

1

4
. (71)

0 0.02 0.04 0.06 0.08
0

0.5

1

1.5
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ετ0

η D
D
/J

τ 0

universal decoupling sequence
time−symmetric sequence

ετ0 =0.0403 ετ0 =0.0711

FIG. 5. (Color online) Plot of ηDD/η versus ετ0 for the uni-
versal decoupling sequence [Eq. (69)] and for the time-symmetric
sequence [Eq. (74)], assuming zero-width pulses. The noise strength
for the DD-protected gate is weaker than the noise strength
for the unprotected gate for ετ0 < 0.0711 in the case of the
universal decoupling sequence and for ετ0 < 0.0403 in the case
of the time-symmetric sequence. For ετ0 sufficiently small, using
the time-symmetric sequence reduces the noise strength further than
the universal decoupling sequence.
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B. Time-symmetric sequence

We can construct a time-symmetric DD sequence by
composing two copies of the universal decoupling sequence;
first we perform the sequence in the forward direction, and
then we run it backward in time. For zero-width pulses, using
the same notation as in Eq. (65), in which I represents trivial
evolution for time τ0 between successive pulses, this sequence
can be expressed as

Uc(tDD) = IXIZIXIIXIZIXI, (72)

where we have combined the two Z operators in the middle into
a zero-width identity “pulse” [not shown in Eq. (72)]. The total
duration of the pulse sequence is tDD = 8τ0, twice as long as the
universal decoupling sequence. Like the universal decoupling
sequence, this sequence achieves first-order decoupling. In
addition, it satisfies the time-symmetry property Uc(tDD −
t) = Uc(t), so that the toggling-frame Hamiltonian obeys
H̃ (tDD − t) = H̃ (t), and thus this pulse sequence achieves
second-order decoupling as well. This pulse sequence is known
in the NMR literature as “XY-8” [53].

For finite-width pulses, we modify our notation to empha-
size that the second half of the sequence is the time reverse of
the first half. We write

Uc(tDD) = IX(−)IZ(−)IX(−)IIδIX
(+)IZ(+)IX(+)I. (73)

Now, each I represents trivial evolution for time (τ0 − δ).
The Iδ operator in the middle represents trivial evolution
for time δ, arising from combining two Z pulses. It might
seem more natural to use I2δ instead, matching the total
duration of two Z pulses each with width δ, but we choose
the sequence Eq. (73) so that our upper bound on 
3(T ),
the dominant Magnus term when δ/τ0 is negligible, will
have a simple form. Since δ/tDD is small anyway, it does
not matter much which of these sequences we choose. X(±)

and Z(±) represent finite-width pulses implementing X and
Z. Before the midpoint of the sequence at t = tDD/2, the
X pulses are executed using the constant Hamiltonian HPX

such that X = exp(−iδHPX
) and the Z pulse is executed

using HPZ
such that Z = exp(−iδHPZ

), assuming the pulses
are perfectly rectangular. After the midpoint, the universal
decoupling sequence runs backward; X is executed using
−HPX

and Z using −HPZ
. Thus, Uc(tDD − t) = Uc(t).

Appending the gate pulse to this memory sequence
breaks the time symmetry, which can be nearly restored
using the trick explained in Sec. IV C. The region � in which
the time symmetry is violated is the union of two intervals: the
duration of the gate pulse and its image under time reversal,
during which evolution is governed by the Hamiltonian −HB .
Thus, � = 2δ (recall that we use � to denote both the region
and its size). The DD-protected gate contains N = 8 pulses
(seven pulses in the memory sequence, including the identity
pulse in the middle, plus the gate pulse) and has duration
t0 = 8τ0, so that τ0/t0 = 1/8 and T = t0 + δ. From the bounds
in Eq. (50) and Table I (for the case where the sequence is
nearly time symmetric) we obtain an estimate of the effective
noise strength ηDD of the DD-protected gates; we may use
C1 = Nδ/T � δ/τ0 because the pulses are regularly spaced in
time.

In the limit of zero-width pulses (δ/τ0 → 0), the effective
noise strength becomes

ηDD = (8Jτ0)
[

2
9 (8ετ0)2 + 9.43(8ετ0)4

]
; (74)

ηDD/η is plotted in Fig. 5. The noise suppression threshold
condition ηDD < η is satisfied when

ετ0 < 0.0403. (75)

This condition is more stringent than for the universal
decoupling sequence, which is not surprising since the time-
symmetric sequence is twice as long. As Fig. 5 illustrates,
the time-symmetric sequence becomes more advantageous
when ετ0 is small, as is likely to be the case when ηDD is
below the accuracy threshold η0. In the limit ετ0 → 0, only
C1 survives, and we find ηDD � 8η(δ/τ0); thus, the noise
suppression threshold condition is satisfied for

δ

τ0
<

1

8
. (76)

The largest permissible pulse width is half as large as in the
case of the universal decoupling sequence [Eq. (71)] because
the time-symmetric sequence is twice as long.

Using Eq. (62) and the expressions for ηDD in Eq. (69) (with
δ/τ0 = 0) and Eq. (74), we plot in Fig. 6 the ratio L∗

DD/L∗
un

versus ετ0 for both the universal decoupling sequence and
the time-symmetric sequence. Here, just to illustrate the idea
that DD can drastically reduce the overhead requirements
for fault-tolerant quantum computing, we have assumed
η0/η = 2, and we have taken the value a = log2(291) ≈
8.18 from [31] (291 is the number of locations, including
measurements and preparations, contained in the fault-tolerant
CNOT gadget constructed in [31]). Because the noise strength
for the unprotected gate is close to the threshold value, and
because ετ0 is well below the noise suppression threshold
for each DD sequence in the range plotted, the reduction
in the number of pulses achieved by using DD-protected
gates is substantial. Furthermore, although the time-symmetric
sequence is longer than the universal decoupling sequence, the
time-symmetric sequence reduces the total number of pulses

10
−4
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−3

10
−2

10
−10

10
−8

10
−6

10
−4

ετ0

L
∗ D

D
/L

∗ un

universal decoupling sequence
time−symmetric sequence

FIG. 6. (Color online) Plot of L∗
DD/L∗

un [Eq. (62)] versus ετ0 for
the universal decoupling sequence and the time-symmetric sequence
in the limit δ/τ0 → 0. We have assumed η0/η = 2 and have used the
value a = log2(291) ≈ 8.18 appropriate for the fault-tolerant gadget
constructions in [31].
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FIG. 7. (Color online) Plot of ‖
3‖Bound/‖
3‖Actual versus βτ0 for
the time-symmetric DD sequence Eq. (72). The noise Hamiltonian
is H = HB + HSB (H 0

S = 0), where HB = (β/2)
∑

i σ
z
i and HSB =

(J/4)
∑

α=x,y,z σ α
S ⊗ (

∑n

i=1 σα
i ); the index i labels the bath spins.

Here ‖
3‖Bound is computed using Eq. (50) and Table I (where δ = 0
and T = 8τ0), while ‖
3‖Actual is computed by evaluating the integral
in Eq. (28) exactly. The kinks in the plots arise because the operator
norm can have a discontinuous first derivative when eigenvalues cross.

more effectively than the universal sequence, by more than an
order of magnitude for ετ0 < 10−2.

In brief, the overhead improvement achieved by DD,
illustrated by Fig. 6, arises as follows. The accuracy threshold
analysis and overhead estimate in [31] is based on concatenated
coding, a hierarchy of codes within codes. The number of
coding levels k needed to simulate accurately a circuit of fixed
size varies with the effective noise strength η̄ according to

2k ∝ 1

log(η0/η̄)
, (77)

and the number of noisy gates used in the fault-tolerant
simulation grows like 2ak . By improving the effective noise
strength, DD reduces the number of levels needed, substan-
tially reducing the overhead cost. This savings in the number
of gates more than compensates for the additional pulses used
to achieve the DD improvement of each gate.

For some noise models, the value of ηDD derived by our
general arguments may be overly pessimistic. For example,
using the time-symmetric sequence Eq. (72), we computed

3(T ) for a single-qubit system coupled to an n-spin bath in
an external magnetic field, assuming an isotropic Heisenberg
interaction between the system qubit and each bath spin. The
ratio of the bound from Eq. (50) and Table I to the actual value
of ‖
3(T )‖ for this model is plotted in Fig. 7 as a function of
βτ0, for H 0

S = 0 and δ = 0. The bound is larger than the actual
value by at least a factor of 20.

C. Eulerian decoupling sequences

The effects of finite pulse width and other pulse imper-
fections can be suppressed by using an Eulerian memory
sequence [7]. In Eulerian decoupling, the operator applied
by each pulse is the generator of a finite group, and Uc(t)
traverses an Euler cycle in the Cayley graph of this group.
As a result, the error Hamiltonian is group averaged and
first-order decoupling is maintained even when the pulses have

(reproducible) imperfections. We describe a simple Eulerian
memory sequence here; see [7] for a more general discussion.

A simple Eulerian memory sequence protecting against
single-qubit noise is [7]

Uc(tDD) = XIZIXIZIZIXIZIXI. (78)

Here the pulses are equally spaced in time; each I operator
represents the same time interval, and the spacing between the
start of two consecutive pulses is τ0. This sequence looks like
two repetitions of the universal decoupling sequence, except
that the X and Z pulses are swapped in the second repetition.
In contrast to the time-symmetric sequence Eq. (73), we use
the same Hamiltonian HPX

to execute each X pulse, rather
than reversing the sign of the Hamiltonian during the second
half of the sequence; similarly, we use the same Hamiltonian
HPZ

to execute each Z pulse.
Without making any assumption about the pulse widths or

shapes (except for assuming that all X pulses are alike and that
all Z pulses are alike), we may express the unitary evolution
operator over the pulse interval of duration τ0 as uX(t) for an
X pulse and uZ(t) for a Z pulse. Then, for t ∈ [0,tDD ≡ 8τ0],
Uc(t) becomes

Uc(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uX(t)I t ∈ [0,τ0)

uZ(t − τ0)X t ∈ [τ0,2τ0)

uX(t − 2τ0)(iY ) t ∈ [2τ0,3τ0)

uZ(t − 3τ0)(−Z) t ∈ [3τ0,4τ0)

uZ(t − 4τ0)(−I) t ∈ [4τ0,5τ0)

uX(t − 5τ0)(−Z) t ∈ [5τ0,6τ0)

uZ(t − 6τ0)(iY ) t ∈ [6τ0,7τ0)

uX(t − 7τ0)X t ∈ [7τ0,8τ0)

. (79)

The first-order Magnus term 
1(tDD) can be expressed in terms
of effective Hamiltonians HX and HZ , obtained by averaging
the Hamiltonian over an X or Z pulse respectively:

τ0HX ≡
∫ τ0

0
dtu

†
X(t)HuX(t),

τ0HZ ≡
∫ τ0

0
dtu

†
Z(t)HuZ(t). (80)

Since uX and uZ act only on the system, they commute with
the bath Hamiltonian HB ; while averaging over the pulse alters
Herr, it has no effect on HB . Therefore, we find that


1(tDD) =
∫ tDD

0
dtH̃ (t) =

∫ tDD

0
dtU †

c (t)HUc(t)

= τ0(HX + XHXX + YHXY + ZHXZ)

+ τ0(HZ + XHZX + YHZY + ZHZZ)

= 8HBτ0; (81)

thus, 
1(tDD) is a pure bath term. To derive the last line of
Eq. (81), we have used the property H + XHX + YHY +
ZHZ = 4HB [as in Eq. (67)]. We conclude that first-order
decoupling is perfectly attained irrespective of the pulse shape,
as long as the same uX(Z)(t) is applied for every X(Z) pulse
and the integrated pulses are exactly right.

To demonstrate the advantage of using an Eulerian memory
sequence, let us compare it with the universal decoupling
sequence, taking into account finite pulse-width effects. The

012305-13



HUI KHOON NG, DANIEL A. LIDAR, AND JOHN PRESKILL PHYSICAL REVIEW A 84, 012305 (2011)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

1.5

2

ετ0

η
/
J
τ 0

universal DD, δ/τ0 =0.00
universal DD, δ/τ0 =0.10
universal DD, δ/τ0 =0.20
universal DD, δ/τ0 =0.25
Eulerian DD
no DD

FIG. 8. (Color online) Comparison of effective noise strengths
ηDD and ηEDD for the universal decoupling sequence given in Eq. (65)
(for different pulse widths) and the Eulerian decoupling sequence
given in Eq. (78), respectively. The universal decoupling sequence
is always worse than no decoupling (η = Jτ0) for δ/τ0 � 1/4, and
Eulerian decoupling is worse than no decoupling for ετ0 � 0.0239.
The Eulerian sequence is always better than universal DD for δ/τ0 �
0.1983. For smaller values of δ/τ0, as the pulse width increases,
the Eulerian sequence outperforms the universal sequence for small
values of ετ0. However, because of its longer length, the Eulerian
sequence offers no advantage over the universal sequence or no
decoupling when ετ0 is too large.

effective noise strength of the universal decoupling sequence
is given in Eq. (69). For the Eulerian decoupling sequence
described in Eq. (78), the effective noise strength is given by
a similar expression, but with 4τ0 replaced by 8τ0 to account
for the longer Eulerian sequence (N = 8). Furthermore, in this
case we can drop the first-order, pulse-width-dependent term
δ/τ0, which gives

ηEDD = (8Jτ0)
[

1
2 (8ετ0) + 2

9 (8ετ0)2

+ 11
9 (8ετ0)3 + 9.43(8ετ0)4

]
. (82)

The comparison between the universal decoupling sequence
and the Eulerian decoupling sequence is illustrated in Figs. 8
and 9, with numerical values delineating different regions
easily deduced by solving the corresponding inequalities
comparing Eqs. (69) and (82).

Adding a gate pulse G, by combining G with the final X

pulse of the Eulerian memory sequence, introduces an error
depending on the width of the final pulse. However, because
this nonvanishing contribution to 
1(T ) arises only from the
final pulse, it does not depend on the length of the memory
sequence. Other contributions to 
(T ) that depend on pulse
shapes, in the second order of the Magnus expansion and
beyond, are suppressed by additional factors of ετ0.

The contributions that depend on the pulse shape can be
further suppressed by making the Eulerian memory sequence
time symmetric. Consider, for example, the sequence

Uc(tDD)

= X(−)IZ(−)IX(−)IZ(−)IZ(−)IX(−)IZ(−)IX(−)I

× IX(+)IZ(+)IX(+)IZ(+)IZ(+)IX(+)IZ(+)IX(+),

(83)
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Better performance
without DD
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FIG. 9. (Color online) Illustration of the parameter regions in
which no DD, the universal decoupling sequence (DD) [Eq. (65)], or
the Eulerian decoupling sequence (EDD) [Eq. (78)] emerges as the
best strategy. Different regions indicated correspond to the following
inequalities: (1) ηEDD < ηnoDD < ηDD, (2) ηEDD < ηDD < ηnoDD, (3)
ηDD < ηEDD < ηnoDD, (4) ηDD < ηnoDD < ηEDD, (5) ηnoDD < ηDD <

ηEDD, (6) ηnoDD < ηEDD < ηDD. The noise strengths are given by
ηnoDD = Jτ0 and Eqs. (69) and (82).

where the control Hamiltonian is chosen such that uX(−) (tDD −
t) = uX(+) (t) and uZ(−) (tDD − t) = uZ(+) (t). Because this se-
quence obeys the time symmetry condition Uc(tDD − t) =
Uc(t), the even-order Magnus terms vanish. Furthermore,
because Eq. (83) is just two copies of the Eulerian sequence
Eq. (78), the first running backward in time and the second
running forward, the sequence achieves first-order decoupling
for any pulse shape. Corrections depending on the pulse
shape enter only in third order and beyond. Of course,
making the Eulerian sequence time symmetric (or making
the time-symmetric sequence Eulerian) lengthens the pulse
sequence and so increases the time T appearing in the Magnus
expansion. Whether using this longer sequence actually
improves the noise suppression depends on the values of the
parameters ετ0, δτ0, and τ0/t0, but it could pay off if the pulse
width is relatively large, as suggested by Figs. 8 and 9. Adding
a gate pulse to the time-symmetric Eulerian memory sequence
spoils the first-order decoupling and breaks the time symmetry,
but the resulting contributions to 
1 and 
2 depend only on
the width of the final pulse, not on the length of the pulse
sequence.

Eulerian DD-protected gates that achieve exact first-order
decoupling for nonzero-width pulses can be devised using the
dynamically corrected gates recently introduced in [54,55].
This scheme is based on the idea that distinct gates can
have related errors, so that the errors cancel for a suitably
constructed pulse sequence. The errors in distinct gates can
be similar if the gates are constructed from control unitaries
that traverse similar time-dependent paths, differing only by
rescaling or reversing the time along the path. Arbitrary-order
decoupling for nonzero-width pulses can be achieved by
concatenating dynamically corrected gates [56].

