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Observables can be tailored to change the entanglement of any pure state
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We show that, for a finite-dimensional Hilbert space, there exist observables that induce a tensor product
structure such that the entanglement properties of any pure state can be tailored. In particular, we provide an
explicit, finite method for constructing observables in an unstructured d-dimensional system so that an arbitrary
known pure state has any Schmidt decomposition with respect to an induced bipartite tensor product structure. In
effect, this article demonstrates that, in a finite-dimensional Hilbert space, entanglement properties can always
be shifted from the state to the observables and all pure states are equivalent as entanglement resources in the
ideal case of complete control of observables.
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I. INTRODUCTION

The entanglement of a quantum state is only defined
with respect to a tensor product structure within the Hilbert
space that represents the quantum system. In turn, a tensor
product structure of the Hilbert space is induced by the
algebra of observables. Zanardi and colleagues [1,2] have
provided criteria for the algebra of observables of a finite-
dimensional system to induce a tensor product structure. The
algebra of observables must be partitioned into subalgebras
that satisfy two mathematical requirements: the subalgebras
must be independent and complete (see Corollary 3 for a
precise formulation of Zanardi’s Theorem), and one physical
requirement: the subalgebras must be locally accessible. Such
observable-induced partitions of the Hilbert space have been
referred to as virtual subsystems and can be thought of as
a generalization from entanglement between subsystems to
entanglement between degrees of freedom [3] (see also [4] for
an alternate algebraic approach to generalizing entanglement).
This mathematical framework has found applications to stud-
ies of multilevel encoding [5], decoherence [6], operator quan-
tum error correction [7], entanglement in fermionic systems
[8], single-particle entanglement [9,10], and entanglement in
scattering systems [11].

In this article, we extend this mathematical framework
and prove what we call the Tailored Observables Theorem
(Theorem 6): observables can be constructed such that any pure
state in a finite-dimensional Hilbert space H = Cd has any
amount of entanglement possible for any given factorization
of the dimension d of H. This means all pure states are
equivalent as entanglement resources in the ideal case of
complete control of observables. To establish the framework,
we provide a brief, relatively self-contained introduction to
Zanardi’s Theorem and obtain some necessary preliminary
results about observable algebras in finite dimensions. We then
prove Theorem 6, which applies to bipartite tensor product
structures, and present an illustrative example. We will also
provide a corollary of the theorem (Corollary 7) applied to
multipartite tensor product structures. Before delving into the
technical details, we present a more intuitive discussion of this
result.

Consider a finite-dimensional Hilbert space H = Cd . The
full matrix algebra Md of complex d × d matrices acting

on Cd will contain the representations of measurements and
interactions that act on the states of the physical system
(i.e., the algebra of observables A ⊆ Md ). If the dimension
d can be factorized as d = k1k2 · · · kN , this Hilbert space
could represent states of a quantum system composed from
N subsystems each represented by Hilbert spaces Hi = Cki .
For example, if d = 8 then the system could be constructed
from one qubit and one ququart (N = 2, k1 = 2,k2 = 4) or
three qubits (N = 3, k1 = k2 = k3 = 2). By the process of
subsystem composition, the total Hilbert spaceHwould inherit
a tensor product structure H ∼= ⊗N

i=1 Hi = ⊗N
i=1 C

ki . If, ad-
ditionally, the N subsystems are localized into N space-time-
separated regions, each subsystem would have an observable
subalgebra Ai ⊆ Mki

that is operationally independent, and
there would be exact correspondence between locality in
space-time and locality with respect to the tensor product
structure.

In contrast, the same Hilbert spaceH = Cd could represent
a quantum system with no a priori quantum subsystems such
as the lowest d energy levels of a harmonic oscillator. However,
even in such a system with no “natural” subalgebras of
observables with which to partition the Hilbert space, the total
observable algebra A = Md can “artificially” be divided into
subalgebras Ai = Mki

that satisfy Zanardi’s Theorem. We
provide an explicit constructive method for generating these
subalgebras from a finite set of operators. The generators may
look somewhat arbitrary in the unstructured Hilbert space, but
they have the correct properties to rigorously define locality,
separability, and entanglement. By tailoring these subalgebras
to a particular pure state, any entanglement properties for
that state can be achieved, including maximal entanglement
for any pure state, where the maximum depends on the the
dimension.

