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The master equation for the state of an open quantum system can be unravelled into stochastic trajectories
described by a stochastic master equation. Such stochastic differential equations can be interpreted as an
update formula for the system state conditioned on results obtained from monitoring the bath. So far only one
parametrization (mathematical representation) for arbitrary diffusive unravellings (quantum trajectories arising
from monitorings with Gaussian white noise) of a system described by a master equation with L Lindblad terms
has been found [H. M. Wiseman and A. C. Doherty, Phys. Rev. Lett. 94, 070405 (2005)]. This parametrization,
which we call the U representation parameterizes diffusive unravellings by L2 + 2L real numbers, arranged in
a matrix U subject to three constraints. In this paper we investigate alternative parametrizations of diffusive
measurements. We find, rather surprisingly, the description of diffusive unravellings can be unified by a single
equation for a nonsquare complex matrix M if one is willing to allow for some redundancy by lifting the number
of real parameters necessary from L2 + 2L to 3L2 + L. We call this parametrization the M representation. Both
the M representation and U representation lack a physical picture of what the measurement should look like. We
thus propose another parametrization, the B representation that details how the measurement is implemented in
terms of beam-splitters, phase shifters, and homodyne detectors. Relations between the different representations
are derived.
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I. INTRODUCTION

Methods of detection for optical fields such as the hetero-
dyne (and homodyne) [1] enable measurements of the field
amplitude (and quadratures) and are useful for detecting non-
classical light [2,3]. The heterodyne (or homodyne) detector is
an example of general diffusive measurements [4,5], so called
because the statistical fluctuations in the current outputed
by the measurement is driven by a Gaussian-white-noise
process, a prime example of a diffusion process. This is
the process responsible for the broadening of a probability
distribution described by the diffusive term appearing in
Fokker-Planck equations [6,7]. The heterodyne technique,
originally conceived for radio technology more than 100 years
ago [8,9], of which the homodyne is a variant, has now
become an indispensable part of many quantum information-
processing applications. Some of these applications include
quantum-state tomography [10–12], teleportation [13–16], and
state preparation [17–22]. It also enables tests of quantum
mechanics [23–25].

In this paper we are concerned with continuous measure-
ments (also referred to as monitorings) of an open system
in a vacuum bosonic environment (Fig. 1). Specifically, we
are interested in how one can specify the class of all possible
diffusive quantum measurements given how many inputs to the
measuring device there are. There is already one solution to
this problem [26,27], a parametrization that we shall call the U
representation (U-rep). The U-rep parameterizes an arbitrary
diffusive measurement by a square, real matrix U, with three
constraints imposed on the blocks of U. We will present two
more solutions with certain advantages over the U-rep: The M
representation (M-rep), a nonsquare complex matrix M, and
the B representation (B-rep), a square matrix and two vectors.
We will be comparing the different parametrizations in detail
later but let us first say why one might consider these alternative
parametrizations.

A good reason, and also the more theoretical reason for
considering the M-rep, is that aesthetically it is more attractive
than the U-rep. As we will show, the M-rep has the ability to
unify all diffusive measurements by a single equation whereas
three would be required to define U.1 The aesthetic advantange
of the M-rep continues when we come to the quantum theory
of multiple-input multiple-output Markovian feedback control
based on diffusive measurements [28]. There, the theory is
simpler when the equations are expressed in terms of the
M-rep rather than the U-rep. Furthermore, the defining
equation for M has an intuitive interpretation which makes
it easy to remember.

Either the U-rep or the M-rep can be used when we know
what the measurement is and would like to parametrize it
in order to model the state of the open system conditioned
on the results of the monitoring. If, on the other hand, we
were given either a U or an M and were asked to describe
the measurement with actual optical elements, then this is a
much more difficult task for arbitrary measurements. Such a
setting where one may be given an M without knowing its
physical implementation can in fact arise naturally in quantum
feedback control [27,29]: As measurement is an inherent part
of the feedback loop, a design of the feedback loop can thus
incorporate a design of measurement and it is natural to ask
what sort of measurement one should do in order to achieve
a particular objective for the control. In the case of optimal
control the objective would be to minimize a measurement-
dependent cost function. The result of this optimization would

1However, the M-rep is numerically more cumbersome than the
U-rep in the sense that it requires more real numbers to specify a
diffusive measurement. In particular, the extra number of param-
eters that M needs scales as a quadratic in the number of rows
of M.
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FIG. 1. (Color online) Schematic of some photoemissive system
which couples to the environment via some set of operators ĉ. The
time evolution of the system based on knowledge of the noisy signal
y also follows a noisy path, which can be described by a stochastic
master equation. The stochastic master equation updates the system
state continuously in time as the measurement record grows. If one
ignores the measured result y then the system state evolves according
to the deterministic master equation. This corresponds to averaging
over the stochastic evolution.

be a matrix M�, which one would then need to realize in the
laboratory. That is, the theorist who now has obtained M�

would like to inform his/her experimentalist colleague about
how to construct the measurement.

The above considerations motivate us to propose yet another
parametrization of diffusive measurements; one which we call
the block representation or B-rep for short. Unlike the M-
and U-rep, the B-rep is a realization of the measurement
in terms of beam-splitters, phase shifters, and homodyne
detectors. The B-rep is so called because it parameterizes
the diffusive measurement in terms of three distinct blocks,
with each block corresponding to a set of parameters (beam-
splitter transmission coefficients and phase shifts). Note that
being given an M is equivalent to being given a POVM
(positive-operator-valued measure2). From this point of view
the relationship between the M-rep and B-rep is thus one of
a POVM and its realization. As we shall see, proving that
an arbitrary POVM has a realization defined by the B-rep is
much more difficult than translating a given B-rep into an M
and hence a POVM. Here we point out that this line of thought
had in fact been applied to N -port homodyne detection, a
generalization of the standard homodyne measurement but a
subset of all diffusive measurements, as early as 1987 [31].
A similar question was raised again in 1994 but for unitary
operators instead of a POVM [33]. Our construction of the
B-rep in fact relies on this result of Ref. [33].