VII. DERIVATIONS

In this section, we derive the coefficients for the bounds
on the Magnus expansion listed in Table I. The Magnus
expansion is computed for the Hamiltonian HM (t) given in
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Eq. (49); at any time t , HM (t) = ±HB + H ′(t), where H ′(t)
is either 0 or H̃err(t). The two terms in HM (t) are bounded
as ‖HB‖ � β and ‖H ′(t)‖ � J ; thus, ‖HM (t)‖ � β + J = ε.
The Magnus terms can be computed from HM (t) using the
following recursive formulas [57], derived in Appendix A:

A(t) = −iHM (t); (84a)


1(T ) =
∫ T

0
dtA(t); (84b)


n(T ) =
n−1∑
j=1

Bj

j !

∫ T

0
dtS(j )

n (t), n � 2; (84c)

S(1)
n (t) = [
n−1(t),A(t)]; (84d)

S(j )
n (t) =

n−j∑
m=1

[

m(t), S

(j−1)
n−m (t)

]
, 2 � j � n − 1, (84e)

where {Bj } are the Bernoulli numbers. Explicit formulas for

2(T ) and 
3(T ) were given in Eqs. (27) and (28).

A. General case: Magnus expansion

For the general (i.e., not time-symmetric) case, Table I gives
C1 = Nδ/T for regularly spaced pulses or 2Nδ/T in general,
C2 = 1/2, C3 = 2/9, C4 = 11/9, and C5 = 9.43. Now we
derive these coefficients.

1. Bound for �′
1

We assume that first-order decoupling is attained, so that in
the limit of zero-width pulses H̃ (t) for the memory sequence
satisfies Eq. (31):

∫ tDD

0 dtH̃err,0(t) = 0. Recall that the subscript
“0” on H̃err means we are to take δ to zero in H̃err(t) while
holding τ0 fixed. If a zero-width gate pulse is appended to
the memory sequence, then H̃err,0(t) in the DD-protected gate
differs from H̃err,0(t) in the memory sequence only during the
final instantaneous pulse, and therefore still integrates to zero.
Hence, the DD-protected gate as well as the memory sequence
satisfies 
1(T ) = −iT HB and 
′

1(T ) = 0.
When the pulses have finite width (δ > 0), 
′

1 picks up
corrections that depend on δ. Noting that H̃ (t) differs from
H̃0(t) only during the pulses, we write


′
1(T ) = −i

∫ t0

0
dtH̃ (t) + it0HB

= −i

∫ t0

0
dtH̃0(t) + it0HB

+ i

∫ t0

0
dtPWH̃0(t) − i

∫ t0

0
dtPWH̃ (t)

= i

∫ t0

0
dtPWH̃0(t) − i

∫ t0

0
dtPWH̃ (t). (85)

Here dtPW indicates integration only over times within the
pulses. Now, H̃0(t) = HB + H̃err,0(t), so for a se-
quence with N pulses (including the gate pulse),
we have i

∫ t0
0 dtPWH̃0(t) = iNδHB + i

∫ t0
0 dtPWH̃err,0(t) and

− i
∫ t0

0 dtPWH̃ (t) = −iNδHB − i
∫ t0

0 dtPWH̃err(t). The two
iNδHB terms cancel, and we are left with


′
1(T ) = i

∫ t0

0
dtPWH̃err,0(t) − i

∫ t0

0
dtPWH̃err(t). (86)

The second term can be upper bounded by NδJ . For
the first term, Eq. (38) tells us that for δ = 0, H̃0(t) =
H̃ (k) = HB + H̃ (k)

err for t ∈ [sk,sk+1). Hence, we have that
i
∫ t0

0 dtPWH̃err,0(t) = iδ
∑

k H̃ (k)
err . Now, the first-order decou-

pling condition can be written as∫ t0

0
dtH̃err,0 = ∑

k(sk+1 − sk)H̃ (k)
err = 0. (87)

If all the pulses are regularly spaced in time, so that sk+1 − sk

are all equal for all k, this condition implies that
∑

k H̃ (k)
err = 0.

In this case, the first term of the right-hand side of Eq. (86)
vanishes and 
′

1(T ) is bounded by the norm of the second term
only:

‖
′
1(T )‖ � NδJ = Nδ

T
(JT ). (88)

Hence, C1 = Nδ/T if pulses are regularly spaced in time.
Even if the pulses are not regularly spaced in time, this
value of C1 works whenever

∑
k H̃ (k)

err = 0. Otherwise, we can
still upper bound the first term in Eq. (86) by NδJ , so that
‖
′

1(T )‖ � 2NδJ = (2Nδ/T )(JT ). This gives C1 = 2Nδ/T

in general.

2. Bound for �2

We derive an upper bound on


2(T ) = −1

2

∫ T

0
ds1

∫ s1

0
ds2[HM (s1),HM (s2)], (89)

where HM (t) = HB + H ′(t). The term quadratic in HB van-
ishes, because HB is time independent and [HB,HB] = 0. The
term of linear order in HB can be expressed as

−1

2

∫ T

0
ds1

∫ s1

0
ds2[HB,H ′(s2) − H ′(s1)]. (90)

We note that∫ T

0
ds1

∫ s1

0
ds2 =

∫ T

0
ds2

∫ T

s2

ds1; (91)

either way, we are integrating over the triangle with s2 � s1 �
T . Therefore,∫ T

0
ds1

∫ s1

0
ds2[HB,H ′(s1)] =

∫ T

0
dss[HB,H ′(s)],∫ T

0
ds2

∫ T

s2

ds1[HB,H ′(s2)] =
∫ T

0
ds(T − s)[HB,H ′(s)].

(92)

Combining terms we find∫ T

0
ds1

∫ s1

0
ds2[HB,H ′(s1) − H ′(s2)]

=
∫ T

0
(2s − T )[HB,H ′(s)], (93)
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and, hence,∥∥∥∥1

2

∫ T

0
ds1

∫ s1

0
ds2[HB,H ′(s1) − H ′(s2)]

∥∥∥∥
� Jβ

∫ T

0
ds|2s − T | = 1

2
JβT 2. (94)

This bound on the sum of two terms is better by a factor of
two than we would have found by bounding the two terms
separately, because of a partial cancellation between the two
terms.

We bound the term in 
2(T ) of zeroth order in HB using

‖[H ′(s1),H ′(s2)]‖ � 2J 2, (95)

and, therefore,∥∥∥∥1

2

∫ T

0
ds1

∫ s1

0
ds2[H ′(s1),H ′(s2)]

∥∥∥∥
� 1

2
(2J 2)(T 2/2) = 1

2
J 2T 2. (96)

Combining with the terms linear order in HB we obtain

‖
2(T )‖ � 1
2JβT 2 + 1

2J 2T 2 = 1
2 (εT )(JT ), (97)

where ε = β + J ; hence, C2 = 1/2.

3. Bound for �3

The integrand in the expression Eq. (28) for 
3(T ) is

i

6
{[HM (s1),[HM (s2),HM (s3)]] + [HM (s3),[HM (s2),HM (s1)]]},

(98)

where HM (s) = HB + H ′(s); because [HB,HB] = 0, the term
cubic in HB vanishes, and the terms quadratic in HB can be
written in the form

i

6
[HB,[HB,H ′(s1) + H ′(s3) − 2H ′(s2)]]. (99)

The time-ordered integration∫ T

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3 (100)

can be expressed as
∫ T

0 ds1(s2
1/2) for a function independent

of s2,s3, as
∫ T

0 ds3((T − s3)2/2) for a function independent of

s1,s2, and as
∫ T

0 ds2s2(T − s2) for a function independent of
s1,s3. Therefore, the contribution to 
3(T ) quadratic in HB is

[
3(T )]quadratic = i

6

∫ T

0
ds[HB,[HB,H ′(s)]]

×
(

1

2
s2 + 1

2
(T −s)2−2s(T −s)

)
; (101)

using

‖[HB,[HB,H ′(s]]‖ � 4β2J, (102)

it can be bounded as

‖[
3(T )]quadratic‖

� 2

3
β2J

∫ T

0
ds

∣∣∣∣1

2
s2 + 1

2
(T − s)2 − 2s(T − s)

∣∣∣∣
= 2

3
β2J

T 3

3
√

3
= 2

9
√

3
(βT )2(JT ). (103)

(The integrand has zeros at s± = 1
2 ± 1

2
√

3
; it is positive in

[0,s−] and [s+,T ] and negative in [s−,s+]. The integrals over
these three intervals are, respectively, T 3

12
√

3
, − T 3

6
√

3
, T 3

12
√

3
, and

the integral of the absolute value is T 3

3
√

3
).

Now consider the terms linear in HB , with integrand

i

6

(
[B23] + [B21] + [1B3] + [3B1] + [12B] + [32B]

)
,

(104)

where

[B23] ≡ [HB,[H ′(s2),H ′(s3)]], (105)

etc. We note that∫
T �s1�s2�s3�0

ds1ds2ds3
(
[1B3] + [12B]

)
=

∫
T �s1�s3�0

ds1ds3(s1 − s3)[1B3]

−
∫

T �s1�s2�0
ds1ds2s2[1B2]

=
∫

T �s1�s2�0
ds1ds2(s1 − 2s2)[1B2], (106)

and, hence,

∣∣∣∣
∫

T �s1�s2�s3�0
ds1ds2ds3

(
[1B3] + [12B]

)∣∣∣∣
� ‖[1B2]‖max

∫
T �s1�s2�0

ds1ds2|s1 − 2s2|

= 4βJ 2 T 3

6
= 2

3
βJ 2T 3. (107)

Similarly,

∫
T �s1�s2�s3�0

ds1ds2ds3
(
[3B1] + [32B]

)
=

∫
T �s1�s3�0

ds1ds3(s1 − s3)[3B1]

−
∫

T �s2�s3�0
ds2ds3(T − s2)[3B2]

=
∫

T �s1�s3�0
ds1ds3(2s1 − s3 − T )[3B1], (108)
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and, hence,∣∣∣∣
∫

T �s1�s2�s3�0
ds1ds2ds3

(
[3B1] + [32B]

)∣∣∣∣
� ‖[3B1]‖max

×
∫

T �T −s3�T −s1�0
ds1ds3|(T − s3) − 2(T − s1)|

= 4βJ 2 T 3

6
= 2

3
βJ 2T 3. (109)

Also, ∫
T �s1�s2�s3�0

ds1ds2ds3
(
[B23] + [B21]

)
=

∫
T �s2�s3�0

ds2ds3(T − s2)[B23]

−
∫

T �s1�s2�0
ds1ds2s2[B12]

=
∫

T �s2�s3�0
ds2ds3(T − s2 − s3)[B23], (110)

and, hence,∣∣∣∣
∫

T �s1�s2�s3�0
ds1ds2ds3([B23] + [B21])

∣∣∣∣
� ‖[B23]‖max

∫
T �s2�s3�0

ds2ds3|T − s2 − s3|

= 4βJ 2 T 3

6
= 2

3
βJ 2T 3. (111)

Combining these three bounds, we obtain an upper bound on
the terms in 
3(T ) linear in HB :

‖[
3(T )]linear‖ � 1
6 × 3 × (

2
3βJ 2T 3

) = 1
3βJ 2T 3. (112)

For the term in 
3(T ) independent of HB , we have

‖[
3(T )]zeroth−order‖

� 1

6

(
T 3

6

)
(2)‖[H ′(s1),[H ′(s2),H ′(s3)]]‖max

= 2

9
(JT )3. (113)

Putting together the bounds on the terms of second, first, and
zeroth order in HB , we find

‖
3(T )‖ � 2

9
√

3
(βT )2(JT ) + 1

3
(βT )(JT )2 + 2

9
(JT )3

= 2

9
√

3
(εT )2(JT ) + 1

3

(
1 − 4

3
√

3

)
(εT )(JT )2

+ 1

9

(
2√
3

− 1

)
(JT )3. (114)

Using J � ε, we obtain a weaker but simpler bound:

‖
3(T )‖ � 2
9 (εT )2(JT ). (115)

Hence, C3 = 2/9.

4. Bounds for �n�4

To bound the Magnus terms for n � 4, we use the recursive
formulas Eq. (84) and ideas from [58,59]. In Appendix E, we
show that the S

(j )
n operators satisfy∥∥S(j )

n (t)
∥∥ � f (j )

n J (2εt)n−1, (116)

for all n � 2, 1 � j � n − 1, where the coefficients f
(j )
n are

given in Eq. (E2). Using this, we can write bounds for 
n�4

as follows:

‖
n(T )‖ �
n−1∑
j=1

|Bj |
j !

∫ T

0
ds

∥∥S(j )
n (s)

∥∥
� 1

n

n−1∑
j=1

|Bj |
j !

f (j )
n (JT )(2εT )n−1

= fn(JT )(4εT )n−1, (117)

where the coefficients fn are defined as

fn = 1

n2n−1

n−1∑
j=1

|Bj |
j !

f (j )
n . (118)

Using Eq. (118) and the recursive formula for f
(j )
n from

Eq. (E2), one can show that f4 = 11/576. Then, 
4(T ) can be
bounded as

‖
4(T )‖ � 11

576
(JT )(4εT )3, (119)

so C4 = 43(11/576) = 11/9.
The bounds for 
n for n � 5 can be gathered together into

a single bound by writing

∞∑
n=5

‖
n(T )‖ � (JT )(4εT )4

[ ∞∑
n=5

fn(4εT )n−5

]
. (120)

In [59], the {fn} were shown to be coefficients in the power
series expansion of G−1(y) = ∑∞

n=1 fny
n; G−1(y) is the

inverse function of

y = G(s) =
∫ s

0
dx

[
2 + x

2

(
1 − cot

x

2

)]−1

, (121)

defined for domain −2π � s � 2π , the interval over which
G(s) is monotonically increasing. A self-contained proof of
this fact is provided in Appendix F. We want to relate the
expression in the brackets in Eq. (120) to G−1. Define ζ as

ζ = G(2π ) = 2.173 74 . . . , G−1(ζ ) = 2π, (122)

and assume that εT � 0.54 so that 4εT � ζ . Then,
G−1(4εT ) � 2π since G(s) is monotonically increasing over
its domain, and therefore,[ ∞∑

n=5

fn(4εT )n−5

]
�

∞∑
n=5

fnζ
n−5

= 1

ζ 5

[
G−1(ζ ) −

4∑
n=1

fnζ
n

]
. (123)
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Using f1 = 1, f2 = 1
4 , f3 = 5

72 , and f4 = 11
576 , which can be

derived from Eqs. (118) and (E2), Eq. (123) implies[ ∞∑
n=5

fn(4εT )n−5

]
� 0.036 85 . . . ≡ C ′. (124)

Then
∞∑

n=5

‖
n(T )‖ � C ′(JT )(4εT )4. (125)

Therefore, C5 ≡ 44 × C ′ � 9.43.
Note that the condition εT � 0.54 is more stringent than the

sufficient condition for convergence of the Magnus expansion
given in Eq. (29), which requires εT < π . If 0.54 < εT < π ,
we need to use a different method to find an upper bound on
the sum of the high-order Magnus terms.

B. General case: Dyson expansion

In Sec. VII A we used the Magnus expansion to obtain
bounds on the noise strength of DD-improved quantum gates.
Here we derive bounds on the noise strength by a different
method based on time-ordered perturbation theory in the tog-
gling frame. These new bounds are easier to derive than those
in Sec. VII A, and they apply without any upper bound imposed
on the expansion parameter εT ; furthermore, in the case of a
pulse sequence that achieves third-order decoupling, they are
actually tighter than the previous bounds. Unfortunately, in the
case of first-order or second-order decoupling, they are not as
tight. In this derivation, we assume pulses have zero width, and
we consider only the general case (without time symmetry).

In the local-bath model, we consider the toggling-frame
system-bath Hamiltonian

λH̃ (t) = λ[HB + H̃err(t)], (126)

which describes the noise at a particular circuit location. Here
λHB is the Hamiltonian of the local bath (acting trivially on
the system) and λH̃err is the Hamiltonian responsible for the
noise (acting jointly on system and bath). We have introduced
the coupling parameter λ here for convenience, to keep track
of terms in the Dyson and Magnus expansions, and we set
λ = 1 momentarily.

Consider the toggling-frame time evolution operator Ũ (T )
obtained by integrating the Schrödinger equation with Hamil-
tonian λH̃ (t) for time T [if the control unitary Uc(T ) for this
time interval is the identity—that is, if the control sequence
is cyclic—then the toggling-frame and Schrödinger-picture
evolution operators coincide]. The Dyson expansion is the
expansion of Ũ (T ) in powers of λ:

Ũ (T ) =
∞∑

n=0

λn

n!