In some sense, our results are an immediate consequence
of the fact that all Hilbert spaces with the same dimension are
isomorphic. If we have a pure state of an unstructured d-level
system |ϕ〉 ∈ H = Cd and a pure state |ϕ′〉 of a d-level system
with a tensor product structure H′ = ⊗

i H′
i , then there will

always exist a unitary map U : H → H′ such that U |ϕ〉 =
|ϕ′〉. Additionally, if there are local observable algebras A′

i

acting on each H′
i , they can be mapped back to algebras Ai =

U †A′
iU that act on H. This article explains the conditions on
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the algebras for this map to exist and to induce a tailored tensor
product structure. Furthermore, we show that each subalgebra
Ai = Mki

corresponding to the Hi = Cki factor of the tensor
product can be finitely generated by the ki-dimensional matrix
representations of a basis for the su(2) Lie algebra. For a
two-dimensional representation, the subalgebra is the Pauli
operators, whose completeness as an algebraic basis for M2 is
well known, but we include a proof that this property holds true
for all finite-dimensional representations of su(2). An alternate
approach to generalizing Pauli operators to higher dimensions
is taken in [5].

Entanglement is detected as coherences between nonlocal
observables; for example, in the form of Bell-type inequalities.
This gives another way to look at our results: we give a
method to construct observables that induce a notion of
locality such that the intrinsic self-coherence of any pure
state can be exploited as entanglement. That the choice of
observables or, equivalently, degrees of freedom used to
describe a system can be tailored to suit a particular need
is of course well known in classical and quantum physics.
Certain observables can be preferred because of the form
of interactions, the sources of error and decoherence, the
physical accessibility of measurement and control, or for other
reasons. For example, in bound states of a proton and an
electron, energy eigenstates are unentangled with respect to
the tensor product induced by the center-of-mass and relative
observables, but they are highly entangled with respect to the
particle observables [12]. By turning on external fields, one can
induce entanglement between the center-of-mass and relative
observables (i.e., correlate electronic states to motional states
of the atom). In this case, and in many others, the presence and
dynamics of entanglement can serve as a proxy for the effect of
interactions.

II. ALGEBRAS OF OBSERVABLES AND TENSOR
PRODUCT STRUCTURES

We now proceed with the formal statement of our results,
beginning with some mathematical terminology for operator
algebras. We consider an (associative) algebra M and a
subalgebra A ⊆ M thereof. The centralizer (or, in operator
theory, the commutant) A′ of A in M is defined as the set
of operators in M which commute with every element in A,
namely,

A′ := {B ∈ M| (∀A ∈ A)(AB = BA)}; (1)

this again is an algebra. Of principal interest here are the
full matrix algebras Md on finite-dimensional Hilbert spaces
Cd , which can be identified with the d × d matrices Cd×d =
{(aij )di,j=1| (∀i, j ∈ {1, . . . ,d})(aij ∈ C)}. The algebras Md

are simple (i.e., they contain no nontrivial two-sided ideals)
and central (i.e., M′

d = C1Md
). We shall make use of the

following lemma ([13], p. 115):
Lemma 1. Consider a finite-dimensional central simple

algebra M over an arbitrary field. Let A ⊆ M be a simple
subalgebra of M. Then, the centralizer A′ is simple, A′′ = A
and dimA · dimA′ = dimM.

Given two subalgebras A,B ⊆ M, we can construct a new
algebra in two ways: (i) take the tensor product A ⊗ B and

(ii) take the subalgebra of M generated by A and B (i.e.,
the smallest subalgebra of M containing both A and B) and
which we shall denote by A ∨ B. These two constructions
somewhat resemble the notion of internal and external direct
sums: in the first case, we consider A and B to be completely
unrelated to each other, so that this tensor product may be
called “external,” while in the second (“internal”) case, we
view them as substructures of the larger structureM, but where
we have to introduce some “nonoverlapping” condition. This
insight may be useful in understanding the following theorem,
which is the bipartite case of Zanardi’s Theorem [1,2].

Theorem 2. Consider the full matrix algebra Md on the
finite-dimensional Hilbert space H = Cd and two subalgebras
A and B of Md , for which there holds

(1) Independence: [A,B] = {0}; that is, [a, b] = 0 for all
a ∈ A and b ∈ B.