2The outcomes of a measurement can be labeled by a random
variable y (here assumed to be discrete). In a general formulation
of quantum measurements the distribution of the particular outcomes
y̆ (a deterministic variable) of y is described by a set of “probability
operators” [4,30], defined by {Êy̆ | ∀ y̆ Êy̆ � 0 ,

∑
y̆ Êy̆ = 1̂}. This

set is known as a POVM and sometimes also as a POM, short
for probability-operator measure. We shall find in Sec. III A that y
depends on M [see (36)] so a given M will restrict the set of possible
realizations y̆. Each choice of M therefore defines a POVM and each
value of y̆ corresponds to a particular POVM element Êy̆.

Our paper is organized as follows. In Sec. II the uncondi-
tional dynamics of open quantum systems is reviewed and
the concept of unravellings and its relation to continuous
measurements are also briefly sketched. As we frequently
make use of vector operators, a comprehensive review of their
definitions and algebra is provided in Appendix A. Note that
not all of the results in Appendix A will be used in this paper
so we will refer to the ones that do appear. However, the
reader who is also interested in the theory of multiple-input
multiple-output quantum feedback control (for which the
M-rep is applied to) [28] may find it worthwhile to embark
on a fuller exposition of vector-operator algebra. We also
mention that for convenience we will not necessarily reflect
the multicomponent nature of vectors or vector operators in
our language when they are referred to, such as in “the field â”
or “the current ŷ,” as opposed to using plurals as in “the fields
â” or “the currents ŷ.” Our first results section begins with
Sec. III. The key results here are the definition of the M-rep
and its relation with the U-rep. It should be noted that Sec. III
begins by postulating the most general diffusive stochastic
master equation. The purpose of Sec. II is thus to help the
reader gain the intuition required to make this leap. In Sec. IV
we define the B-rep and discuss its relation with the M-rep.
Here we conjecture a matrix decomposition of M in terms of
the matrices in the B-rep triple. We then conclude in Sec. V.

II. DIFFUSIVE CONTINUOUS MEASUREMENTS IN THE
SCHRÖDINGER PICTURE

A. Unconditional system dynamics

A general open quantum system with Markovian dynamics
[34,35] can be described by a master equation in the Lindblad
form [36,37]

h̄ ρ̇ = −i [Ĥ ,ρ] + D[ĉ]ρ ≡ Lρ, (1)

where Ĥ is Hermitian and ĉ ≡ (ĉ1,ĉ2, . . . ,ĉL)� (which we will
refer to as a vector operator) is a vector of Lindblad operators,
all time independent. See Appendix A for a comprehensive
review of definitions and conventions that we are adopting for
vector operators. We have also defined

D[ĉ] ≡
L∑

k=1

D[ĉk] , D[ĉ]ρ ≡ ĉ ρ ĉ† − 1

2
ĉ†ĉρ − 1

2
ρ ĉ†ĉ .

(2)

Note that instead of working in natural units by setting h̄ = 1
we will work in units such that a factor of h̄ appears on the
left-hand side of (1). This was done in Refs. [4,27] so we
will keep their convention for ease of comparison with the
results therein. The reason for redefining units this way is to
keep track of the correspondence between quantum operators
and their classical counterpart (the dynamical variables which
they represent) and aspects of quantum control that are not
present in the classical theory. Equation (1) can be derived
by a unitary operator Û (t,t0) acting on the joint Hilbert space
of the system and bath [35]. This describes the interaction
between the system and its environment, which we assume to
be given by the Itô stochastic differential equation

h̄ dÛ (t,t0) = (−iĤ − 1
2 ĉ†ĉ + b̂†ĉ − ĉ†b̂

)
Û (t,t0) dt, (3)
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where dÛ (t,t0) ≡ Û (t + dt,t0) − Û (t,t0) and

ĉ† ≡ (ĉ†1,ĉ
†
2, . . . ,ĉ

†
L). (4)

Here b̂ represents a bosonic bath field shown in Fig. 1 and
assumed to be in the vacuum state. External driving of the
system is included in Ĥ . In this section we are working in the
Schrödinger picture so operators are time independent, equal
to their initial value.

It is well known that the evolution described by (1) can
be decomposed into stochastic paths in Hilbert space, called
quantum trajectories (a term coined by Carmichael [38], who
also referred to this decomposition as unravelling the master
equation) by considering the evolution of ρ conditioned on
the results of monitoring [38,39]. We will also refer to the
results of monitoring as a current, denoted by a vector y(t). For
Markovian evolution it is sufficient to consider unravellings
(the set of possible quantum trajectories the system state may
take over time) generated by measurements with either or
both of two classes of noise [4,40]: (i) A point (or jump)
process [41], also called a Poissonian random variable, or,
(ii) a Wiener process also called Gaussian white noise. We
will refer to this second case as a diffusive measurement.
Physicists usually neglect the technical difference between
an “unravelling” and a “measurement,” and one often finds the
two terms used interchangeably. We will do so as well in this
paper for convenience.

B. Conditional system dynamics: Homodyne and heterodyne
unravellings

The most familiar forms of diffusive measurements in quan-
tum optics are homodyne and heterodyne detection schemes of
a single output field of some photoemissive source. Apart from
being characterized by Gaussian white noise (as opposed to
point-process noise) these measurements are also determined
by physical properties such as the specific arrangement of
linear optical elements and the specific parameter values at
which they operate. Here we will first show how the master
equation (1) is unravelled by the homodyne and heterodyne
detection schemes. This will familiarize the reader with the
notation used for describing conditional evolution and build
some intuition about how the measurement parameters enter
into a quantum trajectory equation. For convenience we will
set h̄ = 1 for the rest of this section.

