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We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the
theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole
approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless
the projectors into eigenstates of the reduced evolution generator W (z) are orthogonal. With multichannel decay,
the projectors must be evaluated at different pole locations z, # zg, and since the orthogonality relation does
not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel
decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions
with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles.
Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the

Markovian limit of the coupling to the continuum spectrum.
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I. INTRODUCTION

Many physical systems demonstrate instability, i.e., a
transition from a relatively stable state to a final state, which,
in general, corresponds to a system with many identifiable
degrees of freedom. Such occurs, for example, in particle
decay or radiative atomic transitions. In many cases the
process observed has the semigroup property, i.e., the operators
generating the evolution on the Hilbert space of quantum states
satisfy the composition law

Z(t)Z(t2) = Z(t + 1) (D

for #1,t, > 0 and for which the operators Z(¢) do not have an
inverse and are decreasing. This relation is a general form of
the well-known exponential decay law, for which Gamow [1]
constructed a phenomenological Schrodinger equation with
a complex energy eigenvalue of a negative imaginary part.
Weisskopf and Wigner [2] formulated a basic theory that
approximately reproduced the Gamow result in second-order
perturbation for a single-channel decay. In their original
formulation, the survival amplitude of a quantum state |iyr)
is given as

U™ty = (yle ' |y), 2)

where H is the full Hamiltonian of a system consisting of
an unperturbed part Hy for which |i) is an eigenstate, and
a perturbation V is understood to induce a transition to an
infinite number of final states with a continuous spectrum.
The Laplace transform of Eq. (2) provides an expression
corresponding to the Green’s function (or resolvent kernel) for
the Schrodinger evolution. In a single-channel decay problem
the pole approximation for the inverse Laplace transform
results in an approximate semigroup property for U™d(t),
which is equivalent to the perturbative analysis of Weisskopf
and Wigner. However, in the case of the two- or more-channel
decay, such as the neutral K meson decay (for which there
is CP symmetry breaking), it has been shown that the pole
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approximation does not reproduce the semigroup evolution
observed in Ref. [3]. To account for semigroup behavior appli-
cation has been made of a quantum form [4,5] of the classical
Lax-Phillips theory [6] (see also Ref. [7] and references cited
therein) and its generalizations [8]. This theory achieves an
exact semigroup law by imbedding the usual quantum theory
in a larger Hilbert space, which consists of a direct integral of
a family of Hilbert spaces of the usual type, foliated according
to the time parameter. The result was particularly effective and
straightforward for treating quantum-mechanical systems with
Hamiltonians of unbounded spectra [9,10]. Its generalization
for problems with semibounded spectra [8] made it clear
that the imbedding associated with the Lax-Phillips theory
effectively introduces many additional degrees of freedom. In
this paper we show that semigroup evolution may be obtained
by working in the framework of the usual quantum theory
through an explicit coupling to many environmental degrees of
freedom. Thus we provide a physical framework that accounts
for the mathematical structure of the Lax-Phillips theory.

We study the Wigner-Weisskopf pole approximation theory
[2] in the framework of the Lee-Friedrichs model [11]. This
model consists of a subspace of discrete states interacting
with a continuum subspace of states, for which there is no
direct continuum-continuum interaction. It is convenient to
take the discrete-discrete interaction to vanish as well. The
association of the continuum with an environment constitutes
the main aspect of the model. The environment here may
be thought of as a distribution of a very large or even
infinite number of final states into which the initial state
of the system decays. The Lee-Friedrichs model [11] in
Lee’s construction was formulated in terms of nonrelativistic

quantum field theory using a Hamiltonian for which the
interaction Ve aNa;f,aZ) + H.c. included an annihilation
operator ay for the original (unstable) state N, multiplied by
creation operators a;[/ai) for the two-body final states V and
®. These operators could have been constructed to include
the creation of a many-body environment as well, maintaining
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its equivalence with the Friedrichs quantum-mechanical form,
with spectral coefficients coupling to a bath. In other words,
the decay process may include not just the specified final states
of the decay model, but also an environment. It is instructive
to think of the spontaneous emission process [12,13] as the
most-well-known illustration of decay into an infinity of final
states, where an excited atomic state decays into a distribution
of Fock space states of the radiation field (i.e., photons).