∫ T

0
dt1 · · ·

∫ T

0
dtnT (H̃ (t1) · · · H̃ (tn)),

(127)

where T denotes time ordering. The Magnus expansion is the
expansion of the logarithm of Ũ (T ) in powers of λ:

Ũ (T ) = exp

( ∞∑
n=1

λn
n(T )

)
. (128)

We say that the control sequence achieves nth-order decou-
pling if the first n terms in the Magnus expansion are pure
bath terms, acting trivially on the system. By expanding the
exponential in Eq. (128) and comparing with Eq. (127), we see
that for a control sequence that achieves nth-order decoupling,
the terms of order λm for m � n in the Dyson expansion are
all pure bath terms [and that the (n+1)st-order term in the
Dyson expansion is λn+1[
n+1(T ) + · · · ], where the ellipsis
represents a pure bath term.]

In Sec. IV, we defined the effective noise strength ηDD as
an upper bound on the deviation of the noisy operation Ũ (T )
from a pure bath unitary operator UB(T ):

ηDD = max
a

‖Ũ (T ) − UB(T )‖. (129)

This definition was convenient because each order in the
Magnus expansion is anti-Hermitian, so that in the case where
nth-order decoupling is achieved, the exponential of the sum of
the first n terms in the Magnus expansion is a pure bath unitary.
However, when we express the noisy unitary as the sum of
good and bad parts (where the good part acts trivially on the
system), it is not necessary for the good part to be unitary; the
criterion for scalable quantum computing is η � η0 (where η

is the operator norm of the bad part) whether the action of the
good part on the bath is unitary or not. Therefore, to estimate
the noise strength, we can separate the terms in the Dyson
expansion into pure bath terms (whose sum is not necessarily
unitary) and remaining terms that may act nontrivially on the
system. Then the noise strength η is an upper bound on the
operator norm of the sum of these remaining terms.

The operator norm of the nth-order term in the Dyson
expansion Eq. (127) can be bounded above by 1

n! (εT )n (with λ

now set equal to 1). This is simply an upper bound on the norm
of the integrand times the volume of the integration region.
However, we can also do a double expansion of the nth-order
term in HB and H̃err, bounding each term separately [60]. In
this double expansion, the terms that are zeroth order in H̃err

are, of course, pure bath terms, and their sum has operator
norm bounded above by 1

n! (βT )n. Thus, the upper bound on
the sum of all the order n terms in the Dyson expansion that
are not zeroth order in J is

T n

n!
[(β + J )n − βn]. (130)

To express this bound in terms of ε, we note that f (β) = βn

is a convex function for n � 1, so that f (β) � f (β + J ) −
Jf ′(J + β); thus,

(β + J )n − βn � nJ (β + J )n−1 = nJεn−1, (131)

and the upper bound in Eq. (130) becomes

1

(n − 1)!
(JT )(εT )n−1. (132)

Now consider a cyclic control sequence that achieves nth-
order decoupling, so that all terms up to nth order in the Dyson
expansion are pure bath terms. We estimate the effective noise
strength using an upper bound on the non-pure-bath parts of
all higher-order terms, finding

ηDD =
∞∑

m=n+1

1

(m − 1)!
(JT )(εT )m−1. (133)
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Thus, by using the Dyson expansion rather than the Magnus
expansion we have found , we read off Cn = 1/(n − 1)! for
n = 2,3,4 from Eq. (132); that is,

C2 = 1, C3 = 1/2, C4 = 1/6, (134)

and

C5 =
∞∑

m=5

1

(m − 1)!
(εT )m−5

= ex − 1 − x − x2/2 − x3/6

x4

∣∣∣
x=εT

= 1

24
+ εT

120
+ (εT )2

720
+ · · · ≈ 0.0466, (135)

where the numerical value of C5 was obtained by setting
εT = 0.54 in order to have a meaningful comparison with
the C5 value we obtained from the Magnus expansion.
Thus, comparing with the bounds derived in Sec. VII A, we
have improved the values of C4 and C5 substantially, but
not the values of C2 and C3. This means that for a (not
time-symmetric) cyclic control sequence achieving third-order
decoupling, we get a smaller value for ηDD using the Dyson
expansion rather than the Magnus expansion.

C. Time-symmetric case

Now we derive bounds on the Magnus terms that apply
when the pulse sequence is time-symmetric except inside a
small region � ⊆ [0,T ]; as before, we use � to denote both
this region and its size. As in Eq. (49), we are interested
in the Hamiltonian HM (t) describing evolution for time �

governed by the Hamiltonian −HB , followed by evolution for
time T − � governed by the toggling-frame Hamiltonian of
a DD-protected gate. However, our analysis in this section
applies to any Hamiltonian HM (t) that is time symmetric
outside region �.

Even Magnus terms vanish when � = 0, and we derive
explicit �-dependent bounds on 
2(T ) and 
4(T ), which
are linear in � when � is small. We could also exploit the
time symmetry to derive improved bounds on the higher-order
Magnus terms [
n�5(T )]; however, we do not bother to do
so. Instead, we use the same upper bounds on these terms
that apply in the general case, with the expectation that these
bounds are already quite small in typical cases of interest.

To obtain a bound on 
2(T ) for a nearly time-symmetric
sequence, we observe that the double time integral in Eq. (89)
can be split into four cases: (i) s1,s2 /∈ �, (ii) s1 ∈ �,s2 /∈ �,
(iii) s1 /∈ �,s2 ∈ �, and (iv) s1,s2 ∈ �. The contribution from
case (i) vanishes, because HM (t) is time symmetric in this
region. The contribution from the remaining three cases can
be bounded by

‖
2(T )‖ � 1
2‖[HM (s1),HM (s2)]‖max · Volume

� 2Jε · Volume, (136)

where “Volume” means the total volume of integration
regions (ii), (iii), and (iv) combined.

We recall that the integral is time ordered, so that s1 � s2.
The region � is the union of a disjoint set of intervals {�i}.
We assume these intervals are labeled consecutively, so that

�j > �i for j > i. For case (ii), if s1 ∈ �i , then s2 lies in the
part of T \� less than �i . Call this region T<i . Similarly, for
case (iii), if s2 ∈ �i , then s1 lies in the part of T \� greater then
�i . Call this region T>i . Adopting the convention in which the
same symbol is used to represent both a region and its length,
the total integration region for cases (ii) and (iii) combined has
volume ∑

i �i(T<i) + �i(T>i) = ∑
i �i(T<i + T>i)

= ∑
i �i(T − �) = �(T − �), (137)

with the first contribution coming from case (ii) and the second
from case (iii).

For case (iv), if s1 and s2 are in the same interval �i , the
integration region has volume 1

2�2
i . If s1 ∈ �i and s2 �∈ �i ,

then s2 ∈ �j for j < i. Summing the volumes of all regions
with s1,s2 ∈ � gives

∑
i

1

2
�2

i +
∑
i<j

�i�j = 1

2

(∑
i

�i

)2

= 1

2
�2. (138)

Adding the contributions from cases (ii), (iii), and (iv), we find
that the total volume is �T − 1

2�2 and conclude that [61]

‖
2(T )‖ � 2Jε · Volume

= 2
�

T

(
1 − �

2T

)
(εT )εT . (139)

Hence, C2 = 2(�/T )(1 − �/2T ).
Since each even-order Magnus term vanishes in the time-

symmetric case, there are upper bounds on all even Magnus
terms that depend linearly on �/T to lowest order. Such
bounds are derived in Appendix D. For 
4(T ), Eq. (D7) yields

‖
4(T )‖ � 14(JT )(εT )3

[
1 − (1 − �

T
)4

]

= 14(JT )(εT )3

[
4

(
�

T

)
− 6

(
�

T

)2

+ 4

(
�

T

)3

−
(

�

T

)4]
. (140)

Since 4(�T )3 � 4(�T )2 and (�/T )4 � 0, we can rewrite
this as

‖
4(T )‖ � 14(JT )(εT )3

[
4
�

T
− 2

(
�

T

)2
]

= 56
�

T

(
1 − �

2T

)
(JT )(εT )3. (141)

Hence, C4 = 56(�/T )(1 − �/2T ). [For 
2(T ) the bound
Eq. (D7) is actually weaker by a factor of 2 than Eq. (139),
because a looser estimate of the integration volume is used to
derive Eq. (D7)].

VIII. CONCATENATED DYNAMICAL DECOUPLING

A concatenated DD pulse sequence is a recursively gener-
ated sequence with a self-similar structure [9,10]. For example,
from the “level-1” universal pulse sequence

p1 = ZIXIZIXI (142)
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we obtain the corresponding “level-2” sequence by replacing
each pulse interval I in the level-1 sequence by the complete
level-1 sequence p1, obtaining

p2 = Zp1Xp1Zp1Xp1; (143)

similarly, the level-k sequence is

pk = Zpk−1Xpk−1Zpk−1Xpk−1. (144)

If the duration of a single pulse is τ0 and p1 is an R-
pulse sequence that achieves first-order decoupling, then the
corresponding level-k sequence pk has duration T (k) = Rkτ0

and achieves kth-order decoupling, that is, has effective noise
strength O(Jεk).

The advantages of concatenated DD over standard periodic
pulse sequences (such as cycles of the universal decou-
pling, or XY-4 sequence) have been documented numerically
[10,62–65] and confirmed in a number of recent experimental
studies [66–69]. Concatenated pulse sequences are substan-
tially less efficient than “optimal” sequences with nonuni-
form pulse intervals that achieve kth-order decoupling with
exponentially fewer pulses [13,39,41,70–72], but nevertheless
have some nice properties. For one thing, concatenated pulse
sequences are relatively robust against pulse imperfections,
because pulse errors arising at each level get suppressed at
higher levels. Experimental evidence for this robustness was
provided in a recent NMR study of a qubit in a rapidly
fluctuating spin bath, where pulse imperfections played a role,
and concatenated DD sequences outperformed a variety of
other sequences, including “optimal” ones with nonuniform
pulse intervals, in preserving an unknown quantum state [66].

We analyze the performance of concatenated pulse se-
quences in two ways, first using the Magnus expansion,
and then in Sec. X F using the Dyson expansion and bath
correlation functions.

Before presenting the analysis, we briefly state our main
results. For ideal, zero-width pulses, we find that if an R-
pulse sequence is concatenated k times, then the effective noise
strength is

η
(k)
DD = Rk(k+3)/2 (c̄ετ0)k (Jτ0), (145)

where τ0 is the pulse interval and c̄ is a constant of order
one. Increasing the concatenation level produces higher-order
decoupling, reflected in the k-dependent power of ετ0 in
Eq. (145), but also lengthens the pulse sequence, reflected
in the k-dependent power of R. Thus, there is an optimal
concatenation level k, given by

kmax = �logR(1/c̄ετ0) − 1�, (146)

where �·� denotes the “floor” function. Using this optimal
value of k, we find that the optimal effective noise strength
satisfies the bound

η
(opt)
DD /(Jτ0) � R−1 (c̄ετ0)

1
2 logR(1/c̄ετ0)− 3

2 . (147)

If a time-symmetric R-pulse sequence is concatenated k times,
then the effective noise strength is

η
(k)
DD = Rk(k+2) (c̄ετ0)2k (Jτ0), (148)
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FIG. 10. (Color online) Upper bounds on the effective noise
strengths achieved by the concatenated universal DD pulse sequence
[blue dashed line, based on Eq. (147) with R = 4] and by the
concatenated time-symmetric DD pulse sequence [red solid line,
based on Eq. (149) with R = 8], as a function of c̄ετ0, where c̄

is defined in the text.

which yields

η
(opt)
DD /(Jτ0) � R−3/4 (c̄ετ0)logR (1/c̄ετ0)−2 (149)

after choosing the optimal value of k.
Optimal noise strengths for the universal and time-

symmetric sequences, plotted in Fig. 10 , are orders of
magnitude lower than the noise strengths achievable without
concatenation, shown in Fig. 5. Though longer, the time-
symmetric sequence performs much better when c̄ετ0 is
sufficiently small.

When the pulses have a finite width δ and consequently ex-
perience systematic errors that arise from the time-independent
noise Hamiltonian that is on during the pulses, there is a floor
on the effective noise strength, namely,

η
(k)
DD � 4RδJ. (150)

As the level k increases, η
(k)
DD falls as in Eq. (145) or Eq. (148)

as long as it remains well above the floor, but reaches a plateau
as the floor is approached. Such behavior was observed in the
numerical simulations reported in [10]. This floor might be
substantially suppressed by using Eulerian pulse sequences as
in Sec. VI C.

A. Magnus expansion analysis

The noise Hamiltonian has an unambiguous decomposition
into two parts: H = HB + Herr, where HB = I ⊗ B0, Herr =∑

α Sα ⊗ Bα , and {Sα} is a basis for the traceless operators
acting on the system. For a level-1 pulse sequence with
duration T , the toggling-frame time evolution operator is
Ũ (T ) = exp[
(T )]; writing 
(T ) = −iH (1)T , we may regard
H (1) as the level-1 “effective Hamiltonian.” Like H , H (1) has
an unambiguous decomposition into two parts,

H (1) = H
(1)
B + H (1)

err ≡ I ⊗ B
(1)
0 +

∑
α

Sα ⊗ B(1)
α , (151)
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and we may define parameters that characterize the effective
noise at level 1:∥∥H

(1)
B

∥∥ � β(1),
∥∥H (1)

err

∥∥ � J (1), ε(1) = β(1) + J (1). (152)

Now, we can analyze the level-2 pulse sequence just as we did
the level-1 sequence, but with the level-0 noise Hamiltonian
H = H (0) replaced by the level-1 effective Hamiltonian H (1).
Proceeding in this way, we can estimate properties of the
toggling-frame time evolution operator Ũ (k) for the level-k
pulse sequence using the level-(k−1) Hamiltonian H (k−1). At
each level, we can define noise parameters β(k), J (k), and ε(k)

as in Eq. (152) and derive recursion relations that relate the
level-k noise parameters to level-(k−1) noise parameters.

To understand how first-order decoupling is achieved by
the level-1 sequence, we assumed that the toggling-frame
Hamiltonian is constant in the interval between pulses. For the
concatenated sequence at level 2 and above, this assumption
is not true, since the interval in between the level-k pulses
contains a complex level-(k−1) pulse sequence. However,
the unitary operator describing the evolution from the end
of one level-k pulse to the beginning of the next level-k
pulse is equivalent to the evolution operator that would have
been derived from the constant Hamiltonian H (k−1) during
the pulse interval. Thus, for the purpose of understanding the
time evolution in the toggling frame resulting from the level-k
sequence, it does no harm to imagine that the Hamiltonian is
constant between pulses and do the analysis just as for the
level-1 sequence.

For a sequence that achieves first-order decoupling, 
1 at
each level is a pure bath term



(k)
1 (T (k)) = −iT (k)H

(k−1)
B , (153)

where T (k) = Rkτ0 is the duration of the level-k sequence,
constructed by concatenating k times a sequence with R

pulses. Suppose we consider a pulse sequence such that each
pulse either commutes or anticommutes with each of the
traceless operators in the set {Sα} (the argument below can
be easily adapted to more general pulse sequences). Under
this assumption, the second-order term 
2 in the Magnus
expansion has no pure bath component (see Appendix G) and
thus contributes only to H (1)

err . Therefore, H
(k)
B arises from 


(k)
1

and the pure bath component of 

(k)
�3 = ∑∞

n=3 
(k)
n . As shown

in Appendix H, the norm of the pure bath component of 

(k)
j

is no larger than ‖
(k)
j ‖; it follows that we may choose β(k)

such that β(k)T (k) is an upper bound on

∥∥

(k)
1 (T )

∥∥ + ∥∥

(k)
�3(T )

∥∥. (154)

From Eq. (50) and Table I we see that

∥∥

(k)
�3

∥∥ � c
(k)
3 (J (k−1)T (k))(ε(k−1)T (k))2, (155)

where the “constant” c
(k)
3 actually depends on the value of

ε(k−1)T (k):

c
(k)
3 = 2

9 + 11
9 (ε(k−1)T (k)) + 9.43(ε(k−1)T (k))2, (156)

assuming ε(k−1)T (k) � 0.54 (e.g., c
(k)
3 = 0.44 for ε(k−1)T (k) =

0.1 and c
(k)
3 = 0.24 for ε(k−1)T (k) = 0.01). Recalling Eq. (153),

we conclude that

β(k) = β(k−1) + c
(k)
3 J (k−1)(ε(k−1)T (k))2. (157)

Though Eq. (157) has been expressed as an equality, the right-
hand side is actually an upper bound on ‖H (k)

B ‖.
The level-k error Hamiltonian H (k)

err arises from 

(k)
2 and the

traceless component of 

(k)
�3. It is shown in Appendix H that

the norm of the traceless component of 

(k)
j is no larger than

2‖
(k)
j ‖; therefore, we may choose J (k) such that J (k)T (k) is

an upper bound on∥∥

(k)
2 (T )

∥∥ + 2
∥∥


(k)
�3(T )

∥∥. (158)

(If the system is a single qubit, then the norm of the traceless
component of 


(k)
j is no larger than ‖
(k)

j ‖, and thus the factor
of 2 in the second term can be omitted.) Therefore, again using
Eq. (50) and Table I we find

J (k) = c
(k)
2 J (k−1)(ε(k−1)T (k)), (159)

where

c
(k)
2 = 1

2 + 2
[

2
9 (ε(k−1)T (k)) + 11

9 (ε(k−1)T (k))2

+ 9.43(ε(k−1)T (k))3
]
, (160)

assuming ε(k−1)T (k) � 0.54 (e.g., c(k)
2 = 0.588 for ε(k−1)T (k) =

0.1 and c
(k)
2 = 0.505 for ε(k−1)T (k) = 0.01).