1. The homodyne stochastic master equation

We begin with the example of a single mode of an
intracavity field. For simplicity we will assume the optical
cavity to be one-ended with transmission coefficient γ and
that the bath is in the vacuum state. In this case the master
equation (1) has only one Lindblad term (i.e., L = 1), given by
ĉ = √

γ â, where â is the cavity mode annihilation operator.
A homodyne measurement [1] of the field at the leaky port
would then give us information about a particular quadrature
of â. Such a continuous measurement would yield a result, for
some state ρ(t), given by the Itô formula [4,42] (assuming a
measurement efficiency of η)

y(t)dt = √
η 〈ĉ + ĉ†〉(t) dt + dw(t). (5)

We have defined, for an arbitrary operator Â, 〈Â〉(t) =
Tr[Âρ(t)], reserving angle brackets for quantum (operator)
averages. The term dw(t) is a Wiener increment. It is a
Gaussian random variable defined by the mean

E[dw(t)] = 0 (6)

and variance

[dw(t)]2 = dt, (7)

dw(t)dw(t ′) = 0 ∀ t 	= t ′. (8)

We shall always denote an average taken with respect to a
probability distribution by an E as in (6).

From the measurement result y(t) the observer can update
her prior state from ρ(t) to a posterior state ρyt

(t + dt)
according to the stochastic master equation

dρyt
(t) = Lρ(t) dt + √

η H[ĉ]ρ(t) dw, (9)

where L is given by (1) and the change in the state is

dρyt
(t) = ρyt

(t + dt) − ρ(t). (10)

We have also defined [see also (A65) in Appendix A]

H[Â]B̂ ≡ ÂB̂ + B̂Â† − Tr(ÂB̂ + B̂Â†)B̂, (11)

for any Â and B̂. Here ρyt
(t + dt) is the state given a

particular realization of y(t). We have also written the time
dependence of y as a subscript. For clarity it is best to have
this flexibility in writing the time dependence. Averaging (9)
over y(t) according to its actual distribution ℘(y̆t ) (a Gaussian
with mean

√
η 〈ĉ + ĉ†〉 and variance 1/dt) simply returns the

master equation (1). Note that a breve over a random variable
denotes its realization.

Equation (9) is a nonlinear stochastic differential equation
in the state. This would not have been the case if we did
not insist on keeping the state normalized at all times and
having the measurement results distributed according to its true
statistics described by ℘(y̆t ). An alternative theory is to assign
an ostensible distribution ℘ost(y̆t ) to y(t) and just disregard
the norm of the state. When ℘ost(y̆t ) is a Gaussian with zero
mean and variance 1/dt the state evolves according to a linear
stochastic master equation given by

dρ̄yt
(t) = Lρ(t) dt + y(t)dt H̄[ĉ]ρ(t), (12)

where the updated state is now un-normalized

dρ̄yt
(t) = ρ̄yt

(t + dt) − ρ(t), (13)

and we have defined a “linear” version of (11)

H̄[Â]B̂ ≡ ÂB̂ + B̂Â†. (14)

The solutions to (12) are called linear quantum trajectories
[42]. For linear quantum trajectories to be equivalent to
the standard theory [the case when the measurement results
are distributed according to their true distribution ℘(y̆t ) and
the state follows a nonlinear stochastic master equation] the
ostensible distribution must be such that [4]

℘(y̆t ) dy̆t = Tr
[
ρ̄yt

(t + dt)
]
℘ost(y̆t ) dy̆t . (15)
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The form of the linear stochastic master equation is specific to
the form of ℘ost(y̆t ), so choosing a different form for ℘ost(y̆t )
will result in a different linear stochastic master equation [4].

In the above we have assumed the prior state to be
unconditioned [implied by (10)], no matter how it is obtained.
In general this need not be the case and certainly will not be
once the prior state is propagated for any finite time interval
under (12) [or (9)]. Thus for generality and clarity we will
introduce a Roman subscript c (for “conditioned”) and write
the linear stochastic master equation as

dρ̄c(t) = L ρ(t) dt + y(t)dt H̄[ĉ]ρ(t), (16)

where

dρ̄c(t) = ρ̄c(t + dt) − ρ(t). (17)

Tacked onto Eqs. (16) and (17) is the system of notation
that ρ(t) denotes a state of knowledge that is arbitrarily
conditioned on the measurement record during [0,t). Once ρ(t)
is determined the precise conditioning of ρ̄c(t + dt) can then
be expressed. We will inform the reader about the dependence
of ρ(t) on the measurement record when it is necessary to
assume a particular conditioning for ρ(t).

2. The heterodyne stochastic master equation

A heterodyne measurement of efficiency η can be shown to
be formally equivalent to two simultaneous measurements of
orthogonal quadratures of the signal field by two homodyne
detectors each with efficiency η/2. This latter detection scheme
of using two homodyne detectors is also referred to as
a dual-homodyne measurement. It is a convenient way of
understanding the heterodyne measurement and is how we
will think about it. That is, while we use the term “heterodyne”
often, we will always realize it using a dual-homodyne scheme.
This decomposition of a heterodyne measurement into two
homodyne ones will also be of use later in Sec. IV.