(2) Completeness: A ⊗ B ∼= A ∨ B = Md .
Then, A and B induce a tensor product structure on Cd ;

that is, there exist two Hilbert spaces Ck and Cl , d = k · l,
and a unitary mapping U : Ck ⊗ Cl → Cd , such that A =
U (Mk ⊗ 1l)U † and B = U (1k ⊗ Ml)U †. In particular, A and
B are isomorphic to Mk and Ml , respectively.

Proof. The algebra A is unitarily equivalent to the direct
sum of irreducible parts Mki

with k1, k2, . . . ,kn ∈ N,
counted with multiplicities li ([14], Th. I.11.9, pp. 53–54);
note that

∑n
i=1 kili = d. In other words, there exists

a unitary operator U :
⊕n

i=1(Cki ⊗ Cli ) → Cd such that
A = U [

⊕n
i=1 Mki

⊗ 1li ]U
†. By condition (i), we then

have B ⊆ A′ = U [
⊕n

i=1 1ki
⊗ Mli ]U

† and A ∨ B ⊆ A ∨
A′ = U [

⊕n
i=1 Mki

⊗ Mli ]U
†, dim(A ∨ A′) = ∑n

i=1(kili)2.
In view of dimMd = d2, condition (ii) implies n = 1, so that
A = U (Mk ⊗ 1l)U † with kl = d, where we removed the sub-
scripts. AsA is simple, dimA dimA′ = dimMd by Lemma 1.
If the inclusion B ⊆ A′ were proper, we would have dimB <

dimA′ and (dimA)(dimB) < dimMd in contradiction to
assumption (ii). �

The formulation in [2] also includes the physics require-
ment of local accessibility; this matter is important for practical
feasibility but does not affect the mathematical structure.
Theorem 2 can be extended to the multipartite case.

Corollary 3 (Zanardi’s Theorem). Consider algebras
A1, . . . ,AN ⊆ Md , such that the following holds:

(1) Independence: [Ai ,Aj ] = {0} for all pairs i �= j .
(2) Completeness:

⊗N
i=1 Ai

∼= ∨N
i=1 Ai = Md .

Then there exist Hilbert spaces Ck1 , . . . ,CkN with d =∏N
i=1 ki , and a unitary mapping U :

⊗N
i=1 C

ki → Cd , such
that Ai = U (

⊗k−1
j=1 1kj

⊗ Mki
⊗ ⊗N

j=k+1 1kj
)U †∼= Mkj

for
all i ∈ {1, . . . ,N}.

Proof. Set A := A1 and B := ∨N
i=2 Ai and proceed by

induction using Theorem 2. �
Our subsequent construction relies on a property of

representations of su(2) on C2s+1, which we will establish
briefly. The Lie algebra su(2) can be defined as the complex
linear hull of three (abstract) generators Ŝx , Ŝy , and Ŝz which
fulfill the commutation relation [Ŝi ,Ŝj ] = ih̄εijkŜk , where we
set h̄ = 1 for the rest of this article. It is well known that
the eigenvalues of the representing operators {Sx, Sy, Sz}
on C2s+1 (the spin-s representation), s ∈ { 1

2 , 1, 3
2 , 2, . . . },

have eigenvalues −s, − s + 1, . . . , + s. In the following, we
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will work with the equivalent set of operators {Ŝz, Ŝ+, Ŝ−},
where Ŝ± := Ŝx ± iŜy . We construct representation matrices
Si = (S(i)

m,m′ )sm,m′=−s ∈ M2s+1 for i ∈ {z, + ,−} by

S(z)
m,m′ = mδm,m′ , and (2a)

S(±)
m,m′ =

√
s(s + 1) − m(m ± 1)δm,m′±1, (2b)

where we choose Sz to be diagonal; we can always achieve
this by some unitary transformation. For s = 1

2 , the basis
generators are proportional to the Pauli matrices Si = 1

2σi .
As a Lie algebra with the Lie bracket composition rule, the
operators Ŝx , Ŝy , and Ŝz generate a (proper) subalgebra of
M2s+1 isomorphic to su(2). We will now show that, seen
as a matrix algebra with matrix multiplication, they generate
the full algebra M2s+1; in the proof, we use the well-known
Vandermonde determinant.