Equation (157) can be rewritten as

β(k) = β(k−1) + K (k), (161)

where

K (k) = c
(k)
3 J (k−1)(ε(k−1)T (k))2, (162)

and iterating this equation yields

β(k) = β + K (1) + K (2) + · · · + K (k) (163)

and

ε(k) = β(k) + J (k)

= β + K (1) + K (2) + · · · + K (k) + J (k).

(164)

The solution to the recursion relations Eqs. (159), (162) and
(164) cannot be expressed easily in closed form, but the
properties of the solution can be grasped if we assume that

c
(k)
2 ε(k−1) � c̄ε (165)

for each k, where c̄ is a constant. That is, if we iterate the
recursion relations to estimate J (�), our assumption is that
Eq. (165) is satisfied for all k � �. Then using T (k) = Rkτ0,
we can replace Eq. (159) with

J (k) = (c̄ετ0) RkJ (k−1), (166)

which has the solution

J (k) = (c̄ετ0)k Rk(k+1)/2J, (167)

where J (0) = J [73].
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The effective noise strength for the level-k sequence is

η
(k)
DD = ∥∥H (k)

err

∥∥T (k) = J (k)Rkτ0

= Rk(k+3)/2 (c̄ετ0)k (Jτ0), (168)

so that

η
(k)
DD = Rk+1(c̄ετ0)η(k−1)

DD ; (169)

therefore, the optimal suppression of the noise strength is
achieved by choosing the level k to be the largest integer such
that Rk+1(c̄ετ0) < 1, or equivalently, kmax = �logR(1/c̄ετ0) −
1� [Eq. (146)].

For example, if c̄ετ0 = 10−3 and R = 4, we choose kmax =
3 (i.e., a sequence with duration T (3) = 64τ0) and obtain
η

(kmax)
DD /(Jτ0) = 2.6 × 10−4, an improvement by a factor of 60

over the noise strength η
(1)
DD achieved by the level-1 sequence.

The expression for η
(k)
DD in Eq. (168) is the exponential of

a quadratic function of k, minimized at k = logR(1/c̄ετ0) −
3/2. The nearest integer differs from this optimal value by at
most 1/2; substituting k + 1 = logR(1/c̄ετ0) into Eq. (168),
we conclude that the optimal effective noise strength satisfies
η

(opt)
DD /(Jτ0) � R−1(c̄ετ0)

1
2 logR(1/c̄ετ0)− 3

2 [Eq. (147)].
The condition Eq. (165), used in the derivation of Eq. (147),

can be justified for c̄ = O(1). Suppose for example that J is
small compared to β. In that case, ε(k−1) grows slowly with
k, and it is a good approximation to assume ε(k−1) � ε. The
optimal value of k is chosen such that Rk+1(c̄ετ0) < 1 and,
hence,

ε(k−1)T (k) � ετ0R
k < 1/(c̄R). (170)

Using Eq. (160) we see that Eq. (165) applies for k � kmax

provided that

1
2 + 2

[
2
9 (c̄R)−1 + 11

9 (c̄R)−2 + 9.43 (c̄R)−3
]

� c̄, (171)

which for R = 4 is satisfied by

c̄ = 1.027. (172)

For consistency, we note that with these values Eq. (170) yields
ε(k−1)T (k) < 0.244 < 0.54, as assumed in the derivation of
Eq. (160).

We can also check the self-consistency of the approximation
ε(k−1) � ε. Using this approximation together with Eqs. (165)
and (167) we find

K (k) = c
(k)
3 J (k−1)(ε(k−1)T (k))2

�
[
c

(k)
3 /

(
c

(k)
2

)2]
[(c̄ετ0)k−1Rk(k−1)/2J ](c̄ετ0R

k)2

= [
c

(k)
3 /

(
c

(k)
2

)2]
Rk(k+3)/2(c̄ετ0)k(c̄ε)(Jτ0), (173)

and, hence, using Eq. (168),

K (k)/ε �
[
c̄c

(k)
3 /

(
c

(k)
2

)2]
η

(k)
DD. (174)

Since η
(k)
DD � 1 for 1 � k � kmax, and Eqs. (156) and (160)

yield c
(k)
3 � c

(k)
2 , we conclude that K (k) � ε for each k. Thus,

for J � β we have ε � β and ε(k) � β(k) � β � ε for each k,
where we have used Eq. (164).

Numerical iteration of the recursion relations confirms that
the approximation ε(k−1) � ε works well for J/β < 0.3 and
that our estimate of η

(opt)
DD is reasonably tight in that case [61].

For J � β, though, ε � J and ε(k) � ε for 1 � k � kmax; we
may still use Eq. (165) to derive an upper bound on η

(opt)
DD in that

case, but our estimate Eq. (147) becomes overly pessimistic
[61]. Indeed, the case J � β is favorable for DD, since the
bath dynamics is relatively slow and the system-bath coupling,
which DD suppresses, is larger to begin with. For an analysis
of concatenated DD in this case, see Ref. [10].

If we concatenate a time-symmetric pulse sequence, which
achieves second-order decoupling, then we may replace
Eq. (159) with

J (k) = 2c
(k)
3 J (k−1)(ε(k−1)T (k))2 (175)

(the factor of 2 can be omitted if the system is a qubit), and we
can also improve the estimate of c3 to

c
(k)
3 = 2

9 + 9.43(ε(k−1)T (k))2, (176)

where ε(k−1)T (k) � 0.54. Defining c̄ for a time-symmetric
sequence by

2c
(k)
3 (ε(k−1))2 � (c̄ε)2, (177)

Eq. (175) becomes

J (k) = (c̄ετ0)2 R2kJ (k−1), (178)

which has the solution

J (k) = (c̄ετ0)2k Rk(k+1)J, (179)

and, thus,

η
(k)
DD = Rk(k+2) (c̄ετ0)2k (Jτ0). (180)

The noise strength is optimized by choosing the largest integer
k such that k + 1

2 < logR(1/c̄ετ0). For example, if R = 8
and c̄ετ0 = 10−3, we choose kmax = 2 (i.e., a sequence with
duration T (2) = 64τ0) and obtain η

(kmax)
DD /(Jτ0) = 1.7 × 10−5,

an improvement by a factor of 30 over the noise strength η
(1)
DD

achieved by the level-1 sequence. The optimal noise strength
satisfies η

(opt)
DD /(Jτ0) � R−3/4(c̄ετ0)logR(1/c̄ετ0)−2 [Eq. (149)].

If we make the approximation ε(k−1) � ε, then, because
Rk+ 1

2 (c̄ετ0) < 1 for the optimal value of k, we have

ε(k−1)T (k) � ετ0R
k < 1/(c̄

√
R). (181)

Using Eq. (176) we see that Eq. (177) applies for k � kmax

provided that

2
[

2
9 + 9.43(c̄2R)−1

]
< c̄2, (182)

which for R = 8 is satisfied by

c̄ = 1.332. (183)

As in our analysis for the non-time-symmetric case, the
approximation ε(k−1) � ε is reasonable, and our estimate
Eq. (149) is fairly tight, if J is small compared to β. The
upper bound Eq. (149) applies more generally, but it is far
from tight if J is much larger than β, in which case ε(k) � ε

for 1 � k � kmax.
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B. Including pulse errors

How is this analysis affected if the pulses are imperfect?
The answer depends on the degree to which the pulse errors
are systematic and reproducible, rather than random. As in
our discussion of Eulerian decoupling, let us assume that the
errors are systematic. This assumption is reasonable if the pulse
errors arise from the time-independent noise Hamiltonian that
is “on” during the pulses, rather than from variations in the
pulse shape.

In the recursive analysis of the concatenated pulse se-
quence, the effective Hamiltonian H (k−1) incorporates all the
damage caused by the pulses errors at level k − 1 and below.
Because the pulse errors are systematic, we may use the same
H (k−1) to describe the noise in each interval between level-k
pulses. Suppose we imagine, at first, that while the pulses
at level k − 1 and below are noisy, the pulses at level k are
ideal, and denote by Ĵ (k) the upper bound on ‖H (k)

err ‖ under this
fictitious assumption. Repeating the derivation of Eq. (159)
yields

Ĵ (k) = c
(k)
2 J (k−1)(ε(k−1)T (k)). (184)

However, now we must relate Ĵ (k) to J (k) by estimating the
effects of the pulse errors at the top level.

The noise in these level-k pulses is governed by the level-0
error Hamiltonian H (0)

err rather than the effective level-(k−1)
error Hamiltonian H (k−1)

err . We could adapt our analysis of the
Magnus expansion to this new situation, using a different upper
bound on Herr during the pulses than in the interval between
pulses, but then we would face the complication of revising
our estimate of all the higher-order terms in the expansion. To
avoid that complication, we use a different approach. As in
Sec. VII A 1, we assume that the Hamiltonian describing the
sequence of noisy pulses at level k deviates in operator norm
from the Hamiltonian describing the sequence of ideal pulses
at level k by at most 2J during a total time interval Rδ, if there
are R pulses each with width δ. It then follows from Lemma 2
in Appendix C that∥∥e
(k) − e
̂(k)∥∥ � 2RδJ, (185)

where 
(k) includes pulse-error corrections at all levels while

̂(k) includes pulse-error corrections at level k − 1 and below
but not at level k. From Eq. (I9) in Appendix I, we find that

‖
(k) − 
̂(k)‖ � d (k)
∥∥e
(k) − e
̂(k)∥∥ � 2d (k)RδJ, (186)

where the “constant” d (k) is close to one if ‖
(k)‖ and ‖
̂(k)‖
are both small; therefore, we obtain an upper bound on J (k):

J (k) � Ĵ (k) + 2‖
(k) − 
̂(k)‖/T (k)

(187)

� c
(k)
2 J (k−1)(ε(k−1)T (k)) + 4d (k)RδJ/T (k).

If at each level the second term in Eq. (187) is small com-
pared to the first term, then our previous analysis of the pulse
sequence remains a good approximation, and we conclude that
the pulse errors do not compromise the effectiveness of con-
catenated DD very much. However, the second term imposes
a floor on (our upper bound on) the effective noise strength

η
(k)
DD = J (k)T (k) � 4d (k)RδJ � 4RδJ. (188)

A noteworthy property of Eq. (187) is that only the pulse
errors at the top level appear explicitly on the right-hand side.
The errors at lower levels are included implicitly, through
their contributions to J (k−1) and ε(k−1). Accordingly, Eq. (187)
captures the idea that the cumulative effect of the errors in the
Rk pulses is smaller than might have been naively expected,
because errors that occur at lower levels in the pulse sequence
become suppressed by the upper level pulses. This is an
important feature of concatenated DD.

IX. BEYOND THE LOCAL-BATH ASSUMPTION

A key element of the noise model formulated in Sec. II is the
local-bath assumption: At any given time, the noise Hamiltoni-
ans Ha and Hb associated with distinct circuit locations a and b

act not only on disjoint sets of qubits but also on disjoint baths.
This assumption is important because it allows us to ignore
interactions among different circuit locations and thus assign
an effective noise strength ηDD to each DD-protected gate
individually. The local-bath assumption may be a reasonable
approximation to noise in actual systems, at least in some
cases, but it is not strictly satisfied; surely, there are bath
degrees of freedom that couple to multiple qubits, even while
these qubits are participating in distinct gates. Can our analysis
be extended to noise models that include correlations that arise
because qubits participating in different gates at the same time
couple to common bath variables?

Accuracy threshold theorems have been proved for
Hamiltonian models of correlated noise in [31–33]. Perhaps
similar methods can be applied to DD-protected circuits, but
this seems to be a technically challenging problem which we
leave for the future.

However, there is an easier problem that already arises
when we consider just a single circuit location, and disregard
how the noise at one location is correlated with the noise at
another location. How is our analysis affected if the qubits at
this location couple not just to a local bath comprising nearby
bath degrees of freedom but to a global bath that includes bath
variables that are far away? Of course, our previous analysis
still applies if we replace the norm ‖HB,a‖ of the local-bath
Hamiltonian by the norm ‖HB‖ of the global-bath Hamiltonian
in Eqs. (8) and (10), but the trouble with this approach is that
‖HB‖ is a huge number that scales linearly with the volume
of the bath, while an accuracy threshold criterion should be
stated in terms of intensive quantities that are independent of
the size of the system and bath. On the other hand, we expect on
physical grounds that the bath has a decomposition into local
subsystems, and that the coupling of a given bath subsystem
to a system qubit decays as the distance increases between
the bath subsystem and the qubit; if in contrast each system
qubit were coupled with constant strength to bath subsystems
arbitrarily far away, the noise would be unacceptably strong
and coherent manipulation of the system would be hopeless.
Even though the local-bath assumption formulated in Sec II
may not hold exactly, a sensible noise model should be
quasilocal; qubits ought to interact only very weakly with
bath subsystems that are far away. In this case, can we express
the effective noise strength in terms of intensive quantities?

To be concrete, consider a noise model in which a single
system qubit is immersed in a bath of Nb noninteracting spins
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in an external magnetic field. The noise Hamiltonian, assuming
HS = 0, is

H = HB + HSB =
∑

i

HB,i +
∑

i

HSB,i , (189)

where

HB,i ≡ IS ⊗ B0
i ,

HSB,i ≡
∑

α

σ α ⊗ Bα
i . (190)

Here the index i = 1, . . . ,Nb labels the bath spins and {σα,α =
1,2,3} are the Pauli operators acting on the system qubit. We
may define the strengths of the individual terms as

λi ≡ ‖HSB,i‖ and bi ≡ ‖HB,i‖ = ‖B0
i ‖, (191)

and the strength of the system-bath coupling can be character-
ized by

J ≡
∑

i

λi � ‖HSB‖ ; (192)

we assume that the sum converges to a (small) finite value in
the limit Nb → ∞. On the other hand, the quantity

β ≡
∑

i

bi � ‖HB‖ (193)

is not expected to remain bounded as Nb → ∞.
Now consider how the bath parameters {bi} enter the

Magnus expansion for a DD memory sequence or for a DD-
protected gate applied to the system qubit. The Hamiltonian
HM (t) is

HM (t) = HB + H ′(t) =
∑

i

HB,i + H ′(t), (194)

where H ′(t) = 0 or H̃err(t)[= H̃SB(t)] as in Sec. V A, so that
‖H ′(t)‖ � J . Furthermore, bath operators acting on different
bath spins commute:[

B0
i ,B

0
j

] = [
B0

i ,B
α
j

] = [
Bα

i ,Bα
j

] = 0,∀ i �= j ; (195)

the only nonvanishing commutators of bath operators are
[B0

i ,B
α
i ] and [Bα

i ,B
γ

i ] (for any spin i).
The bath parameters {bi} do not contribute to 
1(T ), so

consider 
2(T ). To estimate the integral in Eq. (89) [taking
� = 0 so that HM (t) = H̃ (t)], we need an upper bound on the
commutators. We observe that

‖[HB,H̃err(s2)]‖ =
∥∥∥∥∑

i

[HB,i,H̃SB,i(s2)]

∥∥∥∥
�

∑
i

2‖HB,i‖‖H̃SB,i(s2)‖ � 2bJ, (196)

where we have defined the single-spin bath parameter

b ≡ max
i

‖HB,i‖. (197)

We also observe that

‖[H̃err(s1),H̃err(s2)]‖ �
∥∥∥∥∑

i,j

[H̃SB,i(s1),H̃SB,j (s2)]

∥∥∥∥
�

∑
i,j

2λiλj = 2J 2. (198)

Together, Eqs. (196) and (198) imply

‖[HM (s1),HM (s2)]‖ � 4bJ + 2J 2, (199)

and plugging Eq. (199) into Eq. (89) yields

‖
2(T )‖ � (4bJ + 2J 2) 1
4T 2 � (JT )[(b + J )T ]. (200)

Using the local-bath assumption we would conclude
‖[HM (s1),HM (s2)]‖ � 4βJ + 2J 2. The result [Eq. (200)]
matches the conclusion we would reach under the local-bath
assumption, but with β now replaced with b.