If we now keep the above example of a leaky cavity and
perform a heterodyne (or dual-homodyne) measurement of the
output of the cavity then we obtain two currents, y1 and y2,
which we write as the components of a 2 × 1 vector y,

y dt =
√

η

2

( 〈ĉ + ĉ†〉
−i〈ĉ − ĉ†〉

)
dt + dw, (18)

where dw = (dw1,dw2)� and dw1 and dw2 are independent
Wiener increments,

dw1(t)dw2(t ′) = 0 ∀ t,t ′. (19)

Conditioning the system state on (18) then leads to the
heterodyne stochastic master equation

dρc(t) = L ρ(t) dt

+
√

η

2
H[ĉ]ρ(t) dw1 +

√
η

2
H[−iĉ ]ρ(t) dw2.

(20)

We can write this more compactly by defining the row vector

M =
√

η

2
(1,i). (21)

Equation (20) is then equivalent to

dρc(t) = L ρ(t) dt + dw�H[M†ĉ ]ρ(t). (22)

Note here the use of the vector-operator-valued superoperator
(A66), defined for any Â and B̂ as

H[Â]B̂ ≡ ÂB̂ + B̂Â‡ − Tr[ÂB̂ + B̂Â‡]B̂, (23)

where Â‡ ≡ (
Â�)†

. The heterodyne measurement illustrates
how y can be a two-component vector even though L = 1 so
there is only one output field b̂out.

III. THE M REPRESENTATION

In this section we show how a single complex matrix
can capture any such properties of diffusive measurements
of an arbitrary number of system outputs in the Schrödinger
picture. In Sec. IV a second and physically intuitive method
of parameterizing diffusive unravellings is formulated in the
Heisenberg picture.

A. Measurement statistics

Based on the foregoing examples of homodyne and hetero-
dyne unravellings in Sec. II B we propose the following form
of a general diffusive stochastic master equation

h̄ dρc(t) = Lρ(t) dt + dw�H[M†ĉ ]ρ(t), (24)

conditioned on the 2L × 1 real vector

y(t)dt = E[y(t)]dt + dw(t), (25)

which represents the measured current. The length of y is
motivated by the example of heterodyne detection in Sec. II B 2
and the fact that here we are allowing L components in
b̂out. The measurement is a noisy process. The noise in the
measurement is given by a vector of independent Wiener
increments dw (also 2L × 1 by default). The vector dw(t)
therefore has zero mean

E[dw(t)] = 0 ∀ t, (26)

and correlation matrices

dw(t) dw�(t) = I2L dt, (27)

dw(t) dw�(t ′) = 0 ∀ t 	= t ′. (28)

In (24) we have used (23) and defined M to be an L × 2L

complex matrix that parameterizes the unravelling.3 The
constraints which define M will be determined in the following
sections, here we will obtain the form of the measured current
consistent with (24).

The precise of form of E[y(t)] can in fact be derived from
the theory of linear quantum trajectories which allows us to
calculate the actual statistics of the measured current by using

3In the case when some of the columns of M are zero, say R (� 2L),
then dw can be defined to be R × 1 instead of 2L × 1 (in fact we do
this in Ref. [28]). Defining M to be L × 2L and dw to be 2L × 1 here
just simplifies our theory.
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an ostensible distribution in the following way: Here we are
only concerned with the average of yt and this is

E[y(t)]dt = Ē[y(t)Tr{ρ(t) + dρ̄c(t)}]dt, (29)

where ρ(t) is normalized and dρ̄c(t) is given by

h̄ dρ̄c(t) = Lρ(t) dt + y�(t)H̄[M†ĉ]ρ(t)dt. (30)

Here we have used (15) to rewrite the average on the left-hand
side as an average with respect to the ostensible distribution
(denoted by an overbar on E)

℘ost(y̆t ) =
(

dt√
2π

)L

exp

[
− 1

2
y̆�

t y̆t dt

]
. (31)

This is a Gaussian with mean zero and covariance

Ē[y(t) y�(t)] = I2L/dt. (32)

Defining a linear version of (23),

H[Â]B̂ ≡ ÂB̂ + B̂Â‡, (33)

we then obtain, on substituting (30) into (29),

E[y(t)]dt = h̄−1 Ē[y(t)dt y�(t)dt Tr{H̄[M† ĉ]ρ(t)}]
= h̄−1 Tr{M†ĉρ(t) + ρ(t)M�ĉ‡} (34)

= dt

h̄
〈M†ĉ + M�ĉ‡〉. (35)

We have used the facts that Lρ is traceless and that Ē[y] = 0
in (34). Later (Sec. IV) we will be considering a different rep-
resentation of diffusive measurements. In order to distinguish
between different representations we will use a subscript on
the current. Substituting (35) back into (25) we will thus write

h̄ yM dt = 〈M†ĉ + M�ĉ‡〉 dt + h̄ dw. (36)

It is clear from (35) that M determines what property of
the system gets measured, represented by some Hermitian
operator f̂ (ĉ), and also the measurment statistics (i.e., the
statistics of yt ) for a measurement of f̂ (ĉ). That M defines
the diffusive measurement could have been anticipated from
(24) since M appears in the H superoperator which stems from
considering measurement. Its appearance in (24) also means
that not every M will be a valid parametrization of a diffusive
measurement. In Sec. III B we find the necessary and sufficient
condition for M to be valid.

The careful reader who is familiar with the quantum
theory of indirect measurements [4,43] will know that the
conditioning for the state is in general just a label which allows
us to distinguish between measurement outcomes, and as such
it does not have to be real. Our choice of conditioning the state
on a real vector is motivated by its use in control theory in
which the prevalent treatments regard y as a real process [44].

