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Any 2 ⊗ n subspace is locally distinguishable
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A subspace of a multipartite Hilbert space is said to be locally indistinguishable if any orthonormal basis
of this subspace cannot be perfectly distinguished by local operations and classical communication. Previously
it was shown that any m ⊗ n bipartite system with m > 2 and n > 2 has a locally indistinguishable subspace.
However, it has been an open problem since 2005 whether there is a locally indistinguishable bipartite subspace
with a qubit subsystem. We settle this problem in negative by showing that any 2 ⊗ n bipartite subspace contains
a basis that is locally distinguishable. As an interesting application, we show that any quantum channel with two
Kraus operators has optimal environment-assisted classical capacity.
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I. INTRODUCTION

Local distinguishability of a finite set of orthogonal multi-
partite states has become an increasingly interesting topic in
quantum information partly due to its important applications in
classical data hiding [1] and quantum channel capacity [2–5].
It is well known that orthogonal quantum states can always
be perfectly distinguished if there are no restrictions on the
measurements one can perform on the system. However, the
discrimination of multipartite states is difficult when only local
operations and classical communication (LOCC) is allowed.
Indeed, many results on LOCC discrimination are rather
counterintuitive. For instance, Bennett et al. discovered that
there exist 3 ⊗ 3 orthonormal pure product bases that are
indistinguishable by LOCC [6]; it was then further shown
that the members of an orthogonal unextendable product basis
(UPB) are not perfectly distinguishable by LOCC [7]. On the
other hand, any two orthogonal multipartite quantum states,
no matter entangled or not, can be perfectly distinguished by
LOCC [8]. Some powerful methods for checking distinguisha-
bility were introduced in [9,10].

The concept of local distinguishability can be generalized
to multipartite subspaces. In 2005 Watrous demonstrated that
there exists a class of m ⊗ m subspaces having no orthonormal
bases locally distinguishable if m > 2 [4]. Such subspaces are
said to be locally indistinguishable; otherwise, they are said
to be locally distinguishable. Watrous also proved that there
is no 2 ⊗ 2 locally indistinguishable subspace, by directly
employing the results from [11]. Winter’s result [5] implies that
the existence of bipartite subspace Q such that Q⊗k is locally
indistinguishable for any k. Duan et al. generalized Watrous’s
result to the most general m ⊗ n systems for m �= n and
the multipartite setting, and found locally indistinguishable
subspaces with smaller dimensions [12,13]. Most notably, it
was shown that any subspace spanned by three-qubit UPB is
locally indistinguishable, and there exists a three-dimensional
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three-qubit locally indistinguishable subspace [13]. An inter-
esting question that remains to be answered is whether there
is any 2 ⊗ n locally indistinguishable subspace.

The main contribution of this paper is to answer the above
question in negative. We show that any 2 ⊗ n subspace is
locally distinguishable. Combining with the previous results
[4,12,13], we conclude that there is no locally indistinguish-
able m ⊗ n subspace if and only if m � 2 or n � 2. Our
key techniques can be used to study the distinguishability of
three-dimensional bipartite subspace which contains a product
state. We show that any such subspace has a basis that can
be distinguished under local projective measurements and
one-way classical communication (LPCC).

We then apply our results to study the classical corrected ca-
pacity (or environment-assisted classical capacity) of quantum
channels [3,5]. The classical corrected capacity of quantum
channels introduced by Hayden and King is defined as the
best classical capacity one can achieve when the receiver
of the channel can be assisted with a friendly environment
through LOCC [3]. This environment-assisted model was
introduced by Gregoratti and Werner in [2], where they are
interested in correcting the errors incurred from sending
quantum information. According to the well-known result
by Walgate et al. [8], Hayden and King were able to show
that the classical corrected capacity of any quantum channel
is at least one bit [3]. In particular, the existence of locally
indistinguishable subspaces implies the existence of quantum
channel with suboptimal classical corrected capacity, that is,
the corrected capacity is less than log2 d with d the dimension
of the input state space. In sharp contrast, our result signifies
that the classical corrected capacity of any quantum channel
with only two Kraus operators is always optimal.