Similarly, upper bounds on the higher-order Magnus terms
can be also be expressed in terms of J and b, though the
“replace β with b rule” does not quite work beyond second
order. Consider, for example, one triple commutator that
occurs in 
3(T ):

‖[HB,[H̃err(s2),H̃err(s3)]]‖
=

∥∥∥∥∑
ijk

[HB,k,[H̃SB,i(s2),H̃SB,j (s3)]]

∥∥∥∥
�

∑
ij

(‖[HB,i,[H̃SB,i(s2),H̃SB,j (s3)]]‖ (201)

+‖[HB,j ,[H̃SB,i(s2),H̃SB,j (s3)]]‖)

� 2(2b)
∑
i,j

2λiλj = 8bJ 2.

In contrast, in the local-bath model we could upper bound the
corresponding triple commutator by 4βJ 2. Simply replacing
β with b gives the wrong answer by a factor of 2, because it
fails to take into account that there are two different bath spins
that do not commute with [H̃SB,i(s2),H̃SB,j (s3)] for i �= j .
Similar factors, dependent on n, occur in the higher-order
nested commutators contributing to 
n(T ), but these factors
do not depend on the total number of bath spins Nb.

We could also include quasilocal interactions among the
bath spins and still obtain an upper bound on each Magnus
term expressed in terms of intensive quantities. Suppose, for
example, that we include in the bath Hamiltonian the additional
term

1

2

∑
i,j

HB,〈ij〉, (202)

where

HB,〈ij〉 = IS ⊗ B〈ij〉 (203)

acts trivially on the system qubit but nontrivially on the pair
of bath spins 〈ij 〉. In that case there will be an additional term
in our upper bound on ‖[HB,H̃err(s2)]‖:

1

2

∥∥∥∥∑
i,j

[HB,〈ij〉,H̃SB,i(s2) + H̃SB,j (s2)]

∥∥∥∥
� 2

∑
i,j

λi‖HB,〈ij〉‖ � 2cJ, (204)

where

c = max
i

(∑
j

‖HB,〈ij〉‖
)

. (205)
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Thus, in the modified upper bound on ‖
2(T )‖ we replace b

with b + c. The expression for c includes a sum over all bath
spins but converges to an intensive quantity if the interaction
between bath spins i and j decays sufficiently rapidly with the
distance between the spins. Similar convergent sums occur in
the upper bounds on higher-order Magnus terms.

Even when our bounds on the Magnus expansion are
intensive, they might still be useless if each local-bath
subsystem has a Hamiltonian with a large norm. In that case,
though, there is another method that might succeed, which
relates the effective noise strength to the frequency spectrum
of bath correlations. We turn to that method next.

X. DYNAMICAL DECOUPLING AND BATH
CORRELATIONS

So far, we have described how to analyze the performance
of DD using the toggling frame and the Magnus expansion.
Another method is to use the interaction picture defined
by Hc(t) + HB , that is, to transform away both the control
sequence acting on the system and the free bath dynamics. In
that case, the interaction-picture Hamiltonian is

H̃ (t) = [U †
c (t) ⊗ U

†
B(t)]Herr[Uc(t) ⊗ UB(t)]

=
∑

α

Sα(t) ⊗ Bα(t), (206)

where

Sα(t) = Uc(t)†SαUc(t), Bα(t) = eitB0Bαe−itB0 , (207)

and we can study the interaction-picture time evolution opera-
tor using the Magnus expansion defined by this Hamiltonian.
This expansion has the big advantage that the interaction
picture sums up the effects of the free bath dynamics to
all orders in β; therefore, higher-order corrections are small
provided J is small, even though β may be large. However,
there is also a substantial disadvantage: Because the interaction
picture bath operator Bα(t) is now time dependent, a pulse
sequence that achieves first-order decoupling in the toggling
frame may not achieve first-order decoupling in the interaction
picture.

On the other hand, if the bath operator Bα(t) is in some sense
slowly varying, then first-order decoupling might be satisfied
to a good approximation. Though the rate of change of the
operator Bα(t) is actually of order β, if the state of the bath
has suitable properties, then the expectation value of Bα(t) in
that state may vary slowly; then DD may work well because
the typical frequencies of the bath are sufficiently small, even
though β may be large.

When estimating ηDD using the Magnus expansion, we did
not make any assumption about the state of the bath. The
new estimates we derive in this section depend on the bath’s
frequency spectrum and hence implicitly on the bath’s state.
In order to obtain a simple formula for ηDD we impose a
further limitation on the noise model that was not needed in
the Magnus expansion analysis; we assume that the state of
the bath is discarded at the end of each circuit location and
replaced with a fresh bath state at the beginning of the next
location. Thus, we include the effects of the bath’s memory in
analyzing the effectiveness of the DD pulse sequence at each

circuit location, but we assume that noise correlations between
consecutive circuit locations can be neglected. We recognize
the artificiality of this noise model, but we adopt it anyway
because it allows us to derive an explicit expression for ηDD.
See Appendix J for further discussion.

A. Dyson expansion

In the toggling frame, it is convenient to analyze DD using
the Magnus expansion because for a well-chosen sequence
of ideal pulses 
1 is a pure bath term, and the remaining
noise acting on the system resides in the higher-order terms.
However, if we use the interaction picture instead, so that first-
order decoupling is not exact even for ideal pulses, it is simpler
to estimate the effective noise strength ηDD using the Dyson
expansion rather than the Magnus expansion. The interaction-
picture time evolution operator Ũ (t) = [U †

c (t) ⊗ U
†
B(t)]U (t,0)

is

Ũ (t) = T exp

(
−i

∫ t

0
dt ′H̃ (t ′)

)
, (208)

whereT denotes time ordering. For the local-bath noise model,
augmented by the assumption that the bath is refreshed at the
beginning at each circuit location, the arguments in Appendix J
show that the noise strength η̄ can be expressed as

η̄2 = max
a,|�〉

〈(Ũ †(T ) − I)(Ũ (T ) − I)〉

= max
a,|�〉

〈2I − Ũ (T ) − Ũ †(T )〉; (209)

here T is the duration of the location, the expectation value
〈·〉 is evaluated in the pure state |�〉 ⊗ |�a〉, where |�a〉
is (a purification of) the initial state of the bath at the
beginning of location a, and the maximum is with respect to
all circuit locations and all system states. As is also shown in
Appendix J,

η̄2 � max
∫ T

0
dt1

∫ T

0
dt2〈H̃ (t1)H̃ (t2)〉

+ 2

(
eJT − 1 − JT − 1

2
(JT )2

)
. (210)

For each term in the expansion [Eq. (206)] the expectation
value in the product state factorizes and we have

η̄2 �
∫ T

0
dt1dt2

∑
α,β

〈Sα(t1)Sβ(t2)〉S〈Bα(t1)Bβ(t2)〉B

+ 2

(
eJT − 1 − JT − 1

2
(JT )2

)
, (211)

where the maximum over circuit locations and system states
is implicit.

Now suppose that the bath’s time correlations are stationary,
that is, that the expectation value 〈Bα(t1)Bβ(t2)〉B is a function
of the time difference t1 − t2; this will be true if the initial state
of the bath commutes with HB , for example, if the state is a
mixture of energy eigenstates such as a thermal state. Then the
bath correlation function may be expressed as

〈Bα(t1)Bβ(t2)〉B =
∫ ∞

−∞

dω

2π
e−iω(t1−t2)Kαβ(ω), (212)
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and Eq. (211) becomes

η̄2 � max
∫ ∞

−∞

dω

2π

∑
α,β

〈S̃α(ω)S̃β(−ω)〉SKαβ(ω) + · · · , (213)

where

S̃α(ω) =
∫ T

0
dte−iωtSα(t), (214)

and the ellipsis indicates the terms higher order in J . Defining
the bath’s spectral function J 2

αβ,i by

Kαβ(ω) = 2π
∑

i

J 2
αβ,iδ(ω − ωi), (215)

our expression for (the square of) the noise strength is

η̄2 � max
∑
i,α,β

J 2
αβ,i〈S̃α(ωi)S̃β(−ωi)〉S + · · · . (216)

Thus, speaking loosely, DD is effective if S̃α(ω) is suppressed
when ω is a “typical frequency” where the bath spectral
function has support. We use the symbol J 2 advisedly, because√

J 2
αβ,i , like J = max ‖Herr‖, scales linearly with the strength of

the system-bath coupling.
The operator S̃α(ω) can be written as T S̄α(ωT ), where S̄α

is dimensionless. Adapting our terminology to this correlation
function analysis, let us say that a pulse sequence achieves
nth-order decoupling if the first n terms in the Taylor expansion
of S̄α(ωT ) vanish, so that

S̃α(ω) = T [S̄α,n(ωT )n + O[(ωT )n+1]]. (217)

Equivalently, the pulse sequence achieves nth-order decou-
pling, provided ∫ T

0
dttmSα(t) = 0 (218)

for all α and for m = 0,1,2, . . . ,n − 1. Denoting the norm of
the operator S̄α,n by Cα,n, we find that for a pulse sequence
achieving nth-order decoupling, the noise strength is

ηDD �
[ ∑

i,α,β

Cα,nCβ,nJ
2
αβ,iT

2(ωiT )2n

]1/2

+ · · · , (219)

where now the ellipsis includes corrections both higher
order in ωT and higher order in the Dyson expansion.
Therefore, ignoring the O[(JT )3] corrections higher order
in the Dyson expansion, nth-order decoupling implies that
DD suppresses the effective noise strength by n powers of
ωT , where ω is a characteristic bath frequency, rather than n

powers of εT as in our previous analysis using the Magnus
expansion.

B. Universal decoupling

To be concrete, consider the case of a single qubit with
noise Hamiltonian

H = I ⊗ B0 +
∑

α=x,y,z

σα ⊗ Bα. (220)

For a sequence of ideal zero-width Pauli operator pulses,
the time-dependent system operator in the interaction-picture
Hamiltonian becomes

σα(t) = Fα(t)σα, (221)

where Fα(t) = ±1 [+1 if σα commutes with Uc(t) and −1
if σα anticommutes with Uc(t)]. For the universal decoupling
sequence

Uc(tDD) = ZIXIZIXI, (222)

these functions are

Fx = (+ + −−),

Fy = (+ − +−), (223)

Fz = (+ − −+);

here, for example, Fx = (+ + −−) means that Fx has the
value +1 in the intervals [0,τ0] and [τ0,2τ0] and has the
value −1 in the intervals [2τ0,3τ0] and [3τ0,4τ0]. All three
functions integrate to zero over the interval [0,4τ0] and
hence achieve first-order decoupling. Evaluating the Fourier
transform

F̃α(ω) =
∫ 4τ0

0
dte−iωtFα(t), (224)

we find

(−iω)F̃x(ω) = (x − 1)(1 + x − x2 − x3) = −(x2 − 1)2 = 4e−2iωτ0 sin2(ωτ0) = 4(ωτ0)2 + · · · ,

(−iω)F̃y(ω) = (x − 1)(1 − x + x2 − x3) = −(x − 1)(x4 − 1)/(x + 1)

= 2e−2iωτ0 tan(ωτ0/2) sin(2ωτ0) = 2(ωτ0)2 + · · · , (225)

(−iω)F̃z(ω) = (x − 1)(1 − x − x2 + x3) = (x − 1)(x2 − 1)2/(x + 1)

= 4ie−2iωτ0 tan(ωτ0/2) sin2(ωτ0) = 2i(ωτ0)3 + · · · ,

where x = e−iωτ0 . The low-frequency suppression of F̃y(ω)
is stronger by a factor of 2 than the suppression of Fx(ω)
because the period of Fy(t) is shorter than the period of

Fx(t). The function F̃z(ω) is suppressed by a further power
of ωτ0 because Fz(t) is time symmetric: Fz(4τ0 − t) = Fz(t).
Indeed, for any function F (t) satisfying F (T − t) = F (t), we
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have

F̃ (ω) =
∫ T

0
dte−iωtF (t) =

∫ T

0
dte−iωtF (T − t)

=
∫ T

0
dte−iω(T −t)F (t) = e−iωT F̃ (−ω); (226)

thus, F̃ (ω) = e−iωT /2F̃even(ω), where F̃even(ω) is an even
function of ω, and F̃ (ω) = O(ω2) if F̃ (0) vanishes.

The time-symmetric pulse sequence

Uc(tDD) = IXIZIXIIXIZIXI (227)

achieves second-order decoupling because all three functions
obey F (t) = F (T − t):

Fx = (+ + − − − − ++),

Fy = (+ − + − − + −+), (228)

Fz = (+ − − + + − −+).

Compared to the four-pulse sequence, the functions Fx and
Fy are repeated twice, but with a sign flip, so the Fourier
transform is suppressed by an additional factor of 1 − x4 =
2ie−2iωτ0 sin(2ωτ0) ≈ 4i(ωτ0). The function Fz is repeated
without the sign flip, so its Fourier transform is multiplied
by 1 + x4 = 2e−2iωτ0 cos(2ωτ0) ≈ 2. Therefore, we have

F̃x(ω) = −16τ0(ωτ0)2 + · · · ,

F̃y(ω) = −8τ0(ωτ0)2 + · · · , (229)

F̃z(ω) = −4τ0(ωτ0)2 + · · · .

Again, different types of low-frequency Pauli noise are
suppressed by different (constant) factors, with the heaviest
suppression for phase (i.e., σz) noise. By altering the pulse
sequence, the stronger suppression could be applied to σx or
σy noise instead.

C. Finite-width pulses

If the pulses are not ideal, then first-order decoupling will
not be exact. For example, if the pulses have nonzero width,
then there is a contribution to η̄2 of the form∫

(dt1dt2)PW

∑
α,β

〈Sα(t1)Sβ(t2)〉S〈Bα(t1)Bβ(t2)〉B

=
∑
i,α,β

J 2
αβ,i〈S̃α,PW(ωi)S̃β,PW(−ωi)〉S ; (230)

here
∫

(dt)PW denotes integration over the nonzero-width
pulses, and

S̃α,PW(ω) =
∫

(dt)PWe−iωtSα(t). (231)

For a sequence of N pulses, each with duration δ, we expect
S̃α,PW(ω) ≈ Nδ‖Sα‖ for ωt � 1. Comparing with Eq. (217),
we conclude that for a pulse sequence that achieves nth-order
decoupling in the ideal case, pulse-width corrections are small
provided

Nδ/T � (ωT )n, (232)

where ω is a typical bath frequency. This is similar to the
criterion we found using the Magnus expansion, except with
the frequency ω now replacing the operator norm ε.

For an Eulerian sequence with reproducible pulse errors,
S̃α(ω) vanishes in the limit ω → 0 (by the same reasoning
as in Sec. VI C); therefore, first-order decoupling is exact.
Furthermore, S̃α(ω) is an even function of ω for any time-
symmetric pulse sequence, and therefore a time-symmetric
Eulerian sequence achieves second-order decoupling.

D. Gaussian noise

We have seen that, while in our previous analysis we
required β = max ‖HB‖ to be small compared to 1/τ0 in
order to get a useful estimate of ηDD, the analysis based on
bath correlation functions can provide a useful estimate even
if β is large. However, we still require that J = max ‖Herr‖ is
small to justify neglecting the higher-order corrections in the
Dyson expansion in Eq. (210). In some cases it is possible to
go further and express these higher-order corrections in terms
of correlation functions as well, thereby obtaining an estimate
that makes sense even if the system qubits are coupled to bath
operators with large norm (e.g., the quadrature amplitudes of
a bath of harmonic oscillators).

Consider, for example, a single qubit coupled to bath
operators whose correlators obey Gaussian statistics in the
interaction picture: The interaction-picture Hamiltonian is

H̃ (t) =
∑

α

σα(t) ⊗ Bα(t), (233)

where the expectation value of an odd number of bath operators
vanishes, and the expectation of an even number of bath
operators is

〈B(1)B(2) · · · B(2n)〉
=

∑
contractions

K(i1,i2)K(i3,i4) · · · K(i2n−1,i2n). (234)

Here the sum is over the (2n)!/2nn! ways to divide the labels
1,2, . . . 2n into n unordered pairs, and we use the shorthand
B(i) = Bαi

(ti), K(i,j ) = 〈B(i)B(j )〉B . Thus, terms of odd
order in the Dyson expansion for η̄2 vanish, and we may bound
the (2n)th-order term as

∣∣∣∣
〈

1

(2n)!

∫ T

0
dt1 . . . dt2nT (H̃ (t1) · · · H̃ (t2n))

〉∣∣∣∣
� 1

(2n)!