The assumption that ρ(t) is unnormalized can be relaxed.
Say the measurement began at time 0 and that ρ̄c(t) is obtained
by evolving ρ(0) via (30) to time t . In this case the correct
modification to the above calculation is to divide the trace in
(29) by Tr{ρ̄c(t)}. Keeping the same ostensible distribution as
(31) we get

E[yt |y[0,t)]dt = Ē

[
yt

Tr{dρ̄c(t)}
Tr{ρ̄c(t)}

]
dt, (37)

where on the right-hand side the state ρ̄c is conditioned on the
measurement record

y[0,t) ≡ {y(s) | 0 � s < t}. (38)

The end result from calculating (37) is to replace the uncondi-
tioned averages in (35) by conditional ones,

〈ĉ〉 −→ 〈ĉ〉c = Tr[ĉρ̄c(t)], (39)

as one would have guessed, where

ρc(t) = ρ̄c(t)

Tr[ρ̄c(t)]
. (40)

B. The set of allowed M

1. Necessary condition for M

If M is to be a valid parametrization of a diffusive quantum
measurement it must be such that (24) evolves a valid state
at time t to another valid state ρ(t + dt) for all t . Here
we remind the reader that a valid state is represented by
an Hermitian operator that is normalized and positive. From
this it follows that its eigenvalues all lie in the interval [0,1],
which we can write as an operator inequality 0 � ρ � 1̂. The
positivity condition is the only nontrivial criterion because Lρ

and Hρ are each Hermitian and traceless so (24) will always
preserve Hermiticity and normalization for any M. Since these
conditions must hold for any measurement process, they are
necessary for a given M to be valid and we establish the
following implication

M is valid ⇒ M : 0 � ρ(t) + dρc(t) � 1̂, (41)

where ρ(t) is understood to be any valid state and dρc(t) is
given by (24). It is simple [given dρc(t) is traceless] to see that

0 � ρ(t) + dρc(t) � 1̂ =⇒ Tr{[ρ(t) + dρc(t)]2} � 1. (42)

Without loss of generality we can assume that ρ(t) is a pure
state, because of the convexity of Tr[ρ2] in ρ. We will show

Tr{[ρ(t) + dρc(t)]2} � 1 ⇐⇒ MM†/h̄ ∈ H, (43)

where H is

H = {H = diag(η ) |∀ k, ηk ∈ [0,1]} , (44)

thereby establishing the right-hand side of the equivalence (43)
as a necessary condition for M to be valid.

The equivalence (43) can be proven by first proving the
following lemma:

Tr{[ρ(t) + dρc(t)]2} = 1 ⇐⇒ MM†/h̄ = IL, (45)

where IL is the L × L identity matrix. It can then be shown
(see Appendix B) that

Tr{[ρ(t) + dρc(t)]2} = 1 + 2

h̄
tr[H (MM†/h̄ − IL)�] dt, (46)

where H is the Hermitian, positive-semidefinite matrix (not to
be confused with the Hamiltonian Ĥ , which is an operator)

H = 〈(ĉ − 〈ĉ〉)‡(ĉ − 〈ĉ〉)�〉. (47)

Since ρ(t) is an arbitrary pure state, H can be assumed to be
strictly positive (i.e., positive definite). Thus (46) will be 1 if
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and only if MM†/h̄ = IL . This completes the proof of (45), a
necessary condition on M in the case of efficient monitoring
(i.e., monitoring which preserves the purity of the state).

To prove (43) we must consider the case when the purity
at time t+dt drops to below 1. Given that we had a pure
state at time t this is possible if and only if we had inefficient
monitoring. For a single decay channel we can bundle the sum
of all losses4 into a single parameter η and consider only a
fraction η (between 0 and 1) of the system operator ĉ to be
measured perfectly. This can by modelled by introducing an
imaginary beam-splitter with transmission coefficient η in the
path of the decay channel followed by an ideal detector [45].
When multiple decay channels are present we simply repeat
this setup for each channel. This motivates us to rewrite the
master equation (1) as

h̄ ρ̇ = −i [Ĥ ,ρ] + D[
√

IL − H ĉ]ρ + D[
√

H ĉ]ρ, (48)

where H ∈ H [recall (44)] and unravel the last term with unit
detection efficiency. Such an unravelling is defined by the
stochastic master equation

h̄dρc = Lρ dt + dw�H[M′†ĉ′]ρ, (49)

where ĉ′ ≡ √
H ĉ and (49) is conditioned on the current

yM′ dt = dt

h̄
〈M′†ĉ′ + M′�ĉ′‡〉 + dw. (50)

Since (49) and (50) describe efficient monitoring, from the
lemma of (45), M′ must satisfy

M′M′†/h̄ = IL. (51)

The unravelling defined by (49), (50), and (51) is equivalent
to (24), (25), and (35), but the latter make the measurement
efficiency H explicit. The set of quantum trajectories generated
by (24) must therefore be the same as the set generated by (49).
This will be the case if and only if the two equations have the
same stochastic term, i.e.,

dw�H[M†ĉ]ρ = dw�H[M′†ĉ′]ρ. (52)

This is true for any ρ and ĉ if and only if M = √
H M′. This

gives

MM† = H. (53)

We have arrived at (53) by considering inefficient detection.
However, there are other properties of the measurement that
one would like to capture with M so it would seem that (53) is
necessary but not sufficient. As we show next, (53) is in fact,
surprisingly, a sufficient constraint on M for it to be a valid
parametrization of general diffusive measurements.

2. Sufficient condition for M

To show that (53) is a sufficient condition we will connect
M to another parametrization U, which is a different way of
representing diffusive measurements and has conditions that
have previously been shown to be necessary and sufficient

4Note that “loss” here refers to any process which leads to a loss of
information, not necessarily imperfections of the measuring device.

[26,27]. In this paper we introduce an elegant way to connect
M and U by considering a generalized diffusion operator which
we denote by D̂. If the system state is in an N -dimensional
Hilbert space H, then D̂ is an operator in H ⊗ H, defined by

D̂ dt ≡ dρc ⊗ dρc. (54)

This is the mathematical object which characterizes the set
of all equivalent representations (i.e., M matrices) of a given
unravelling as we now explain.