II. MAIN RESULTS

We will show that any 2 ⊗ n subspace has an orthogonal
basis that can be perfectly distinguished by a protocol
where the owner of the qubit goes first (i.e., a nontrivial
measurement is firstly performed upon the qubit system [11]).
A measurement {M1, . . . ,Mm} is said to be nontrivial if there
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exists k such that M
†
kMk is not proportional to the identity

operator.
We will make use of the following lemma from [11], which

gives a complete characterization of the local discrimination
of orthogonal 2 ⊗ n pure states when the qubit goes first.

Lemma 1. (Walgate and Hardy [11]) A set of 2 ⊗ n

orthogonal states {|ψi〉 : 1 � i � k} is locally distinguishable
by some qubit goes first protocol if and only if there is an
orthonormal basis {|0〉,|1〉}A such that

|ψi〉 = |0〉∣∣ηi
0

〉 + |1〉∣∣ηi
1

〉
, (1)

where 〈ηi
0|ηj

0〉 = 〈ηi
1|ηj

1〉 = 0 for all i �= j .
Now we are ready to present our main result as follows.
Theorem 1. For any 2 ⊗ n subspace Q, there exists an

orthogonal basis {|ψi〉 : 1 � i � d} that is perfectly distin-
guishable by some qubit goes first LOCC protocol, where d is
the dimension of Q.

Proof. We only need to show that Q has orthogonal basis
{|ψi〉 : 1 � i � d} with the form of Eq. (1).

Arbitrarily choose an orthonormal bases of the qubit’s sys-
tem, say {|0〉,|1〉}A. Let {|ϕi〉 : 1 � i � d} be an orthonormal
basis of Q such that

|ϕi〉 = |0〉 ⊗ M0|i〉 + |1〉 ⊗ M1|i〉,
where M0 and M1 are n × d matrices, and {|i〉 : i = 1, . . . ,d}
is a fixed orthonormal basis for a d-dimensional Hilbert space.
The orthonormality of these vectors implies that

M
†
0M0 + M

†
1M1 = Id .

One may therefore choose a d-by-d unitary matrix U such
that U †M†

0M0U is some diagonal matrix in basis {|i〉}.
From U †M†

1M1U = Id − U †M†
0M0U , one can obtain that

U †M†
1M1U is diagonal in {|i〉}, too.

Now, we define

|ψi〉 = |0〉 ⊗ M0U |i〉 + |1〉 ⊗ M1U |i〉
= (|0〉 ⊗ M0 + |1〉 ⊗ M1)U |i〉.

It is clear that {|ψi〉 : 1 � i � d} is also an orthonormal basis
of Q, and Eq. (1) is satisfied. With that we complete the proof
of Theorem 1. �

According to the above proof, one can find that the owner
of qubit even has the freedom to preselect an arbitrary
orthonormal basis to be the projective measurement basis. That
means for any {|0〉,|1〉}A, Q has a basis that satisfies Eq. (1).

Combining our result with the existence of lo-
cally(separability) indistinguishable subspace for m ⊗ n when
m,n > 2 [4,12,13], we have the following corollary.

Corollary 1. There exists m ⊗ n subspace indistinguishable
by LOCC (or LPCC; separable operations) if and only if
m,n > 2.

Furthermore, we can employ the techniques deriving the
above theorem to show that:

Corollary 2. Any three-dimensional bipartite subspace Q
that contains a product state is one-way LPCC distinguishable.

Proof. Without loss of generality, let {|ϕi〉|0 � i � 2} be
an orthonormal basis of Q with |ϕ0〉 = |0〉|0〉. We also denote

P = span{|ϕ1〉,|ϕ2〉}. Similar to the proof of Theorem 1, one
can find an orthonormal basis {|φ1〉,|φ2〉} of P such that

|φ1〉 = |0〉∣∣η1
0

〉 +
∑

i �=0

|i〉|αi〉,

|φ2〉 = |0〉∣∣η2
0

〉 +
∑

i �=0

|i〉|βi〉,

with 〈η1
0|η2

0〉 = 0. Let |φ0〉 = |0〉|0〉. Then {|φi〉|0 � i � 2} is
an orthonormal basis for Q.