In what follows we show that by associating the continuous
spectrum with an environment the reduced evolution of the
discrete states subspace is defined by a spectral correlation
matrix «(¢), which is a function unifying the details of the
interaction. The notion of the spectral correlation matrix is
inspired by the well-studied particle-environment tensor prod-
uct theories [14]. In these models the reduced evolution of the
particle is obtained by tracing out the environmental degrees of
freedom, leaving a stochastic dynamical equation that invokes
the so-called environmental (in some examples complex) noise
z(t). As shown in Ref. [15], the environmental correlation
function corresponds to the autocorrelation value of this noise,
ie., a(t) = (z*(t)z(0)), and, in agreement with the fluctuation-
dissipation theorem, turns out to be a time-dependent memory
kernel for the particle energy dissipation. Exploiting the
analogous properties of the environmental correlation function
and the spectral correlation matrix, we investigate the validity
of the nontrivial semigroup evolution for the many-channel
decay and identify the necessary conditions with the well-
known Markovian limit [12,14]. In this way we consider a
natural imbedding of the Wigner-Weisskopf idea into a theory
of interaction with a reservoir (e.g., generalization of the theory
of Anderson and Fano [16] and Lee’s formulation).

Sections II and III include a review of essential results
from the Wigner-Weisskopf theory and the derivation of the
Markovian limit, provided with a brief summary of situations
where this limit may be realized exactly or approximately
(readers familiar with these concepts are welcome to quickly
leaf through). In Sec. IV, which includes the main point
of the paper, we discuss the effect of the Markovian limit
on the Wigner-Weisskopf pole approximation and explain how
the semigroup evolution law is achieved for the many-channel
decay as well.

II. WIGNER-WEISSKOPF METHOD

In this section we summarize a functional formulation of
the Wigner-Weisskopf pole approximation theory [2] and its
generalization to many-channel decay [7]. Following the usual
model for the decay of an unstable system, we consider a
Hamiltonian of the form

H=H+V, 3)

where the spectrum of Hj consists of a finite number N
of discrete eigenvalues {},}, embedded into a continuum
{X > 0} with spectral weight dE(X) = |L){(\|dL. We study,
in particular, the Lee-Friedrichs model [11], for which the
interaction V couples the discrete states to the continuum,
but does not couple continuum states or discrete states among
themselves. The fact that the continuum subspace is associated
with the products of the decay process presents an opportunity
for the introduction of an environment. We assume that the
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initial unstable state of the system is given by a superposition
of the discrete eigenstates {|¢,)} of Hy:

N
Vo) =Y calda),  Holda) = Aalda)- )
a=1

The reduced evolution, i.e., the evolution of the discrete
subspace, is governed by the reduced propagator R(z). This
propagator in the Laplace transform is defined (for Imz > 0)
by the projection of the total system propagator

i

U(z) = / Oodt e — (3)

0 z—H

on the discrete subspace. The o8 matrix element of the reduced
propagator R(z) in the Laplace domain is

1
Raﬂ(z) = _i<¢a|U(Z)|¢ﬁ> = <¢a T—H

¢ﬁ>- (6)

Equation (6) may be written using N x N matrix notation
[defining W (2)]

R(z) = )

z— W@’
which is confined to the discrete subspace and where, by
comparing with Eq. (5), W(z) is understood as the Laplace
space reduced evolution generator. The reduced evolution in
the time domain, dictated by U™(¢), is given by the inverse
Laplace transform of Eq. (7),

Ui(r) = L/ R(z)e™"dz, @®)
2mi C

where the contour of the integration C, shown in Fig. 1, runs
slightly above the real line on the z plane from +o0 to zero (the
bottom of the positive spectrum) and then around the branch
point from zero back to 4-oo slightly below the real line.
Since, in the general case, the exact calculation of Eq. (8)
is difficult, one is interested in a useful approximation. We
first note that there can be no pole for Imz # 0 in Eq. (7) on
the first Riemann sheet (see the Appendix). However, we may

y
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C

FIG. 1. Inverse Laplace transform contour C in Eq. (8).
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sheet |

FIG. 2. Modified inverse Laplace transform contour C; in
Eq. (10). The poles are denoted schematically by the stars.

explicitly continue the integration in Eq. (8) analytically to the
second Riemann sheet [using Eq. (6)] [7]. Doing so yields

1
z— WH(Z) ’
which allows one to deform the contour of integration. The
eigenvalues of W (z) (see below) determine the poles of R"(z)
in the lower half plane. The procedure, described in detail in

Ref. [7], results in the following alternative expression for the
reduced propagator:

R(z) = )

1 .
Ured(t) — % / RI,H(Z)eflztdZ — 27
Cy

x Y e " Res[R"(z)], (10)
J

where Res[R"(z;)] [R"(z) on the right and R(z), which we
denote above by R!(z), on the left] is the residue of R'(z)
at the pole position z; and the contour of the integration Ci,
shown in Fig. 2, now runs around the branch point along the
negative imaginary axis. The integration along the contour C;
carries the factor e~'% for z in the lower half plane. Hence, for
¢t > 0and not too small,' one can consider neglecting this term,
called the background contribution. (There is a very long time
contribution from the neighborhood of the branch point that we
do not consider here.) Doing so, the evaluation of the reduced
propagator reduces to the summation of the contributions of
the residues of the poles of R"(z) in the lower half plane. The
assumed dominance of the these contributions is called the
pole approximation.

IThe scale of the value necessary to go beyond the nonexponential
region of decay curve, often called the Zeno time [17], is determined
by the dispersion of the Hamiltonian, as discussed in Ref. [18] and
below [Eqgs. (37) and (38)]. The onset of the exponential behavior
generally occurs after the curve of steepest descent, which rotates
clockwise in time [18], passes the first pole, which then dominates
the time dependence.
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To obtain an expression describing the residues of R"(z), we
focus on the reduced generator W'(z). Even though W'(2) is
not generally self-adjoint, Eq. (9) may be represented in a way
analogous to the spectral theorem, as the sum of normalized
projectors {Q4(2)}, so that

N
I 04(2)
= _— 11
R'(2) ;z—%@’ (11)
where
0.(x) = Xmie ] (12)
cla.zlo,z)r

are made of the left and right eigenvectors of W'(z)
(corresponding to appropriate linear combinations of the
eigenvectors of Hy, sometimes called decay eigenstates):

W (2)|a,2) r = @a(2)|,2) R,

1{ezlRWH(Z) = 04 (2)1(a,2]. (13)

Clearly,

LB z2IW D), 2)r = 0 (D)1 (B2l 2) R
= wp(D)1(B.zlo,2) R (14)

may be valid for w,(z) # wg(z) (for any z) only if

L(B.zle,z)r = 0. 15)

This orthogonality relation for the eigenvectors of W'(z)
provides the orthogonality of the appropriately normalized
projectors

04(2)08(2) = Qul2)dup, (16)

ateach point z. Equation (11) follows from Eq. (9) by using the
spectral representation W'(z) = Z;V wy(2)|a,z) g {a,z| and
the orthogonality properties of Q,(z).

Equation (16) plays a crucial role in the examination of
the semigroup property of the reduced evolution. Applying
the pole approximation procedure, we neglect the background
contribution and approximate the reduced propagator by the
sum of the residues of R"(z) [Eq. (11)], which for weak
coupling V may be well approximated [7] to yield

U™(t) = e 04, (2), (17)
J

where «; corresponds to the singularity at z; = wq,(z;).
Repeated application of this reduced evolution is then

U e)U™ 1) = ) e e 04, (2))Quy(20). - (18)
Jok

Although for the single-channel problem, if there is just one
pole, the projectors’ product on the right-hand side of Eq. (18)
is trivially unity and Eq. (18) shows semigroup decay, for the
many-channel decay with many poles the projectors Qq,(z;)
and Qg (z) are generally evaluated at different pole locations
on the Laplace plane. For z; # z; the orthogonality relation
[Eq. (16)] can no longer ensure Qy,(z;)Qu,(zx) = 0. Thus,
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even in the pole approximation, the semigroup evolution is
generally not valid [19,20], i.e.,

U™ ) U™ (1)) # U™t + 1)
= eI, (2)). (19)
J

In spite of this conclusion, many experiments display semi-
group decay to high accuracy [3], while the estimates
[19,20] have shown that the deviations predicted by the
Wigner-Weisskopf theory would exceed the experimental
error [3].