Stochastic paths of the quantum state itself are rather
abstract but we can make the trajectories more concrete by
considering

ρc = Tr[ êρc ], (55)

where ê = (ê1,ê2, . . . ,êN2 )� is an operator basis for all linear
Hermitian operators. Thus ρc is a stochastic process in RN2

,
satisfying

dρc = Adt + B dw. (56)

Note that A = Tr[êLρ] is a vector while

B = Tr{êH[ĉ�M]ρ} (57)

is a matrix. Recall that L and H[ĉ�M] are defined by (1) and
(23), respectively. The diffusion matrix for ρc is given by

Ddt = dρc dρ�
c = BB�dt. (58)

We can see how D̂ arises by rewriting the right-hand side of
the first equality in (58),

Ddt = Tr[êdρc] Tr [ê�dρc]

= Tr[(êdρc) ⊗ (ê�dρc)] = Tr[(ê ⊗ ê�) D̂]. (59)

Thus D̂ is an operator-valued diffusion coefficient whose trace
against ê ⊗ ê� gives us the diffusion of the more tangible
process (55). Turning ρc, a stochastic process in H, into ρc,
an equivalent stochastic process in RN2

, allows us to grasp the
abstract diffusion operator D̂ by using well-known properties
of classical stochastic processes; namely that the diffusion of
ρc is characterized by the matrix D and that for a given D there
are many matrices B such that BB� = D. The equivalence
between ρc and ρc, and more specifically between B and M,
and also between D and D̂ [as given by (57) and (59)], mean
that D̂ characterizes the diffusion of ρc just as D characterizes
the diffusion of ρc. There will be many matrices M that
generate the same D̂ (through the nonlinear term H[ĉ�M]ρ)
just as there are more than one B corresponding to a given D.

We mentioned earlier in Sec. II A that an unravelling can be
defined as the set of solutions to the stochastic master equation
and this set will correspond to some M. In genera, the set of
solutions will change everytime M is changed but it may also
be possible to have two different choices of M, say M1 and
M2, which generate the same solution set. In this case we say
that M1 and M2 are equivalent representations of the same
unravelling. Let us substitute (24) into (54) and define

T ≡
(

T1

T2

)
≡

(
Re[M]
Im[M]

)
, (60)
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where T1 and T2 are each real and L × 2L so T is a real
2L × 2L matrix. We have defined the real and imaginary parts
of an arbitrary complex matrix A by

Re[A] ≡ 1

2

(
A + A∗), Im[A] ≡ −i

2

(
A − A∗). (61)

We can then write M as

M = T1 + i T2. (62)

The vector operator M†ĉ can be rewritten as

M†ĉ = T�ĉ&, (63)

where ĉ�
& ≡ ( ĉ�, −i ĉ� ). Using this, (54) is

D̂dt = H[ ĉ�
&Tdw]ρ ⊗ H[dw�T�ĉ& ]ρ

= H[ ĉ�
&]ρ Tdw ⊗ dw�T�H[ĉ&]ρ

= h̄H[ ĉ�
&]ρ ⊗ UH[ĉ&]ρ dt. (64)

In the last line we have defined a 2L × 2L real matrix U by

TT� = h̄U ≡ h̄

(
U11 U12

U21 U22

)
, (65)

where Umn are L × L blocks of U. Equation (64) tells us
that given the set of Lindblad operators ĉ, U is what uniquely
specifies D̂, and therefore the unravelling. That U defines the
unravelling was independently formulated in Ref. [26] for the
case of pure-state trajectories and later generalized to include
nonunit detection efficiency in Ref. [27]. The necessary and
sufficient conditions for a U to be valid [in the same sense as
(41)] are

U � 0, (66)

U11 + U22 ∈ H, (67)

U12 = U21. (68)

We will denote the set of valid U matrices as

U =
{(

U11 U12

U21 U22

) ∣∣∣∣ U � 0,U11 + U22 ∈ H,U12 = U21

}
. (69)

The question is now whether any U derived from (53) is valid.
Since T is a real matrix, the definition (65) ensures (66) for any
T. Using (65) conditions (67) and (68) become, respectively,

T1 T�
1 + T2T�

2 ∈ H, (70)

T1 T�
2 = T2 T�

1 . (71)

This defines the set of valid T matrices

T =
{(

T1

T2

) ∣∣∣ T1 T�
1 + T2T�

2 ∈ H,T1 T�
2 = T2 T�

1

}
. (72)

It is easy to see, on substituting (62) into (53), that (70) and
(71) are satisfied and thereby showing the sufficiency (and in
fact necessity) of (53) for M to be a valid representation of an
arbitrary diffusive unravelling:

U(M) ∈ U ⇐⇒ M ∈ M, (73)

where M is the set of valid M matrices

M = {M | MM† ∈ H}. (74)

Note that even though we have imported a previous result
which proves altogether the sufficiency and necessity of (53),
our analysis in Sec. III B 1 remains instrumental; since without
it there is no reason to consider the set M. For ease of reference
we call the members of M “M-reps” and similarly the members
of U “U-reps.”