Lemma 4 (Vandermonde determinant). Let x1, . . . ,xn be
elements in a field K and consider the matrix A = (aij )ni,j=1

with aij = x
j−1
i . Then, there holds det A = ∏

i>j (xi − xj ),
and A is invertible, if and only if all the xi are different.

Theorem 5 [Algebra generated by representations of su(2)].
For s ∈ { 1

2 , 1, 3
2 , 2, . . . }, the (associative) algebra generated

by any representation of su(2) on Cd , d = 2s + 1, is the full
matrix algebra Md .

Proof. The d matrices (Sz)n, with n ∈ {0, . . . ,d − 1},
including the identity (Sz)0 = 1d which we can construct by

[s(s + 1)h̄2]1d = �̂S2 = Ŝ2
z + Ŝ+Ŝ− − h̄Ŝz, are diagonal with

eigenvalues (−s)n, (−s + 1)n, . . . , sn. If we identify each
diagonal matrix (Sz)n with a column vector in Cd , then we can
generate all diagonal matrices in Md , provided these vectors
span Cd ; that is, the d × d matrix constructed of the d column
vectors is invertible. Since Sz is nondegenerate, this is true
by Lemma 4. Furthermore, we can decompose any matrix into
diagonal and off-diagonal strips and use (S±)n to shift diagonal
matrices to any off-diagonal to construct all of Md . �

We shall now show by finite construction of the inducing
observable subalgebras that any state on a finite-dimensional
Hilbert space can have arbitrary bipartite entanglement prop-
erties as long as the notion of locality is chosen appropriately.
Previously, special cases of this theorem proved the existence
of tensor product structures for which any pure state is sepa-
rable [9] and of observables that detect nonlocal correlations
in any pure state [4].

Theorem 6 (Tailored Observables Theorem). Let H = Cd

be a Hilbert space with an orthonormal basis (|i〉)di=1, and
let d = k · l with k, l ∈ N. Then, for every state |�〉 =∑d

i=1 ci |i〉 and every λ1, . . . ,λmin{k, l} ∈ C with
∑d

i=1 |ci |2 =∑min{k, l}
i=1 |λi |2, there exist algebras A and B satisfying the

conditions of Theorem 2, and a unitary operator U , such that
|�〉 = U

∑min{k,l}
i=1 λi |i〉A|i〉B with orthonormal bases (|i〉A)ki=1

and (|i〉B)li=1 of the Hilbert spaces HA = Ck and HB = Cl ,
respectively.

Proof. Without loss of generality, we assume k � l; an
arbitrarily entangled state on Ck ⊗ Cl may then be written
in its Schmidt form as |ϕ〉 = ∑k

i=1 λi |i〉A|i〉B where (|i〉A)ki=1
and (|i〉B)li=1 are, respectively, eigenvectors of the k- and
l-dimensional representations S(A)

z and S(B)
z of Ŝz. Using the

Gram-Schmidt procedure, we can obtain orthonormal bases

{|�1〉, . . . ,|�d〉} of Cd and {|ϕ1〉, . . . ,|ϕk·l〉} of Ck ⊗ Cl with
|�1〉 = |�〉 and |ϕ1〉 = |ϕ〉, and we set U |ϕi〉 := |�i〉 for
all i ∈ {1, . . . ,d}. The algebras A and B are chosen to be
generated by the operators U (S(A)

j ⊗ 1)U † and U (1 ⊗ S(B)
j )U †

for j ∈ {x,y,z}; by Theorem 5 they fulfill the conditions from
Theorem 2. �

III. EXAMPLE, EXTENSION AND CONCLUSION

Consider the simplest case: an unstructured Hilbert space
H = C4 with basis {|0〉, . . . ,|3〉} and a pure state |�〉 =
|0〉 [15]. We want to tailor observable subalgebras A and
B that induce a factorization HA ⊗ HB = C2 ⊗ C2 with
respect to which |�〉 has the same entanglement as the state
|ϕ〉 = λ1|0〉A′ |0〉B ′ + λ2|1〉A′ |1〉B ′ has with respect to a model
Hilbert space H′ = HA′ ⊗ HB ′ with inducing subalgebras
A′ and B′. To do this, we first make the identifications
|j 〉A′ |k〉B ′ = |jk〉 = |2j + k〉 (e.g., |01〉 = |1〉 and |11〉 = |3〉).
Then we define a unitary operator that maps |�〉 into the state
|ϕ〉 = U |�〉 = λ1|0〉 + λ2|3〉. A simple choice is