According to [8], one can always find an orthogonal basis
{|0〉′,|1〉′, . . . ,|m − 1〉′} of Cm such that |0〉′ = |0〉 and

|φ1〉 = |0〉′∣∣η1
0

〉 +
∑

i �=0

|i〉′|α′
i〉,

|φ2〉 = |0〉′∣∣η2
0

〉 +
∑

i �=0

|i〉′|β ′
i〉,

where |α′
i〉 and |β ′

i〉 may not be normalized but 〈α′
i |β ′

i〉 = 0
holds for any i �= 0.

In order to distinguish |φ1〉 and |φ2〉, one can per-
form the projective measurement {P0,P1, . . . ,Pm} upon the
first subsystem, where Pi = |i〉′〈i|. If the outcome is P0,
then the remaining three product states are mutually or-
thogonal states at the second subsystem, and can be fur-
ther perfectly distinguished. If the outcome is some Pi

with i > 0, the remaining two pure states are orthogonal
and are LPCC distinguishable. Thus Q is one-way LPCC
distinguishable. �

This protocol also works when the second subsystem goes
first.

III. CLASSICAL CORRECTED CAPACITY OF RANK
TWO CHANNEL

Any quantum channel � can be regarded as arising from
a unitary interaction U of the principle system H and an
environment system E . Without loss of generality, we may
write

�(ρ) = trenv[U (ρ ⊗ |e0〉〈e0|)U †],

where |e0〉 is the initial state of environment and the partial
trace is taking according to environment.

Since U is unitary, it maps orthogonal input states to
orthogonal ones inH ⊗ E . However after the partial trace-over
of the environment, the output of the system may not be
orthogonal any more. Thus they cannot be distinguished
perfectly and the classical capacity of the channel is strictly
decreased.

It is possible to enhance channel capacity using mea-
surements on the environment in addition to measurements
on the principal system [2,3], and this yields the notion of
environment-assisted classical capacity of quantum channels.
See also [5] and [4] for details about this model.

Here we try to apply our previous results to determine
the capacity for some special channels. For any rank-two
channel, the dimension of the environment can be assumed as
2. Thus the whole spaceH ⊗ E is an n ⊗ 2 space. Before traced
over the the environment, the output spaceQ = U (H ⊗ |e0〉) is
a d-dimensional subspace of H ⊗ E , where d is the dimension
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of H. According to Theorem 1, it is distinguishable by some
environment goes first LPCC protocol. Formally, for any
orthonormal basis {|0〉,|1〉}E , there is an orthonormal basis
{|φi〉|1 � i � d} of Q that can be represented as Eq. (1).
Therefore this basis can be distinguished by some environment
goes first LPCC protocol. One can easily verify that the basis
{|φi〉|1 � i � d} corresponds to an input basis {|ψi〉|1 � i �
d} of H with |φi〉 = U (|ψi〉 ⊗ |e0〉). We have therefore proved
the following corollary.

Corollary 3. Any quantum channel with two Kraus opera-
tors has optimal environment-assisted classical capacity.

IV. CONCLUSION

We have proven that there is no 2 ⊗ n locally indis-
tinguishable subspace. The local distinguishability of such
subspace implies that the environment-assisted classical ca-
pacity of any quantum channel with two Kraus operators is
optimal.

There are several interesting, unanswered questions relating
to the local distinguishability of subspaces. For instance, does

there exist any three-dimensional indistinguishable multipar-
tite subspace? A tripartite example, consisting of three qubits,
has been given in [13]. The case of bipartite subspaces is
still unknown. We have shown that for all three-dimensional
subspaces with a product state, the answer is negative
Corollary 2. Numerical evidence was presented to show that
any three-dimensional subspace of C3 ⊗ Cn has an orthonor-
mal basis which can be reliably distinguished using one-way
LOCC in [14]. Recall our proof of Theorem 1; the qubit
subsystem can perform arbitrary projective measurement. That
suggests some additional freedom to preselect an orthonormal
basis of one part is not used for this case. Is this freedom
helpful for subspace discrimination? In particular, is any three-
dimensional subspace of C3 ⊗ C3 LPCC distinguishable?
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