C. Comparison between M and U

Here we discuss some general features of M-reps and
compare them with U-reps. To do so we first recall the essential
features of the U-reps from Refs. [26,27]. There, Wiseman and
coworkers derived a stochastic master equation of the form

dρc = Lρ(t) dt + H[dz†ĉ ]ρ(t) (75)

[with L given by (1)] that conditioned on an L × 1 complex
current

J dt = 〈H ĉ + Y ĉ‡〉 dt + dz, (76)

where dz (also L × 1 by default) is a complex white-noise
increment defined by E[dz] = 0 and the correlations

dz dz† = h̄ H dt, dz dz� = h̄ Y dt. (77)

The matrix H is a member of H, while Y is complex and
only has to be symmetric. The matrix U, or the “unravelling
matrix” as it was originally called, is defined as the correlations
of

(
Re[dz�],Im[dz�]

)
/
√

h̄ . This can be shown to be

U = 1

2

(
H + Re[Y] Im[Y]

Im[Y] H − Re[Y]

)
, (78)

which is consistent with (69).
The first noteworthy feature of M-reps is that they capture

physically valid measurements by a single equation, (53),
whereas U-reps require three, namely (66)–(68). This point
makes our theory of M-reps rather elegant. If, however, we
compare the number of real parameters required to specify
M to that of U, then we find that U-reps are a more efficient
parametrization: We know directly from (78) that the number
of real parameters in U is L2 + 2L, being the total number
of real parameters required to specify H and Y. To find the
number of real parameters required to specify M, we note that
M is L × 2L, so the total number of real parameters in M is 4L2.
But (53) means that L2 − L of these parameters are redundant
(since it imposes L2 − L independent real conditions on the
elements of M). Subtracting this redundancy from 4L2 leaves
3L2 + L. Thus M-reps require 2L2 − L more parameters than
U-reps.

The second attractive feature of M-reps is that M can be
understood as the generalization of

√
H , encapsulating more

information than just measurement efficiency. This was in fact
part of our motivation for developing M-reps and postulating
(24), as stated at the start of Sec. III A. So in hindsight, the
fact that M turns out to be the matrix square root of H, i.e.,
constrained by (53), seems “natural” given that we were think-
ing of generalizing

√
η to

√
H and then from

√
H to M from

the start. The interpretation of U-reps, on the other hand, was
derived [summarized in (75)–(78)] as the correlation between
the real and imaginary parts of a complex measurement output.
This has the advantage that it reflects directly the quantum
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trajectory diffusion as was evident in (64). Equations (66)–(68)
are simply constraints on the allowed correlations of dz.

Finally, we mentioned before [two paragraphs under (36)]
that we prefer to work with a real current, namely yM,
for the purpose of feedback control even though quantum
measurement theory does not impose such a restriction.
However, by allowing the system state to be conditioned on a
real vector, yM now has the capacity to be an observable (i.e.,
correspond to an actual physical process) rather than a mere
dummy variable for distinguishing the different measurement
outcomes. Of course, one may also prefer a real current over
a complex one simply because it is real. Motivated by exactly
these reasons Ref. [27] defines a real current from J as

y dt ≡ T+
(

Re[J]
Im[J]

)
dt, (79)

where T+ is the Moore-Penrose inverse of T [46]. Substituting
(76) into (79) and using the properties of T+ it can be shown
that (79) simplifies to the form of (36) [recall (62)]. Thus the
U-rep achieves the same current as the M-rep but less directly
by deriving y via J.

D. Relations among T, U, and M

The relation between M and T is straightforward, given
by (60) and (62). From these it should be clear that M

maps one-to-one and onto T. We said above that M-reps
are parameterized by 3L2 + L real numbers, therefore T
also has the same number of real parameters. This number
is 2L2 − L more than the number of real parameters in
the U-rep. We can see where the extra parameters lie by
returning to (65) which defines T as the matrix square root
of U. We can always write, using the polar decompostion,
T =

√
TT�/h̄ O ≡ √

U O, where
√

U is the positive matrix
square root of U5 and O is some 2L × 2L orthogonal matrix
which may or may not be unique given T (see following
paragraph). The number of parameters in

√
U is L2 + 2L,

inherited from U, while the number of parameters in O is
2L2 − L.6 Adding the number of parameters in

√
U and O

gives 3L2 + L. The extra parameters thus lie in O, leading
us to define the set of pairs (not to be confused with a block
matrix)

UO = {(
√

U ,O) | U ∈ U,O� = O−1}, (80)

where O is understood to have dimensions 2L × 2L.
We can divide the set T into two subsets: a subset of

invertible Ts and a subset of noninvertible Ts. The subset of Ts
that are invertible maps one-to-one and onto UO, since in this
case the polar decomposition of T is unique, i.e., given any
T, both entries of the pair (

√
TT�/h̄ ,O) ∈ UO are uniquely

determined by T. The subset of Ts that are not invertible maps

5The positive square root of a matrix A is defined by a matrix B

such that B2 = A, and is itself positive-semidefinite. The positive
square root always exists and is uniquely given by A so it is common
to denote it by

√
A .

6An n × n real orthogonal matrix is parameterized by n(n − 1)/2
real numbers.

FIG. 2. (Color online) Multivalued mappings among the different
parametrizations of diffusive quantum measurements. The lines have
been drawn tangent to the circles to denote that one set is mapped onto
the other, i.e., each member of one set has a corresponding member
in the set to which they are connected to. Note also that we have
defined a subset of T whose members are noninvertible. This is a set
of measure zero and maps to subset of UO (shown as an unshaded
dot), also a set of measure zero.

infinitely-many-to-one and onto a subset of UO. In this case
the first entry of the pair (

√
TT�/h̄ ,O) will still be uniquely

determined by T but corresponding to this T there are an infinite
number of orthogonal matrices O. We depict these relations in
Fig. 2 along with another parametrization B to be introduced
in Sec. IV. Note the cardinality of the noninvertible subset of T

is less than the cardinality of T. That is, the former is a subset
of measure zero.

E. The M representation in the Heisenberg picture

We now consider diffusive quantum measurements in the
Heisenberg picture where operators evolve and states are static,
equal to their initial value. Moving from the Schrödinger
picture to the Heisenberg picture requires two conceptual
changes which we summarize below. In Sec. IV we will
formulate another representation of diffusive measurements in
the Heisenberg picture so the discussion here apply to Sec. IV
as well.