∫ T

0
dt1 . . . dt2n

∑
α1,...α2n

∑
contractions

|K(i1,i2) · · · K(i2n−1,i2n)| (235)

= 1

(2n)!

∑
contractions

(2K)n = Kn

n!
, where K = 1

2

∫ T

0
dtds

∑
α,β

|〈Bα(t)Bβ(s)〉B |.
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To derive Eq. (235), we use Eq. (234) and ‖σα(t)‖ = 1, and
we note that the value of |K(i,j )| does not depend on the time
ordering of ti and tj . We conclude that, in the case of Gaussian
noise, the sum of all corrections higher than quadratic order in
the Dyson expansion can be bounded above by

∞∑
n=2

Kn/n! = eK − 1 − K, (236)

and that the quadratic term provides a good approximation to
the effective noise strength for K sufficiently small.

E. Nonuniformly spaced pulses

Another approach to analyzing DD is to use the Dyson
expansion and to also expand Bα(t) in powers of B0t , thus
obtaining a double expansion in powers of JT and βT . In that
case we might say that “nth-order decoupling” is achieved
if, in the expression for the interaction-picture evolution
operator Ũ (T ), all terms of order T m are pure bath terms
for m = 1,2, . . . ,n. For the case of a qubit subject to pure
dephasing noise (B1 = B2 = 0), it is shown in [13,39] that in
this sense nth-order decoupling can be achieved by a sequence
of X pulses with n + 1 pulse intervals, where the pulses
are nonuniformly spaced in time. For general single-qubit
noise, nth-order decoupling can be achieved by a sequence of
nonuniformly spaced X and Z pulses with altogether (n + 1)2

pulse intervals [70], and for general m-qubit noise, (n + 1)2m

pulse intervals suffice [72].
The corrections higher-order in T are not necessarily small

unless both βT � 1 and JT � 1 are satisfied. However, the
ideal pulse sequence constructed in [70] has the property∫ T

0
dttmFα(t) = 0, m = 0,1, . . . n − 1, α = x,y,z.

(237)

(The sequence in [13,39] has this property only for α = z.)
Therefore, even if βT is not small, we can use the correlation
function analysis to show that same sequence also achieves
nth-order decoupling in the sense of Eq. (217). Therefore,
DD works effectively if ωT � 1, where ω is a typical bath
frequency, provided that either JT � 1 or (in the case of
Gaussian noise) K � 1. The same remark applies to pure
dephasing noise for the pulse sequence in [13,39].

F. Concatenated dynamical decoupling

Instead of using the Magnus expansion, we can analyze the
performance of concatenated DD sequences using the Dyson
expansion and bath correlation functions. As in Sec. X A, we
suppose that the higher-order terms in the Dyson expansion can
be neglected and focus on the lowest-order term Eq. (216).
The objective is to show that, by concatenating k times
a pulse sequence that achieves first-order decoupling, kth-
order decoupling can be achieved, in the sense that S̃α(ω) =
O[(ωT )k].

To illustrate the idea, consider the simple pulse sequence
that decouples pure-dephasing noise for a single qubit:

Uc(tDD) = XIXI, (238)

so that the “level-1” function multiplying σz in the interaction
picture can be represented as

F (1)
z = (+−). (239)

When we concatenate the pulse sequence, F (1)
z is replaced with

F (2)
z , in which F (1)

z is repeated twice, but with a sign flip in the
second repetition,

F (2)
z = (+ − −+), (240)

and for higher-level sequences we have

F (3)
z = (+ − − + − + +−),

F (4)
z = (+ − − + − + + − − + + − + − −+), (241)

etc. Evaluating the Fourier transforms of these functions,

F̃ (k)
z (ω) =

∫ 2kτ0

0
dte−iωtF (k)

z (t), (242)

we see that

F̃ (1)
z (ω) = (−iω)−1(x − 1)(1 − x) (243)

and

F̃ (k)
z (ω) = (1 − x2k−1

)F̃ (k−1)
z (ω), (244)

where x = e−iωτ0 , and, hence,

F̃ (n)
z (ω) = (−iω)−1x1/2(x1/2 − x−1/2)

×
n∏

k=1

x2k−2
(
x−2k−2 − x2k−2

)
= 2ω−1x1/2 sin(ωτ0/2)

×
n∏

k=1

x2k−2
[2i sin(2k−2ωτ0)]. (245)

The leading behavior of this function for small ωτ0 is

F̃ (n)
z (ω) = τ0(i)n2n(n−1)/2

(
ωτ0

)n

+ · · · , (246)

and therefore Eq. (216) becomes

η
(n)
DD � 2n(n−1)/2

(∑
i

(
J 2

33,iτ
2
0

)
(ωiτ0)2n

)1/2

+ · · · , (247)

where we neglect corrections both higher order in the Dyson
expansion and higher order in frequency. Naively, this ex-
pression for the effective noise strength ηDD is optimized by
choosing the level of concatenation n to be the largest integer
such that 2n−1 (ωτ0) < 1 where ω is a “typical” bath frequency.
Note, however, that for 2n (ωτ0) ≈ 1 the higher-order correc-
tions in (ωτ0) modify ηDD by an O(1) multiplicative factor.
Note also that 2nτ0 = T (n) is the duration of the level-n pulse
sequence, and thus the optimal pulse sequence has duration
comparable to a typical inverse frequency of the bath.

Other concatenated pulse sequences can be studied simi-
larly. Consider for example the universal DD sequence. We
have seen in Eq. (225) that this sequence suppresses noise
asymmetrically (the best suppression for σz, the worst for σx),
so we might choose to alter the sequence at higher levels
to provide more balanced noise suppression. However, if we
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do not do that, the functions F̃ (k)
α (ω) can be specified by

augmenting Eq. (225) with

F̃ (k)
x (ω) =

(
1 + x4k−1 − (

x4k−1)2 − (
x4k−1)3

)
F̃ (k−1)

x (ω)

= (x4k−1
)3/2(4i) cos(4k−1(ωτ0)/2)

× sin(4k−1(ωτ0))F̃ (k−1)
x (ω),

F̃ (k)
y (ω) =

(
1 − x4k−1 + (

x4k−1)2 − (
x4k−1)3

)
F̃ (k−1)

y (ω)

= (
x4k−1)3/2 (i) sin(2 · 4k−1(ωτ0))

cos(4k−1(ωτ0)/2)
F̃ (k−1)

x (ω),

F̃ (k)
z (ω) =

(
1 − x4k−1 − (

x4k−1)2 + (
x4k−1)3

)
F̃ (k−1)

z (ω)

= (
x4k−1)3/2 (−2) sin2(4k−1(ωτ0))

cos(4k−1(ωτ0)/2)
F̃ (k−1)

x (ω). (248)

The weakest suppression of low-frequency noise occurs for
F̃ (k)

x (ω), where

F̃ (k)
x (ω) = [4k(iωτ0) + · · · ]F̃ (k−1)

x (ω), (249)

and, hence,

F̃ (k)
x (ω) = τ0

n∏
k=1

(4kiωτ0) + · · ·

= τ0(i)n4n(n+1)/2(ωτ0)n + · · · , (250)

where we neglect the terms higher order in ωτ0. From Eq. (216)
we obtain the estimate of the noise strength,

η
(n)
DD ≈ 4n(n+1)/2

( ∑
i,α,β

(
J 2

αβ,iτ
2
0

)
(ωiτ0)2n

)1/2

+ · · · . (251)

Noting that the universal DD sequence has length R = 4, we
see that Eq. (251) resembles Eq. (168), but with the operator
norm ε replaced with a bath frequency.

XI. CONCLUSIONS

We have derived upper bounds on the effective noise
strength ηDD for DD-protected quantum gates, in terms of
the parameters of a Hamiltonian noise model. From the upper
bounds on the noise strength we can extract a noise suppression
threshold condition, a sufficient condition for DD-protected
gates to outperform unprotected gates. We can also derive an
accuracy threshold condition; when the noise parameters obey
this condition, scalable quantum computing is possible. Our
results show that DD, and in particular concatenated DD, can
improve the gate accuracy and overhead cost of fault-tolerant
quantum computing.

Dynamical decoupling works when the noise varies slowly
on a time scale determined by the pulse sequence. Therefore,
estimates of the achievable effective noise strength depend
on parameters quantifying the speed of the bath dynamics.
We have used two different methods to quantify the accuracy
of DD-protected gates, appropriate for two different ways of
characterizing the time variation of the noise. From the Magnus
expansion in the toggling frame we derived an expression for
ηDD in terms of the operator norm of the noise Hamiltonian;
an advantage of this method is that ηDD does not depend
on the state of the bath. From the Dyson expansion in the

interaction picture we derived an expression for ηDD in terms
of the frequency spectrum of bath correlations. While the bath
frequency spectrum does depend on the state of the bath, the
second method sometimes yields useful result when the first
method fails, because the norm β = ‖HB,a‖ of the local-bath
Hamiltonian is too large. Our correlation function analysis can
remain applicable even in the formal limit β → ∞.

Our analysis of fault-tolerant circuits built from DD-
protected gates applies only to Hamiltonian noise models
satisfying suitable assumptions. For the Magnus expansion
analysis we used the local-bath model; this allows us to
study each DD-protected gate individually, ignoring noise
correlations among distinct gates being executed in parallel
at the same time. For the correlation function analysis we
used an even more artificial model, in which the state of
the bath is refreshed after each DD-protected gate. This
assumption allows us to include non-Markovian effects during
the DD pulse sequence at each protected gate, but to ignore
these effects when the DD-protected gates are composed in a
quantum circuit. It is clearly desirable to extend our analysis
to models with more general noise correlations.

Here we have proposed to combine DD with fault-tolerant
quantum computing straightforwardly, by replacing each gate
in a fault-tolerant circuit by the corresponding DD-protected
gate. We have not studied systematically the improvements
in fault tolerance that might be achieved using Eulerian
dynamically corrected gates [54–56] which are robust against
pulse imperfections, nor have we considered the potential
advantages of qubit encodings that allow gates and DD pulses
to commute, so that both can be applied simultaneously. This
latter strategy has been shown numerically to lead to robust
gates for a spin bath model [65]. Perhaps other ways to
combine DD with fault tolerance can be found, leading to
further gains in efficiency and accuracy.
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APPENDIX A: REVIEW OF THE MAGNUS EXPANSION

Here we briefly review some properties of the Magnus
expansion that are used in our arguments. For a more detailed
discussion, see [44].

The foundation of the Magnus expansion is the following
theorem.

Theorem 1. Suppose

d

dt
e
(t) = M(t)e
(t). (A1)
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Then
d

dt

(t) =

∞∑
n=0

Bn

n!
adn


(t)[M(t)]. (A2)

Here the {Bn} are the Bernoulli numbers defined by

x

ex − 1
=

∞∑
n=0

Bn

n!
xn, (A3)

and adn
B[A] is defined by

adn
B[A] ≡ [B,[B,[· · · [B,[B,A]] · · · ]]] (A4)

(ad0
B[A] = A, and adn

B[A] for n � 1 contains n nested com-
mutators). The series converges provided ‖
(t)‖ < π .

Proof. To obtain a useful expression for M(t) =
( d
dt

e
(t))e−
(t), we first evaluate

d

dλ

[
d

dt
(eλ
(t))e−λ
(t)

]

=
[

d

dt

(
d

dλ
eλ


)
e−λ
(t)

]
−

(
d

dt
eλ
(t)

)

(t)e−λ
(t)

=
[

d

dt
(eλ
(t)
(t))e−λ
(t)

]
−

(
d

dt
eλ
(t)

)

(t)e−λ
(t)

= eλ
(t)

(
d

dt

(t)

)
e−λ
(t)

=
∞∑

n=0

λn

n!
adn


(t)

[
d

dt

(t)

]
. (A5)

In the last line we have used the identity

eλBAe−λB =
∞∑

n=0

λn

n!
adn

B[A], (A6)

which can be verified by differentiating both sides k times with
respect to λ and then setting λ = 0. Expressing M(t) as the
integral of its derivative, we find

M(t) =
∫ 1

0
dλ

d

dλ

[
d

dt
(eλ
(t))e−λ
(t)

]

=
∫ 1

0
dλ

∞∑
n=0

λn

n!
adn


(t)

[
d

dt

(t)

]

=
∞∑

n=0

1

(n + 1)!
adn


(t)

[
d

dt

(t)

]
. (A7)

Thus, we have shown that M(t) = Oad
(t) [
d
dt


(t)], where

OA =
∞∑

n=0

1

(n + 1)!
An = eA − 1

A
, (A8)

which is inverted by

O−1
A =

(
eA − 1

A

)−1

=
∞∑

n=0

Bn

n!
An. (A9)

Therefore,

d

dt

(t) = O−1

ad
(t)
[M(t)] , (A10)

from which Eq. (A2) follows.

Regarding the convergence of the expansion, we note that
‖adn

B‖ � (2‖B‖)n and that the series expansion of x/(ex −
1) converges for |x| < 2π , because the nearest poles to the
origin in the complex x plane are at x = ±2πi. Therefore, the
expansion in Eq. (A2) converges for ‖2
(t)‖ < 2π . �

In the Magnus expansion, we express 
(t) = ∑∞
n=1 
n(t),

where 
n(t) is nth order in M . Using this expansion, Eq. (A2)
becomes

d

dt

1(t) = M(t),

d

dt

n(t) =

n−1∑
j=1

Bj

j !
S(j )

n (t), n � 2, (A11)

where

S(j )
n (t) =

(n−1)∑
i1,i2,...,ij

ad
i1 (t)ad
i2 (t) · · · ad
ij
(t) [M(t)] ; (A12)

here the sum is over non-negative integers {i1,i2, . . . ,ij },
satisfying i1 + i2 + · · · + ij = n − 1. We see that

S(1)
n (t) = [
n−1(t),M(t)] (A13)

and that S
(j )
n for j > 1 can be expressed as

S(j )
n =

n−j∑
m=1

[

m(t),S(j−1)

n−m (t)
]
, 2 � j � n − 1. (A14)

The relations Eqs. (A11), (A13), (A14) provide an algorithm
for generating the terms in the Magnus expansion recursively,
and we use these recursion relations to derive our upper bounds
on the higher-order terms.

APPENDIX B: EVEN MAGNUS TERMS VANISH FOR A
TIME-SYMMETRIC HAMILTONIAN

Here we prove the fact that, if HM (t) is time symmetric, all
even Magnus terms vanish. This was previously known in the
NMR literature, at least for the case of a piecewise constant
Hamiltonian [47].

Lemma 1. If HM (T − t) = HM (t), then 
n(T ) = 0 for all
even n.

Proof. First we show that 
(T ) is an odd function in
A(t) = −iHM (t) when HM (t) [or, correspondingly, A(t)] is
time symmetric about T/2. Defining �N ≡ T/2N for N a
positive integer, the evolution operator from t = 0 to t = T

can be written as

U (T ,0) = lim
N→∞

eA(T )�N eA(T −�N )�N · · · eA( T
2 +�N )�N

× eA( T
2 −�N )�N · · · eA(�N )�N eA(0)�N

= lim
N→∞

eA(0)�N eA(�N )�N · · · eA( T
2 −�N )�N

× eA( T
2 −�N )�N · · · eA(�N )�N eA(0)�N , (B1)

where in the second equality, we have used the time symmetry
A(T − t) = A(t). Taking the adjoint of Eq. (B1), and noting
that A(t)† = −A(t), we find

U †(T ,0) = lim
N→∞

e−A(0)�N e−A(�N )�N · · · e−A( T
2 −�N )�N

× e−A( T
2 −�N )�N · · · e−A(�N )�N e−A(0)�N . (B2)
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Thus, U †(T ,0) has the same form as U (T ,0), except for the
replacement A(t) → −A(t).

Since U (T ,0) = exp [
(T )] and U †(T ,0) = exp [−
(T )],
we conclude that under the replacement A(t) → −A(t), 
(T )
transforms as 
(T ) → −
(T ) + i2π�, for some integer �. In
fact, since the integer � cannot jump discontinuously when
A(t) is smoothly deformed, � must be a constant independent
of A(t), and by taking the limit A(t) → 0 we see that � = 0;
thus, 
(T ) changes sign under A(t) → −A(t), that is, is an
odd function of A(t).

In general, 
n(T ) is an integral of an expression containing
n factors of A(t). Thus, 
n(T ) is invariant under the replace-
ment A(t) → −A(t) for n even and changes sign under this
replacement for n odd. Since in the time-symmetric case 
(T )
changes sign under A(t) → −A(t), we conclude that 
n(T )
vanishes for n even. �

APPENDIX C: ERROR ESTIMATE FOR TIME EVOLUTION

Here we prove the following.
Lemma 2. Suppose that the time evolution operator U (t)

satisfies the differential equation

d

dt
U (t) = −iH (t)U (t) (C1)

with the initial condition U (t0) = U0, while Ũ (t) satisfies

d

dt
Ũ (t) = −iH̃ (t)Ũ (t) (C2)

with the same initial condition, where both H (t) and H̃ (t) are
Hermitian. Then

‖Ũ (t) − U (t)‖ �
∫ t

t0

ds‖H̃ (s) − H (s)‖. (C3)

Proof.