III. ASSOCIATION OF THE SPECTRAL DENSITY
FUNCTION WITH AN ENVIRONMENT

In this section we sketch a treatment for the reduced
system dynamics familiar in the field of quantum optics
[12,13] and condensed-matter physics [14,16]. We adopt
the Lee-Friedrichs model of the system described in the
preceding section for the total Hamiltonian given by Eq. (3).
For our current purpose it is not necessary to make any
preliminary assumptions (other than, for simplicity, the lack
of degeneracy) regarding the structure of the continuous
part of Hp; it may or may not be bounded from below.
The interaction picture propagator, defined through the total
system propagator U (f, — t;) and the unperturbed total system
propagator Uy(t — ty) = e~ M0~ g given by

Ulta,t)) = Uy (2 — 1)U (12 — t))Up(t1 — 19)  (20)

and obeys the equation

. d - -

IEU(I,to) = V0U(t,1), (21
where

V(t)= Uy 't — 1)) VUt — 1) (22)

is the interaction picture Hamiltonian. Integrating Eq. (21) and
iterating it one time, we get the exact equation

U(t,to)zl—i/ V(t)dr—f/ V(1)

x V(U (T tp)dt dr. (23)

Projecting Eq. (23) on the discrete subspace, we find

Ui (t.10) = (palU(1.10)|pp)

_(Saﬂ_Zf f f idg(T— to) (Pa|VIN)e —irM(T—19)

x el)»(l’ —to)<)\’|v|¢ ) —l)»y(f —t9)
x U« 1o)drd'd. (24)

Here the first-order term (¢ | \7(1)|¢,3) has vanished, because
by assumption V does not couple the discrete states among
themselves, and the last term was obtained using Eq. (22).
Next we differentiate Eq. (24) with respect to ¢t and obtain
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the reduced, i.e., projected into the unstable subspace, master
equation

_Ured(t t()) — Zell o (t— ZU)/ / —iA(t— T)a) ()\.)d}\,

x e—’W OO 1) (25)
where the matrix elements
Way(A) = (e | VIA) AV D)) (26)

form the so-called spectral density matrix. The integral
transform of the latter,

&ay(f T,) = 6“\”([710) </ Ei)‘(trl)a)ayd)\.> eii}W(TLtO)
(27

defines the elements of the spectral correlation matrix within
the interaction representation. Using Egs. (26) and (27),
Eq. (25) may be written as

—Ured(t to) = — Z / oy (1, TVUS5 (T 10)d T (28)

Transforming back to the Schrodinger representation, we use
the inverse version of Eq. (20). Taking into account that the
spectral correlation matrix &(z,t’) transforms analogously to
U(tr,11), that L0 (t,ty) = i HoUy ' (t — 1)U (t,t0) + Uy ' (t —
to)% U(t,ty), and that Hy and Uy(t, — 1) are diagonal in the
reduced basis {|¢, )} representation, in terms of matrix notation
we obtain

d
—U™(t,19) =

- —i HU™(2,10)

t
- / a(t — U™ 1)dt’.  (29)
4]
Here

N
H' =) dalda) (ol (30)

is the discrete part of the unperturbed Hamiltonian H, and the
spectral correlation matrix defined as

o) = / e M a()dA 31
A
is the Fourier transform of the spectral density matrix
N
D) = Y uy(W)la) (. (32)
a,y=1

We argue that «(¢) defined by Eq. (31) can be associated
with the noisy environmental correlation function «(t) =
(z*(¢)z(0)) mentioned earlier since the microscopic definition
[14,15] of the latter evidently coincides with Eq. (31) up to an
obvious generalization. The correlation matrix «(¢) [Eq. (31)]
represents all the microscopic details of the interaction, whose
properties determine the type of reduced evolution, as will be
clear from the following.
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A. Equivalence of exact Markovian coupling and globally flat
and unbounded spectral density matrix

Note that in an ideal case for which w,, (1) [Eq. (26)]
are independent of A and the continuous spectrum of Hj
is unbounded (a physical example of such a situation could
occur for a Stark-type interaction with a bath, which induces a
shot noise) the correlation matrix [Eq. (31)] reduces to a delta
function of time:

o0
at —1)=w / e M) =2 ws(t — 7). (33)
—00
Substituting this into Eq. (29), we find

d

EU”d(r —to) = (—iH = 2mw) U™t — 19).  (34)
Equation (33) is a local in time first-order differential equation
with constant evolution generator, i.e., an equation describing
semigroup evolution, also called the Markov equation, since it
describes a Markovian stochastic process [21]. Its solution for
t > 1yis

+ prred
Ured(t _ tO) — e(—zHO —F)(t—to)’ (35)

where the decay matrix I is given by

t t
= / a(t)dt = f 2nwd(t — t)dt =2nw. (36)
to to
The well-known demonstration of the Zeno effect for very
short times ¢ relies on an expansion of the survival probability
P(¢) of an unstable state ) in a series [18]