U =

⎛
⎜⎜⎜⎝

λ1 0 0 λ2

0 1 0 0

0 0 1 0

−λ2 0 0 λ1

⎞
⎟⎟⎟⎠. (3)

This unitary operator and identification are not unique, and
the freedom here could be exploited if there were additional
practical constraints on the types of measurements. To make
a connection to the algebra of observables, we define the
subalgebra A′ (B′) as the algebra generated by the operators
SA′

j = 1
2σj ⊗ 1 (SB ′

j = 1
21 ⊗ σj ) with j ∈ {x,y,z}. The basis

vectors |jk〉 are the joint eigenvectors of σz ⊗ 1 and 1 ⊗ σz.
Then we can use the operator U to map the subalgebras
A′ and B′ back into their tailored representations A and B
in the original unstructured Hilbert space H. For example,
the generators of the subalgebra A are represented in the
unstructured Hilbert-space basis as

U †(σx ⊗ 1)U = λ1σx ⊗ 1 + λ2σz ⊗ σx,

U †(σy ⊗ 1)U = λ1σy ⊗ 1 − λ2σz ⊗ σy, (4)

U †(σz ⊗ 1)U = λ2
1σz ⊗ 1 − λ2

21 ⊗ σz

−λ1λ2σx ⊗ σx + λ1λ2σy ⊗ σy,

and the generators of B can be found by transposing the order
of the Pauli matrices in every term. Nonlocal operators like
U †(σz ⊗ σz)U , required for observing Bell-type inequalities,
can also be constructed this way. In the case of d = 4, only
linear factors of the tensored Pauli matrices appear in the
tailored observables; in the case d > 4, powers of the SA′

j

and SB ′
j matrices will appear.

Specifying λ1 = λ2 = 1/
√

2, this previous example shows
how to construct subalgebras of observables that induce
maximal bipartite entanglement in an arbitrary pure state
and proves that such a construction can be done in a finite
number of steps. Extending to arbitrary initial states and
higher dimensions only requires more computational effort
to determine an appropriate U , but is in principle no more
complicated [16].
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Theorem 6 can be extended to multipartite tensor product
structures.

Corollary 7 (Extended Tailored Observables Theorem).
Given a finite-dimensional Hilbert space H = Cd with an
orthonormal basis (|i〉)di=1, a state |�〉 = ∑d

i=1 ci |i〉, and a fac-
torization d = ∏N

i=1 ki with ki ∈ N, there exist operator alge-
bras A1, . . . ,AN that fulfill the conditions of Corollary 3, and
there exists a unitary mapping U :

⊗N
i=1 C

ki → Cd satisfy-
ing Ai = U (1k1 ⊗ · · · ⊗ 1ki−1 ⊗ Mki

⊗ 1ki+1 ⊗ · · · ⊗ 1kN
)U †

for i ∈ {1, . . . ,N} such that |ϕ〉 = U †|�〉 has an expansion

|ϕ〉 =
∑k1

i1=1
· · ·

∑kN

iN=1
(ci1i2...iN |i〉1|i〉2 · · · |i〉N ). (5)

The proof follows from Theorem 6 by induction, except one
cannot rely on the Schmidt form for effectively classifying the
amount of entanglement. Nevertheless, since any pure state
entanglement characterization must be able to be expressed
in the form (5), we have shown that, in principle, for
finite-dimensional systems all entanglement properties can be
reproduced in any state by choosing the correct observables.
The explicit construction of the unitary operator may require
cleverness to accomplish efficiently, but it exists and can be
constructed in finite steps.

As a final comment, the Tailored Observables Theorem
presented here applies only to pure states in finite dimensions.
As stated, it cannot extend to mixed states; for example,
a totally mixed state is represented as 1

d
1d in any basis,

and therefore is totally mixed in any tensor product struc-
ture. Totally mixed states have no coherences that can be
shifted to nonlocal sectors of the tensor product structure
and exploited as entanglement. An open question is how
to construct observables that make a partially mixed state
as entangled as possible. Additionally, a full generalization
to infinite dimensions and continuous variables is beyond
the scope of this article but is of practical and intrinsic
interest. Both authors would like to thank the anonymous
referee for pointing out reference [16].
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