‖Ũ (t) − U (t)‖ = ‖Ũ (t)U (t)−1 − I‖
=

∥∥∥∥
∫ t

t0

ds
d

ds
(Ũ (s)U (s)−1)

∥∥∥∥
=

∥∥∥∥−i

∫ t

t0

dsŨ (s)(H̃ (s) − H (s))U (s)−1

∥∥∥∥
�

∫ t

t0

ds‖Ũ (s)(H̃ (s) − H (s))U (s)−1‖

�
∫ t

t0

ds‖H̃ (s) − H (s)‖. � (C4)

In this paper, we use Lemma 2 in three ways. In one
application, we consider the case where both Hamiltonians are
time independent and conclude that [compare with Eq. (42)]

‖Ũ (t) − U (t)‖ � (t − t0)‖H̃ − H‖. (C5)

This inequality allows us to relate the effective noise strength
ηDD achieved by DD to our bounds on the terms in the Magnus
expansion.

In another application, we consider H to be HS + HB ,
where HS governs the ideal system dynamics and HB governs
the bath dynamics, while the Hamiltonian for the noisy joint
evolution of system and bath is H̃ = H + HSB , where HSB

is responsible for the noise. Then in the local-bath model, if
‖HSB‖ � J and a gate is executed in time τ0, Lemma 2 implies
that the norm of the “bad” part of the gate is bounded above
by Jτ0. Thus, we may estimate the effective noise strength in
the absence of DD as η = Jτ0, as in Eq. (53).

In the third application, we use Lemma 2 to estimate the
error arising from pulses with nonzero width. We consider
H̃ (t) to be the Hamiltonian describing the actual DD sequence
with realistic pulses and H (t) to be the idealized evolution
for zero-width pulses, where both Hamiltonians are expressed
in the toggling frame determined by the ideal sequence.
Suppose that there are R pulses and that each realistic pulse
has support in a time interval of width δ. Both H̃ (t) and
H (t) can be expressed as a sum of a bath Hamiltonian
and an error Hamiltonian; the bath Hamiltonian cancels in
the difference H̃ (t) − H (t), and we suppose that for both
the realistic and the ideal sequences the norm of the error
Hamiltonian is bounded above by J during the pulses. Thus,
‖H̃ (t) − H (t)‖ � 2J during the pulses (a total duration of
Rδ), while H̃ (t) = H (t) outside the pulses; thus, Lemma 2
implies ‖Ũ (T ) − U (T )‖ � 2RδJ , as in Eq. (185).

APPENDIX D: BOUNDS FOR EVEN MAGNUS TERMS IN
THE TIME-SYMMETRIC CASE

We want to generalize the argument used to compute the
bound for 
2(T ) in the case where HM (t) is time symmetric
except for t ∈ �. To do this for higher-order terms requires a
formula for the Magnus terms for which all the multiple time
integrals are explicit. Such a formula can be found in [74] (for
n � 2):


n(T ) = 1

n

∫ T

0
dt1 . . .

∫ T

0
dtnLn

× [[ . . . [A(t1),A(t2)], . . . ],A(tn)], (D1)

where

Ln ≡
n−1∑
l=1

1

l
(−1)l+1

∑
1�j1<...<jn−l<n

n−l∏
m=1

�(jm,jm + 1).

(D2)

The Ln coefficients take care of the time-ordering and
relabeling of the integration variables. For n even, following
what we did in the 
2(T ) case, we split up the n time
integrals into n different cases: (1) none of ti ,i = 1, . . . ,n are in
�, (2) exactly one of ti ∈ �, (3) exactly two of ti ∈ �, . . ., (n)
exactly n of ti ∈ �. Case (1) is zero from the time symmetry
of HM (t) for t /∈ �; the remaining cases we bound by first
bounding the nested commutator and Ln and then doing the
time integral.

The (n − 1)-nested commutator can be bounded as

‖[[ . . . [A(t1),A(t2)], . . . ],A(tn)]‖
� 2n−2 ‖[A(t1),A(t2)]‖ ‖A(t3)‖ . . . ‖A(tn)‖
� 2n−2(4Jε)εn−2

= 2nJ εn−1. (D3)

The 2n−2 factor in the first line comes from opening up (n − 2)-
nested commutators using submultiplicativity of the operator
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norm. The (4Jε) factor in the second line is an upper bound
on ‖[A(t1),A(t2)]‖. The coefficient Ln can be bounded by
ignoring the step function (i.e., ignoring the time ordering,
since we do not have the details of � anyway):

|Ln| �
n−1∑
l=1

1

l

∑
1�j1<j2<...<jn−l<n

1

=
n−1∑
l=1

1

l

(
n − 1

n − l

)
=

n−1∑
l=1

1

n − l

(
n − 1

l

)
. (D4)

The binomial factor arises from counting the number of terms
in the sum over ji : We pick n − l elements from the numbers 1
to n − 1, and arranging them in ascending order gives a single
choice of (j1,j2, . . . ,jn−l) and hence a single term in the sum.
The number of ways of choosing n − l elements from n − 1
distinct numbers is given by the binomial factor. To bound the
remaining sum, consider

∫ 1

0
dx(1 + x)n−1 =

n−1∑
l=0

(
n − 1

l

)
1

n − l
xn−l

∣∣∣∣x=1

x=0

=
n−1∑
l=0

(
n − 1

l

)
1

n − l
. (D5)

Therefore, we have that

|Ln| �
∫ 1

0
dx(1 + x)n−1 −

(
n − 1

0

)
1

n

= 2

n

(
2n−1 − 1

)
. (D6)

Putting these back in 
n(T ) (n even) and doing the time
integrals, we find that

‖
n(T )‖ � 2

n2
(2n−1 − 1)(2nJ εn−1)

[(
n

1

)
�(T − �)n−1

+
(

n

2

)
�2(T − �)n−2 + · · · +

(
n

n

)
�n

]

= 2n+1Jεn−1

n2
(2n−1 − 1)[T n − (T − �)n]. (D7)

In the first inequality above, the terms in the brackets are the
n − 1 cases for choosing the times t1, . . . ,tn, with at least one
being in �.

One can check that Eq. (D7) agrees with Eq. (141) in the
n = 4 case. We also see that, for each n, 
n(T ) is of order
�T n−1 and thus vanishes in the limit � → 0.

APPENDIX E: S( j )
n COEFFICIENTS

Here we derive bounds on the S
(j )
n coefficients found in the

recursive formulas [Eqs. (84a)–(84e)] for the Magnus terms.
Lemma 3. For all n � 2, 1 � j � n − 1,

∥∥S(j )
n (t)

∥∥ � f (j )
n J (2εt)n−1 , (E1)

where the coefficients are defined recursively:

f
(0)
1 = 1, f (0)

n = 0, n > 1, (E2a)

f (j )
n = 2

n−j∑
m=1

m−1∑
p=0

|Bp|
p!m

f (p)
m f

(j−1)
n−m , n � 2; (E2b)

here the {Bp} are the Bernoulli numbers, defined by

x

ex − 1
=

∞∑
p=0

Bp

p!
xp. (E3)

Proof. We prove the lemma by induction. We begin with
the smallest case where n = 2,j = 1:

∥∥S
(1)
2 (t)

∥∥ = ‖[
1(t), − iHM (t)]‖

�
∫ t

0
ds‖ [HM (s),HM (t)] ‖. (E4)

The commutator can be bounded as ‖[HM (s),HM (t)]‖ � 4Jε.
This thus gives ‖S(1)

2 (t)‖ � 4Jεt . Since f
(1)
2 = 2, this can be

rewritten as ‖S(1)
2 ‖ � 4Jεt = f

(1)
2 J (2εt).

For a given n � 3, suppose that the lemma holds for all
S

(p)
m for m < n,1 � p � m − 1. There are three different types

of S
(j )
n :

S(1)
n (t) = [
n−1(t), − iHM (t)]; (E5a)

S(n−1)
n (t) = [


1(t),S(n−2)
n−1 (t)

]
; (E5b)

S(j )
n (t) = [


1(t),S(j−1)
n−1 (t)

] +
n−j∑
m=2

[

m(t),S(j−1)

n−m (t)
]
,

for 2 � j � n − 2. (E5c)

Note that the last case occurs only for n � 4. We bound
each case separately. First, for S(1)

n ,

‖S(1)
n (t)‖ � 2‖
n−1(t)‖‖HM (t)‖

� 2ε

n−2∑
p=1

|Bp|
p!

∫ t

0
ds‖S(p)

n−1‖

� J (2εt)n−1
n−2∑
p=1

|Bp|
p!(n − 1)

f
(p)
n−1. (E6)

Equation (E2) becomes f (1)
n = 2

∑n−2
p=1

|Bp |
p!(n−1)f

(p)
n−1 when j =

1; therefore, ‖S(1)
n (t)‖ � f (1)

n J (2εt)n−1.
Next we bound S(n−1)

n :

‖S(n−1)
n (t)‖ � 2‖
1(t)‖∥∥S

(n−2)
n−1 (t)

∥∥
� f

(n−2)
n−1 J (2εt)n−1. (E7)

Equation (E2) becomes f (n−1)
n = 2f

(n−2)
n−1 when j = n − 1;

therefore, ‖S(n−1)
n (t)‖ � f (n−1)

n J (2εt)n−1.
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Last are the 2 � j � n − 2 cases:∥∥S(j )
n (t)

∥∥
� 2‖
1(t)‖∥∥S

(j−1)
n−1 (t)

∥∥
+ 2

n−j∑
m=2

m−1∑
p=1

|Bp|
p!

(∫ t

0
ds

∥∥S(p)
m (t)

∥∥)∥∥S
(j−1)
n−m (t)

∥∥
� f

(j−1)
n−1 J (2εt)n−1

+ J 2t(2εt)n−2

[
2

n−j∑
m=2

m−1∑
p=1

|Bp|
p!m

f (p)
m f

(j−1)
n−m

]
. (E8)

The expression within the brackets in the last line looks like
f

(j )
n in Eq. (E2), except we need to add in the m = 1 terms, as

well as the p = 0 terms. In fact,

2
n−j∑
m=2

m−1∑
p=1

|Bp|
p!m

f (p)
m f

(j−1)
n−m

= f (j )
n − 2

|B0|
0!1

f
(0)
1 f

j−1
n−1 − 2

n−j∑
m=2

|B0|
0!m

f (0)
m f

(j−1)
n−m

= f (j )
n − 2f

(j−1)
n−1 , (E9)

where in the last line, we have used the fact that f
(0)
m>1 = 0.

Putting this into ‖S(j )
n (t)‖, and using the fact that J � ε, we

get ∥∥S(j )
n (t)

∥∥ � f
(j−1)
n−1 J (2εt)n−1

+ J (εt)(2εt)n−2
[
f (j )

n − 2f
(j−1)
n−1

]
� f (j )

n J (2εt)n−1. (E10)

This completes the induction. �

APPENDIX F: fn COEFFICIENT

In [59], the {fn} were shown to be coefficients in the power
series expansion of of G−1(y) = ∑∞

n=1 fny
n, the inverse

function of

y = G(s) =
∫ s

0
dx

[
2 + x

2

(
1 − cot

x

2

)]−1
. (F1)

Here we provide a self-contained proof of the above claim.
It suffices to show that the coefficients of G−1 can be written
in the form Eq. (118), with f

(j )
n defined via the recursion

relations (E2).
First, we prove a lemma that applies to a general

function y(s).
Lemma 4. Suppose the smooth function y ≡ G(s) is

monotonic on its domain and satisfies y(0) = 0. Then G−1(y)
can be written as

∑∞
n=1 fny

n, where

fn = 1

n!

[(
g(s)

d

ds

)n−1

g(s)

]∣∣∣∣∣
s=0

, (F2)

and dy

ds
= 1

g(s) .

Proof. Since y is monotonic on its domain, the inverse
function G−1(y)(= s) exists and has derivatives

dn

dyn
G−1(y) =

(
g(s)

d

ds

)n

s =
(

g(s)
d

ds

)n−1

g(s), (F3)

where in the first equality, we have used the chain rule of
differentiation: d

dy
= ds

dy
d
ds

= ( dy

ds
)−1 d

ds
= g(s) d

ds
. Since y is

a smooth function on its domain, so is g(s) and hence all
derivatives of G−1(y) exist. We can then expand G−1(y) as a
Taylor series about y = 0 and write G−1(y) = ∑∞

n=0 fny
n for

some coefficients fn. We see that f0 = 0 since G−1(0) = 0.
For n � 1, the Taylor coefficients are given by

fn = 1

n!

dn

dyn
G−1(y)

∣∣∣∣
y=0

, (F4)

which, upon inserting Eq. (F3) and noting that y(0) = 0, im-
mediately gives Eq. (F2). �

For our purposes, the function y(s) is given in Eq. (F1),
that is, y(s) = G(s) which is smooth and monotonic over the
domain s ∈ [−2π,2π ]. It is also clear that y(0) = 0. Lemma
4 thus tells us that we can write G−1(y) = ∑∞

n=1 fny
n, where

fn is given in Eq. (F2) with

g(s) ≡
(

dy

ds

)−1

= 2 + s

2

(
1 − cot

s

2

)
. (F5)

Lemma 5. The coefficients fn in G−1(y) = ∑∞
n=1 fny

n can
be written in the form Eq. (118), with f

(j )
n defined according

to Eq. (E2).
Proof. For n = 1, the index j in Eq. (118) can only take

value 0, so f1 can be written in the form Eq. (118) if we set
f

(0)
1 = 1. To handle the case n � 2, we use Eq. (E3) to expand

cot(s/2) in terms of Bernoulli numbers, finding

s

2
cot

( s

2

)
= B0 +

(
B1 + 1

2

)
(is) +

∞∑
j=2

Bj

j !
(is)j . (F6)

Noting that B0 = 1, B1 = −1/2, B2j+1 = 0 for j � 1, B4j <

0 for j � 1 and B4j+2 > 0 for j � 0, Eq. (F6) becomes

g(s) = 2 + s

2

(
1 − cot

s

2

)
=

∞∑
j=0

|Bj |
j !

sj . (F7)

Using this series expansion of g(s), we can rewrite (F2) for
fn�2 as

fn = 1

n2n−1

n−1∑
j=1

|Bj |
j !

2n−1

(n − 1)!

[(
g

d

ds

)n−1

sj

]∣∣∣∣
s=0

. (F8)

We omit the j = 0 term in Eq. (F8) because the derivative of a
constant vanishes, and the sum over j terminates at j = n − 1
because higher-order terms vanish when we set s = 0. Thus,
f

(0)
n�2 = 0, and by comparing with Eq. (118) we define f

(j )
n as

f (j )
n = 2n−1

(n − 1)!

[(
g

d

ds

)n−1

sj

]∣∣∣∣∣
s=0

. (F9)
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Now we need to show that the {f (j )
n } obey the recursive

relation (E2). Using our definition of f
(j )
n from (F9), the right-

hand side of Eq. (E2) can be rewritten as

2
n−j∑
m=1

m−1∑
p=0

|Bp|
p!m

f (p)
m f

(j−1)
n−m

= 2
n−j∑
m=1

m−1∑
p=0

|Bp|
p!m

2m−1

(m − 1)!

[(
g

d

ds

)m−1

sp

]∣∣∣∣∣
s=0

× 2n−m−1

(n − m − 1)!