P(t) = [(Yle ' |y) |
~ (Yl —iHt — SHP + 9P = 1 — 2 AH?,
(37)

where

AH? = (Y|H*|Y) — (Y |H|Y)) (38)

is the dispersion of the total Hamiltonian H in the state
|{r). The standard argument leading one to a conclusion
about the principle impossibility of pure semigroup evolution
is the presumable possibility to cut off the above expansion
[Eq. (37)] after the second order in 7. Note, however, that for
the Lee-Friedrichs model in the Markovian limit the coefficient
A H? diverges. If, for example, |/) = |, ), Eq. (38) becomes

(AHHMEY = (6, [V |hy)

= / A\ wae(A) = 00. (39)
—00

Hence the truncation of the expansion is invalid together with

the physically interpreted conclusion. It should be stressed that

under our assumptions regarding the structure of the coupling,

there is no Zeno (see also Ref. [22]) effect and the result

[Eq. (35)] is exact.

Now we briefly review how such assumptions may be
realized. For this purpose we adopt the usual approach to
the original definition of the spectral density function, i.e.,
as the continuum limit of a quasicontinuous spectrum. We
assume that the unperturbed system, described by Hy, is con-
fined to a large box with some standard boundary conditions.
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The spectrum of Hj then consists of N discrete eigenstates
embedded in a quasicontinuous spectrum of the environment
including the decay products. Each element w,, (1) of the
spectral density matrix w(}) [Eq. (32)] is defined as the product
of the interaction amplitudes (¢, |V |1)(A|V |¢, ), weighted by
the local degeneracy of the environmental states

oy (A) = (Gu|VIX) (A V|, ) D(A), (40)

where the density of states D(X) serves as an effective coarse
graining. When the spectrum is truly continuous D(A) may be
absorbed in (¢ |V |A)(A| V|, )dA. The interaction amplitudes
(da|VIL)(A|V |, ) are determined by the microscopic details,
so their functional dependence on X is dictated by the nature
of the interaction. In contrast, the density of the environmental
states D()) is determined by Hj and, in particular, by the
boundary conditions to which the system is confined. Thus
D() is at our disposal. Designing the geometry of the space,
we may find a D(X) that suppresses, at least approximately,
the A dependence of (¢, |V|1){A|V ¢, ) and yields a semigroup
evolution with a desirable accuracy.”

B. Approximate Markovian coupling vs weak interaction
and resonance

In the preceding subsection we have assumed a continuous
spectrum on the whole real line in order to obtain an exact
semigroup evolution. However, if there is a resonance and
the coupling is weak, the leading behavior of the system is
dictated by small regions of the continuous spectrum where
the effect of the interaction is sharply enhanced. Such regions
occur at A sufficiently close to the resonances, which for small
coupling are close to the eigenvalues {)A,} of the discrete
subspace. To show this we return to Eq. (25) and see whether
it is possible to utilize it approximately, even if w(A) is
not constant and the continuous part of the Hj spectrum is
bounded from below. Inspecting the integrand of the last term
on the right hand-side of Eq. (25), we note that the collapse
of the memory kernel may result from rather symmetrical
manipulations with respect to the spectral or the time variables.
For the perfectly Markovian coupling w(A) is constant and
unbounded and the integral over A yields 8(¢t — ') and admits
the semigroup evolution of Eq. (34). Conversely, if itis justified
to neglect the difference between U ;eﬂd(r’,to) and U ;,%d(t,to) and
to stretch the limits of the integration over t’ to o0, it also
yields a Markovian equation of the form of Eq. (33) [and
results in a factor §(A — A,) as well]. The error caused by the
replacement U;‘jgd(t’,to) — U;,‘;‘gd(t,to) o« O(V?) is negligible
in case the interaction is sufficiently weak, because the last
term of Eq. (25) is already second order in V. Such an