[(
g

d

ds

)n−m−1

sj−1

]∣∣∣∣∣
s=0

= 2n−1

(n − 1)!

n−j∑
m=1

(
n − 1

m

) ⎡
⎣(

g
d

ds

)m−1 m−1∑
p=0

|Bp|
p!

sp

⎤
⎦
∣∣∣∣∣∣
s=0

×
[(

g
d

ds

)n−m−1

sj−1

]∣∣∣∣∣
s=0

. (F10)

The expression
(∑m−1

p=0
|Bp |
p! sp

)
is just g(s) if we can extend

the upper limit of the sum to infinity. We can indeed do this,
because in the equation above, the expression is differentiated
m − 1 times and s is set to 0. Hence, higher-order terms in the
power series expansion of g(s) with p � m do not contribute.
Therefore,

2
n−j∑
m=1

m−1∑
p=0

|Bp|
p!m

f (p)
m f

(j−1)
n−m

= 2n−1

(n − 1)!

n−j∑
m=1

(
n − 1

m

) [(
g

d

ds

)m−1

g

]∣∣∣∣∣
s=0

×
[(

g
d

ds

)n−m−1

sj−1

]∣∣∣∣∣
s=0

= 2n−1

(n − 1)!

n−1∑
m=1

(
n − 1

m

) [(
g

d

ds

)m

s

]∣∣∣∣
s=0

×
[(

g
d

ds

)n−1−m

sj−1

]∣∣∣∣∣
s=0

. (F11)

Now, for any differential operatorD satisfying the product rule,
that is, D(xy) = D(x)y + xD(y) (where x and y commute),
Dn has the binomial expansion

Dn(xy) =
n∑

m=0

(
n

m

)
[Dm(x)][Dn−m(y)]. (F12)

TakeD = g d
ds

, x = s, and y = sj−1. Then (note that the m = 0
term is zero)

(
g

d

ds

)n−1

sj

∣∣∣∣
s=0

=
n−1∑
m=0

(
n − 1

m

) [(
g

d

ds

)m

s

]∣∣∣∣
s=0

×
[(

g
d

ds

)n−1−m

sj−1

]∣∣∣∣∣
s=0

. (F13)

Putting this into (F11) gives exactly the expression for f
(j )
n

in (F9). �

APPENDIX G: PURE BATH TERM IN SECOND ORDER OF
THE MAGNUS EXPANSION

Here we consider the case where the toggling-frame
Hamiltonian has a decomposition H (t) = HB + Herr(t)
such that

HB = B0 ⊗ I, Herr(t) =
∑

α

Bα ⊗ Sα(t), (G1)

where Sα(t) = U
†
c (t)SαUc(t) and the operators {Sα} are a

Hermitian basis for traceless operators acting on the system
such that

tr(SαSβ) = 0 (G2)

for all α �= β. We further assume that each pulse either
commutes or anticommutes with each Sα , so that

Sα(t) = U †
c (t)SαUc(t) = ±Sα, (G3)

and, hence,

Herr(t) =
∑

α

ζα(t)Bα ⊗ Sα, (G4)

where ζα(t) = ±1. These assumptions are true, in particular,
for an n-qubit system if each Sα and each pulse is a traceless
n-qubit Pauli operator. We show that under these assumptions
the second-order term in the Magnus expansion


2(T ) = −1

2

∫ T

0
dt1

∫ t1

0
dt2[H (t1),H (t,2)] (G5)

contains no pure bath term; that is, trS[
2(T )] = 0.
Because [HB,HB] = 0, it suffices to show that the system

trace vanishes for [HB,Herr(t1)] and [Herr(t1),Herr(t2)] for any
t1,t2 ∈ [0,T ]. First we observe that

[HB,Herr(t)] =
∑

α

ζα(t)[B0 ⊗ I,Bα ⊗ Sα]

=
∑

α

ζα(t)[B0,Bα] ⊗ Sα (G6)

has vanishing system trace. Next we note that if the product
SαSβ is traceless it can be expanded in the basis {Sα}, so that

SαSβ = δαβTα +
∑

γ

gαβγ Sγ (G7)

(where Tα might have a nonvanishing trace). Therefore,

Herr(t1)Herr(t2) =
∑

α

ζα(t1)ζα(t2)BαBα ⊗ Tα + · · · ,

Herr(t2)Herr(t1) =
∑

α

ζα(t2)ζα(t1)BαBα ⊗ Tα + · · · ,

(G8)

where the ellipsis represents terms with vanishing system
trace. Thus, in the commutator [Herr(t1),Herr(t2)] the terms
proportional to Tα cancel, and what remains has vanishing
system trace, as we wished to show.
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APPENDIX H: NOISE PARAMETERS FOR
CONCATENATED DYNAMICAL DECOUPLING

For the analysis of concatenated DD in Sec. VIII, we
considered dividing the third-order term in the Magnus
expansion 
3 into a pure bath term and a remainder. For that
purpose we may use the following lemma.

Lemma 6. Suppose an operator O has a decomposition

O = I ⊗ B0 +
∑

α

Sα ⊗ Bα, (H1)

where both terms are Hermitian and tr (Sα) = 0 for each α.
Then

‖B0‖ � ‖O‖, (H2)

and

‖
∑

α

Sα ⊗ Bα‖ � 2‖O‖. (H3)

Proof. To derive Eq. (H2), suppose that |ψ〉 is a normalized
pure state such that |〈ψ |B0|ψ〉| = ‖B0‖, and consider the
expectation value

〈χ | ⊗ 〈ψ |
(∑

α

Sα ⊗ Bα

)
|χ〉 ⊗ |ψ〉

= 〈χ |
(∑

α

Sα〈ψ |Bα|ψ〉
)

|χ〉, (H4)

where |χ〉 is also a normalized pure state (of the system). The
right-hand side of Eq. (H4) is the expectation value in the state
|χ〉 of a traceless Hermitian operator. Unless this operator is
zero, the expectation value can be either positive or negative
depending on how |χ〉 is chosen. By choosing |χ〉 so that
the expectation value 〈∑α Sα ⊗ Bα〉 in the state |χ〉 ⊗ |ψ〉 is
either zero or has the same sign as 〈I ⊗ B0〉, we have

|〈O〉| � |〈I ⊗ B0〉|, (H5)

and using ‖I ⊗ B0‖ = ‖B0‖, Eq. (H2) follows. From the
triangle inequality,∥∥∥∥∑

α

Sα ⊗ Bα

∥∥∥∥ = ‖O − I ⊗ B0‖
� ‖O‖ + ‖I ⊗ B0‖ � 2‖O‖, (H6)

which proves Eq. (H3). �
The inequality Eq. (H3) is tight if we do not restrict the

dimension of the system, but if the system is a qubit (two
dimensional), it can be improved to∥∥∥∥∑

α

σα ⊗ Bα

∥∥∥∥ � ‖O‖. (H7)

For a qubit, there is an antiunitary time-reversal operator
T : |ψ〉 → σy |ψ〉∗ such that T †σαT = −σα . Suppose |ψ〉 is
a normalized pure state such that |〈ψ |∑α σα ⊗ Bα|ψ〉| =
‖∑

α σα ⊗ Bα‖. By applying T ⊗ I if necessary, we can
choose |ψ〉 so that 〈∑α σα ⊗ Bα〉 and 〈I ⊗ B0〉 have the same
sign (unless 〈I ⊗ B0〉 = 0). Therefore,

|〈O〉| �
∣∣∣∣
〈∑

α

σα ⊗ Bα

〉∣∣∣∣, (H8)

and Eq. (H7) follows.

APPENDIX I: RELATING DISTANCE BETWEEN
OPERATORS TO DISTANCE BETWEEN THEIR

EXPONENTIALS

Here we prove the following.
Lemma 7.

‖eA − eB‖ � 2‖A − B‖
−2 exp

(
1
2‖A + B‖) sinh

(
1
2‖A − B‖) . (I1)

Proof. Expanding the exponentials, we obtain

eA − eB = A − B +
∞∑

n=2

1

n!
[An − Bn], (I2)

and therefore

‖eA − eB‖ � ‖A − B‖ −
∞∑

n=2

1

n!
‖An − Bn‖. (I3)

Defining

N = 1
2 (A + B), M = 1

2 (A − B), (I4)

we have

An − Bn = (N + M)n − (N − M)n, (I5)

and when we apply the binomial expansion to (N + M)n −
(N − M)n the terms even order in M cancel. There are 2

(
n

m

)
terms of order m in M for m odd, each with an operator norm
bounded above by ‖M‖m‖N‖n−m; therefore,

‖An − Bn‖ � 2
∑
oddm

(
n

m

)
‖M‖m‖N‖n−m

= (‖N‖ + ‖M‖)n − (‖N‖ − ‖M‖)n .

(I6)

Thus, we find

∞∑
n=2

1

n!
‖An − Bn‖ � exp (‖N‖ + ‖M‖) exp (‖N‖ − ‖M‖) − 2‖M‖

= exp (‖N‖) · 2 sinh (‖M‖) − 2‖M‖, (I7)

and substituting into Eq. (I3) yields Eq. (I1).
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If the norm of the sum A + B is not too large, we can use
Lemma 7 to show that A is close to B when eA is close to eB .
For example, suppose that

‖A + B‖ � ε+, ‖A − B‖ � ε−. (I8)

Then Lemma 7 implies

‖A − B‖ � c(ε+,ε−)‖eA − eB‖, (I9)

where

c(ε+,ε−) =
(

2 − eε+/2 sinh ε−/2

ε−/2

)−1

. (I10)

For example, if ε+ = ε− = 0.3, we find c(ε+,ε−) = 1.20.

APPENDIX J: BATH-STATE-DEPENDENT NOISE
STRENGTH AND DYSON EXPANSION

In the local-bath model, the noisy operation applied at the
circuit location a is a unitary transformation Ga acting jointly
on the system and bath. We may express Ga as the sum of a
good part Ga = Ga ⊗ Ba (where Ga is the ideal gate), and a
bad part Ba = Ga − Ga .

The accuracy threshold theorem proved in [31,33] estab-
lishes that quantum computing is scalable provided the noise
strength η̄ is smaller than a critical value η0. For this purpose,
the noise strength may be defined in the following way.
Recall that we model a noisy preparation of a qubit as an
ideal preparation followed by noisy Hamiltonian evolution
for a prescribed period. Therefore, we may assume that the
initial state of the system at the very beginning of a quantum
computation is ideal and that the initial state of the system and
bath is a product state ∣∣�0

S

〉〈
�0

S

∣∣ ⊗ ρ0
B. (J1)

It is convenient to introduce a reference system R that purifies
the initial state of the bath; then the initial state of system,
bath, and reference system is a pure state,∣∣�0

SBR

〉 = ∣∣�0
S

〉 ⊗ ∣∣ϒ0
BR

〉
, (J2)

where

ρ0
B = trR

(|ϒ0
BR〉〈ϒ0

BR|). (J3)

Now consider a quantum circuit acting on the initial state
|�0

SBR〉, and let Ir denote a set of r locations in the circuit. Let
U bad(Ir ) denote the transformation that results if we place the
noisy gate Ga at each location a /∈ Ir and place the bad part
Ba at each location a ∈ Ir ; U bad(Ir ) acts trivially on R. We
may say that the noise strength is η̄ if

‖U bad(Ir )|�0〉‖ � η̄r (J4)

for any set Ir of r locations [33].
Since each Ga is unitary and therefore has operator

norm 1, the submultiplicative property of the norm implies

‖U bad(Ir )|�0〉‖ � ‖U bad(Ir )‖ �
∏
a∈Ir

‖Ba‖. (J5)

Therefore, we may choose the noise strength to be

η̄ = max
a

‖Ba‖, (J6)

We used this definition for the analysis in Secs. IV–VIII,
based on the Magnus expansion, of the effective noise strength
achieved by DD.

The threshold theorem can be formulated in a more general
way [31,33], so that the local-bath assumption is not really
needed to define the noise strength or prove the theorem.
We adopt the local-bath model in this paper so that we can
study the efficacy of the DD pulse sequence for each circuit
location individually; otherwise, we would need to include
noise correlations among distinct gates that are executed
simultaneously, which would greatly complicate the analysis.

The expression [31,33] for the noise strength does not
depend on the initial state of the bath, but for the analysis
of the effective noise strength in Sec. X, based on bath
correlation functions and the Dyson expansion, we use a
different definition of η̄ that does depend on the initial state of
the bath. To state the new definition simply, it is convenient to
put a further limitation on the noise model that was not needed
in the Magnus expansion analysis; we assume that the state
of the bath is discarded at the end of each circuit location,
and replaced by a fresh bath state at the beginning of the next
location. We admit that this new more restricted noise model
is even more artificial than the local-bath model we analyzed
previously using the Magnus expansion. In a rather perverse
compromise, we include the effects of the bath’s memory in
our analysis of the DD pulse sequence at each circuit location,
but assume such effects are negligible when we stitch the
DD-protected gates together in a quantum circuit.

Under this assumption, the noisy operation at location a

is applied to a product state, where the initial state ρB,a of
the local bath for location a does not depend on the noisy
operations applied at earlier circuit locations. Thus, Eq. (J4) is
satisfied if we define

η̄ = max
a,|�〉

‖Ba (|�〉 ⊗ |�a〉) ‖, (J7)

where |�a〉 is a purification of ρB,a , and the maximum is over
all circuit locations and over all pure states of the system. In
terms of the interaction-picture operator applied at location a,

Ũa = G†
aGa = G†

a (Ga + Ba) = Ia + G†
aBa, (J8)

we may write η̄ as

η̄ = max
a,|�〉

‖(Ũa − Ia) (|�〉 ⊗ |�a〉) ‖, (J9)

or, equivalently,

η̄2 = max
a,|�〉

〈(Ũ †
a − Ia)(Ũa − Ia)〉

= max
a,|�〉

〈2Ia − Ũa − Ũ †
a 〉, (J10)

where 〈·〉 denotes the expectation value in the state |�〉 ⊗ |�a〉.
This is the formula used in Eq. (209) in Sec. X.

Now we can explain how the analysis would need to be
modified if we relaxed the assumption that the bath is refreshed
at the beginning of each circuit location. In the proof of the
threshold theorem, we need to derive an upper bound not
on the amplitude for a fault at a single circuit location, but
instead on the amplitude for faults occurring at each of the
r specified locations in the set Ir , as in Eq. (J4). Therefore,
in our expression for η̄2 in Eq. (J10), we should consider
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the state |�a〉 of the bath to be not the actual bath state at the
beginning of location a, but rather the conditional state of the
bath, given that faults have already occurred at a specified set
of previous locations. In [33] we obtained an upper bound on
η̄2 for the case of Gaussian noise by doing a global analysis
of the whole quantum circuit; generalizing that analysis to
DD-improved gates seems difficult. On the other hand, we
may still express η̄2 as in Eq. (J10) in the more general setting
(without assuming the bath is refreshed), with the proviso that
η̄2 is maximized over all such conditional bath states. This
is not a very useful criterion as it stands, since this value of
η̄2 cannot be easily extracted from any feasible experiment.
However, it could become more useful were we able to infer
properties of the bath correlations in the conditional state from
weaker assumptions about the noise model.

To derive Eq. (210), consider a location with duration T .
The interaction-picture time evolution operator is given by
Dyson’s formula,

Ũ (T ) = T exp

(
−i

∫ T

0
dtH̃ (t)

)
, (J11)

where T denotes time ordering and H̃ (t) is the interaction-
picture Hamiltonian, which obeys ‖H̃ (t)‖ = ‖Herr‖ � J . Ex-
panding the exponential, we find

Ũ (T ) = I +
∞∑

n=1

Ũn(T ), (J12)

where

Ũn(T ) = (−i)n

n!

∫ T

0
dt1 · · · dtnT (H̃ (t1) · · · H̃ (tn)), (J13)

and, hence,

‖Ũn(T )‖ � 1

n!
T n‖H̃ (t1) · · · H̃ (tn)‖ � (JT )n

n!
. (J14)

Similarly, U †(T ) has the expansion

Ũ †(T ) = I +
∞∑

n=1

Ũ †
n(T ), (J15)

where

Ũ †
n(T ) = (i)n

n!

∫ T

0
dt1 · · · dtnT ′(H̃ (t1) · · · H̃ (tn)); (J16)

here T ′ denotes reverse-time ordering, and again

‖Ũ †
n(T )‖ � (JT )n

n!
. (J17)

Noting that Ũ1(T ) + Ũ
†
1 (T ) = 0, we find

〈2I − Ũ (T ) − Ũ †(T )〉

� −〈Ũ2(T ) + Ũ
†
2 (T )〉 +

∞∑
n=3

‖Ũn(T ) + Ũ †
n(T )‖

� −〈Ũ2(T ) + Ũ
†
2 (T )〉 + 2

∞∑
n=3

(JT )n

n!

� −〈Ũ2(T ) + Ũ
†
2 (T )〉 + 2(eJT − 1 − JT − 1

2 (JT )2).

(J18)

To evaluate the expectation value of Ũ2(T ) + Ũ
†
2 (T ), we

observe that

T (H̃ (t1)H̃ (t2)) + T ′(H̃ (t1)H̃ (t2))

= H̃ (t1)H̃ (t2) + H̃ (t2)H̃ (t1), (J19)

so that

Ũ2(T ) + Ũ
†
2 (T )

= −1

2

∫ T

0
dt1dt2(H̃ (t1)H̃ (t2) + H̃ (t2)H̃ (t1))

= −
∫ T

0
dt1dt2H̃ (t1)H̃ (t2). (J20)

Finally, we may express the noise strength as

η̄2 = max
∫ T

0
dt1dt2〈H̃ (t1)H̃ (t2)〉

+ 2

(
eJT − 1 − JT − 1

2
(JT )2

)
, (J21)

as in Eq. (210).
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