>There exists a class of phenomenological descriptions of the
spectral density functions g, (A) o« ;AL 15e=*/* [14], where 7, is
the viscosity constant, the exponential factor provides a smooth cutoff
modulated at the frequency ., and 0 < s < 1 and s > 1 describe
the so-called subohmic and superohmic interactions, respectively.
The slower the dependence of the spectral density function on
A, the closer the reduced evolution is to the Markovian limit. The
boundary case of s = 1 corresponds to the ohmic interaction and is
associated with an approximate Markovian spectral coupling.
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approximation yields a solution that up to the second order in
V is exact and provides a direct interpretation of the original
perturbative computation of Weisskopf and Wigner [2] in the
resolvent formalism. Making the weak-coupling assumption,
we approximate the reduced master equation [Eq. (25)] by

d - : . .
EU;%d(t’to) —_ _ Z / elka(tfto)elkytoeflltway()\’)
A
14

t
x / e BN AT AVTT (), (A1)
fp
and focus on the integration over time. Since the interaction
V is time independent, one may select the time origin such
that tp = —7/2 and t = T /2. Then the integration over t’ in
Eq. (41) yields [12]
2 .
/T/ omilh AT gyt l sin[(A — )LV)T/Z].
—T/2 T ()\ — )")/)

= (42)
This is the well-known sinc function, which in the limit 7 —
oo is one of the definitions of the Dirac § function. The fact
that the sinc function [Eq. (42)] is sharply peaked around
A = X, and falls quickly when A — A, > 27” gives rise to the
notion of the resonance: substituted back into the integral over
A in Eq. (41); the sinc function suppresses all the values of
the spectral density function wy, (1) outside this region. Thus
we observe that stretching the limits of integration over t’ in
Eq. (41) to infinity implies the replacement of the actual sinc
function [Eq. (42)] by the Dirac § function §(A — A,). The
error induced by this approximation is legitimate to neglect
for t = T /2 sufficiently large and then Eq. (41) becomes the
further approximated reduced master equation

d 7T

—- Ut — 1)

~ =2 Y R, (U — 1), (43)
¥

Transforming Eq. (43) back to the Schrodinger representation,
we regain in matrix notation Egs. (34) and (35), except that
instead of the constant density matrix w we have the resonant
spectral density matrix

N
W0 = Y Way (= 2| (. “44)

a,y=1

whose elements are given by w,, (1) [Eq. (26)] evaluated at the
discrete eigenvalues A = {A, } of Hp, where the subscript y €
[1, N] corresponds to the column index. Thus, for large enough
t = T /2, the contribution of the spectral density over the sharp
resonances is very much enhanced, the structure of the rest of
the continuous spectrum of Hj is quite unimportant for the
reduced dynamics, and the error involved in the approximate
Markovian equation [Eq. (43)] is small.

From the above considerations it is clear that the resonance
Markovian assumption fails if (i) the interaction is strong
and (ii) w(A) vanishes or undergoes significant changes near
the resonant values A = {i,}. Nevertheless, the Markovian
approximation is usually very good and suits a large variety of
natural environments. To see why, let us restore the Planck
constant %, taken so far to be equal to unity. Doing so
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shows [12] that the region of the non-negligible values of
2nth

the sinc function, i.e., the resonance area, is equal to =
Since, for some reasonable 7', the §-function approximation
of the sinc function is clearly a good one, the smoothness
requirement of w(A) refers to a finite number of small regions
in the spectrum. The requirements of the approximation in
Eq. (43) are then not highly restrictive. Therefore, it would
be experimentally difficult to detect any deviation from the
semigroup evolution, which occurs only on atomic time scales.
In order to do this, one may need to deliberately destroy the
smoothness of the environmental spectrum (by careful choice
of the boundary conditions), which on such small scales might
be difficult [23,24]. If w(}) is changing rapidly (or vanishes)
near the resonances, the Markovian approximation would
be invalidated and the lifetime of the Zeno effect would be

lengthened.

IV. WIGNER-WEISSKOPF POLE APPROXIMATION IN
THE MARKOVIAN LIMIT

In the preceding section we saw that the general integro-
differential equation [Eq. (29)] for the reduced propagator
U™ (t,1) expresses the point that the dynamics of the open
system may depend on its history. Yet semigroup evolution
for the open system can be achieved if due to some special
circumstances U™(¢,#,) may reduce to a dynamics approxi-
mated by the form of Eq. (34). Since, in contrast to the closed
system, the energy of the open system need not be conserved,
the reduced evolution generator is not necessarily Hermitian
and may have effective complex eigenvalues responsible for
the decay.

As mentioned, Eq. (29) may reduce to a Markovian form
either exactly or approximately. The former case occurs when
the spectral density matrix w(A) [Eq. (26)] is constant and
unbounded. The latter, much more realistic case yields the
desired effect approximately through a combination of the
second-order weak-coupling perturbation and resonances. In
either case, the dramatic mutation of the time-dependent spec-
tral correlation matrix «(¢) [Eq. (31)] into a delta-correlated
operator leads to the equation of the form of Eq. (34), which,
independently of the dimension of the reduced subspace,
results in a semigroup solution of the form of Eq. (35) and
thus permits a semigroup decay also for the many-channel
problem, as shown in our analysis of the Wigner-Weisskopf
method.

To clarify the impact of the Markovian assumption on the
pole approximation approach we first review its basics for
the idealized Markovian limit. Note that in the case in which
the continuum spectrum is unbounded, there is no branch
point and the integration path C in the fundamental equation
[Eq. (8)] goes above the whole real line (see Fig. 3). An
immediate consequence of this is that the modified integration
path C; of the background term fCl R"(2)e **'dz in Eq. (10)
may be taken parallel to the real axis Imz = 0 and if there is no
obstacle to dragging it down to Imz — —oo0, the background
contribution vanishes for all positive times. Further, we focus
on the contributions of the pole terms. Recall Eq. (7) and note
that assuming this reduced equation is put in the Markovian
form implies that the evolution generator W (z) appearing in the
denominator of Eq. (7) [similarly to the total system propagator
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FIG. 3. Inverse Laplace transform contour C of Eq. (8) in the
case in which the unbounded perfect Markovian spectral coupling is
modified into the contour C,. The poles are denoted schematically by
the stars.

Uz) = Li_i.e” " =i/(z — H)] is z independent, though
not essentially Hermitian. The z independence of W(z)
automatically implies the z independence of its eigenvectors
and eigenvalues defined in Eq. (13) and hence guarantees the
orthogonality of the projectors Q,,(z;) and Qg (zx) if Wy, #
wy, for any z; and zi. Therefore, the idealized Markovian
limit allows pure semigroup evolution with no Zeno effect [22]
independently of the position or the number of poles.

To prove our last conclusion explicitly we establish the
connection between the reduced generator W'(z) and the
spectral correlation matrix in the lower half of the Laplace
plane. Combining Egs. (9), (A7), and (A8), we find

Wh(z) = HF +ia(2). (45)

Generally, the spectral correlation matrix «(¢) [Eq. (31)],
standing for the memory kernel of the integro-differential
equation [Eq. (29)], may be any spread function of time.
The essence of the Markovian limit consists of collapsing
(either exactly or approximately) this memory kernel into a
8-correlated matrix. For the artificially unbounded spectrum
A € (—00,00) we have

aMal‘kOV(t)/ d)\. w()\')e—ikt — 27-[(08([)’ (46)

and hence

iaMarkOV(Z)

0
= isz dt ()" —2miv = —wiw.  (47)
—00
where the spectral density matrix w is a constant. Substituting
this back into Eq. (45) yields

WMarkov H(Z) — Héed + iaMarkOV(Z) — const. (48)

What is left is to return to the original formulation of the
Wigner-Weisskopf theory with the semibounded continuous
spectrum and explain how the effects of weak coupling and
resonance explain the high precision of semigroup evolution
for either the single- or the many-channel decay. In reaching
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the above result, it was assumed that w(A) is supported in
(—00,00). We prove in the Appendix that 42"(z) may have zero
determinant for some values of z in the lower half plane. The
leading behavior of the reduced evolution is therefore dictated
only by a finite number of small regions corresponding to the
poles of R(z), where the contribution of the spectral density
matrix w()) is strongly enhanced, in agreement with resonance
Markovian approximation. In such a case, the integral over A
in Eq. (A9) contributes primarily to the set of A’s close to
the real part of the poles, whereas a fictitious extension of the
integration to —oo will not change appreciably the value of the
integral. Hence it is straightforward to repeat the derivations
leading to the conclusion on the simultaneous vanishing of the
background contribution and the orthogonality of the pole term
projectors. The only difference is that instead of the constant
spectral density matrix w in Eqgs. (46) and (47) we shall have
the resonant A-independent matrix o™ given by Eq. (44). To
conclude, the result Eq. (48) is quite general in the case in
which the resonances are fairly sharp (i.e., the poles in the
second sheet are close to the real line). Even though not strictly
exact, this Markovian limit approximation should be valid for
many experimental conditions and becomes even better for
weaker coupling.

V. SUMMARY

By associating the spectral weights of the Wigner-
Weisskopf model for unstable system decay with the statistical
properties of coupling to an environment, we were able to
characterize the reduced evolution in the subspace of unstable
states in terms of the spectral correlation matrix. Exploiting the
properties of the latter, we showed that the Markovian limit
distribution is sufficient to account for semigroup behavior
for an arbitrary number of the decay channels, observed in
experiment, such as in Ref. [3]. Besides the important impact
of the spectral correlation matrix notion for understanding
the reduced evolution of the multichannel decays, such as
the two-channel K meson decay [19,20], it is clear that the
association of the coupling to a spectral continuum with an
environment may be similarly useful for any analogously
modeled theory.
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APPENDIX: SECOND SHEET PROPERTIES OF R(z)

In this appendix we discuss the structure of the reduced
propagator in the complex Laplace plane. We specifically show
that the propagator has poles only in the lower half plane
near the real axis and also provide the background needed
for establishing the connection between the reduced system

012122-7



F. SHIKERMAN, A. PEER, AND L. P. HORWITZ

evolution generator and the spectral density matrix [Eq. (45)].
Following a well-known procedure [7], we rewrite Eq. (7) as

1
R(z) = —. Al
(2) o (AL)
Here the operator
w(X)

77— A

h(z) =z — Hy* — / d : (A2)
with ngd and w(X) given by Egs. (30) and (32), respectively, is
found straightforwardly from the projection of the total system
propagator on the discrete subspace. The last term of Eq. (A2)
can be recognized as the Laplace transform (for Imz > 0) of
the spectral correlation matrix «(¢) [Eq. (31)]:

ia(z) = /dk w(ki = i/ dt a(r)e'™
z—

0
=i/ dl/d)» w(\)e M el
0

To obtain a singularity in R(z) [Eq. (Al)] we need that the
determinant of /(z) [Eq. (A2)] vanishes. These non-Hermitian
matrices can be put into Jordan canonical form with a
unitary transformation, with eigenvalues along the diagonal.
A vanishing eigenvalue implies a vanishing determinant. We
therefore can ask whether 4(z) has a vanishing eigenvalue, i.e.,

h()|x(2))r
= (z — HF — /dew(TkD [x(@)r =0, (A4)

where |x(z))r is the right eigenvector of h(z) with the
presumed zero eigenvalue. Taking the scalar product with the
eigenvector ; (x (z)| from the left yields

2 @) =1 (X@IH; | x (D)) r
A
B /d)LL(X(Z)lw( x@r _
Z—A
In general, for the convergence of the integral in Eq. (AY),
we must assume that w(A) decreases better than an inverse

power of A (no matter how small) since the integral contains
N% for very large A. Now we consider the imaginary part of

(A3)

0. (AS)
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Eq. (AS). Since ngd is Hermitian, its expectation value in the
state | x(z)) is real and we are left with

Iz (Ix(z))|2+ / de(X(Zl)i‘“_“A):f(Z”R> —0, (A6)

i.e., Imz times a positive quantity. This can never be zero for
Imz # O on the first Riemann sheet. We are therefore required
to go to the second sheet:

1
hH(Z) ’
W(z) =z — H —ia(2).

R'(z) = (A7)

(A8)

Here R"(z) and h(z)" are the smooth continuations of R(z)
and A(z) into the lower half plane and

0
ia(z) =i / dt / dr w(M)e M —2rin(z)  (A9)

is the analytic continuation of the spectral correlation matrix
«(z2) [Eq. (A3)], where w(z) is the analytic continuation of
w(}) into the lower half plane. The condition for a vanishing
eigenvalue [Eq. (A5)] now reads

Zx @) =1 (X @IH X (@) R
_/dkdx(Z)lw(A)lx(Z))R
Z—A
+2mi (x (D)lo(@)|x (@) = 0.

Taking the imaginary part as before gives

Imz (IX(Z))I2 +/dAL<X(Z)|w()‘)|X(Z)>R>
|z — A2

+2mip (x (D2 x(2))r =0,

so that there may be a solution for Imz negative since w(}) is
positive definite. It is easy to see that the expectation of w(}) is
the sum of absolute squares; the analytic continuation of w(A)
to the lower half plane for small imaginary part of z, enough
to reach a resonance pole, is assumed to remain approximately
real since it is smoothly connected to real values of w(A) for A
on the real line. In the Markovian limit this function is taken
to approach a constant.

(A10)

(Al1)
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