The bath field b̂in is now a vector-operator-valued white-
noise process. As such, dB̂in(t) ≡ b̂in(t)dt satisfies Itô rules
analogous to (26)–(28) [47,48]; that is,

〈dB̂in(t)〉 = 0, (81)

where the angle brackets denote a quantum average and

dB̂in(t) dB̂†
in(t) = h̄ ÎL dt, (82)

with all other second-order moments negligible. Note that

�dB̂in(t),dB̂‡
in(t ′)� = 0 ∀ t 	= t ′, (83)

where we have used the matrix-operator bracket (A31), defined
for any two vector operators Â and B̂ as

�Â,B̂� = ÂB̂� − (B̂Â�)�. (84)

Thus all other second-order moments with unequal times also
vanish. As a consequence of the singularity of b̂in it is necessary
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FIG. 3. (Color online) Quantum entanglement and measurement
are two processes which have conventionally been described in the
Schrödinger picture. When we move to the Heisenberg picture we
move to a different mindset, where the system-bath entanglement
and the measurement process are all captured by time-dependent
operators, given by (86) [49,50] and (87).

to distinguish the bath field before and after its interaction with
the system. This gives rise to an output field (Fig. 3)

dB̂out(t) = Û †(t + dt,t) dB̂in(t) Û (t + dt,t), (85)

where Û (t + dt,t) is defined by (3) but with b̂ replaced by b̂in.
From this one can show that

dB̂out(t) = ĉ(t)dt + dB̂in(t). (86)

This input-output relation and is what allows us to relate our
measurement performed on the bath back to properties of the
system [48,51].

We next turn the measured current y(t) into a vector
operator [52–54]. Note that this does not mean we are taking
the measured current to be a quantum object. The current is
interpreted as a classical quantity but it is represented by a
vector operator in the theory. The classicality of the measured
current can be formally captured by the “self-nondemolition”
property of the vector operator ŷ(t) [55–57],

�ŷ(t),ŷ(t ′)� = 0 , ∀ t,t ′. (87)

It should also correspond to an observable process so ŷ(t)
must be Hermitian. In brief, quantum measurement theory
in the Heisenberg picture just assigns an operator ŷ(t) (a
quantum stochastic process) which reproduces the correct
measurement statistics (i.e., the statistics of y(t), a classical
stochastic process) [4].

If a vector operator ŷ is to represent the measured current
y then it must be such that the statistics of y are reproduced,
namely

〈ŷ(t)〉 = E[y(t)] (88)

and

[ŷ(t) dt][ŷ(t) dt]� = [y(t) dt][y(t) dt]�1̂. (89)

Physically the measurement is never performed directly on
the system but rather on the bath which involves detecting the
output fields. Therefore ŷ should depend on b̂out. It thus makes
sense to write

h̄ ŷM dt = M†dB̂out + M�dB̂‡
out + h̄ dυ̂M. (90)

We have defined the noise increment dυ̂M to be

dυ̂M = L dÛ + L∗ dÛ‡, (91)

where L is 2L × 2L, to be chosen so that (88) and (89) are
satisfied. The vector operator dÛ is a free vacuum field just
like dB̂in except that it is 2L × 1 so the only nonvanishing
moment is

dÛ(t) dÛ†(t) = h̄ Î2L dt. (92)

Note that this means (88) is automatically satisfied. Enforcing
(89) we obtain

h̄2 L L† = h̄ I2L − M†M. (93)

For convenience we will define Z = h̄ I2L − M†M. We can thus
choose h̄ L to be the positive square root of the right-hand side
of (93) and write

h̄ L =
√

Z . (94)

Note that dυ̂M is not a Wiener increment (it has correlations
given by Zdt/h̄) but we can write ŷM as

h̄ ŷM dt = (M†ĉ + M�ĉ‡)dt + h̄ [dv̂m]M, (95)

where

h̄ [dv̂m]M = M†dB̂in + M�dB̂‡
in + h̄ L dÛ + h̄ L∗ dÛ‡ (96)

is a Wiener increment (when divided by h̄), i.e.,

[dv̂m(t)]M [dv̂m(t)]�M = Î2L dt, (97)

[dv̂m(t)]M [dv̂m(t ′)]�M = 0 ∀ t 	= t ′. (98)

We can show that ŷM satisfies the self-nondemolition property
(87) by first substituting either (90), or (95) into (87) and then
considering the two cases t = t ′ and t 	= t ′ separately. It will be
quicker to use (95) and write (87) in terms vacuum increments.
Doing so gives

�ŷ(t)dt,ŷ(t ′)dt� = � [dv̂m(t)]M,[dv̂m(t ′)]M � = 0, (99)

by virtue of (97) and (98).
Often one would measure, in the laboratory, the autocorre-

lation function of the photocurrent and its spectrum (which is
the Fourier transform of the autocorrelation function at steady
state), hence we now consider the autocorrelation function of
ŷM. This is a two-time average which can be calculated by
using the vector-operator quantum regression formula (A55).
The derivation of the autocorrelation of ŷM follows the same
method as in Ref. [28] which derives the same quantity but with
feedback. The only difference here is that these feedback terms
would not appear so we will refer the reader to Ref. [28] for
details. However, we make the following heuristic argument
which leads us to the correct form for the correlation function:
First generalizing the correlation function of the homodyne
current when L = 1 found previously in Ref. [58] to the case
of arbitrary L we obtain,〈

ŷM(t) ŷ�
M(t + τ )

〉
= (Tr{(

√
H ĉ +

√
H ĉ‡)eLτ [ĉ�√

H ρ(t) + ρ(t) ĉ†
√

H
]})�

+ h̄2 I2L δ(τ ), (100)
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where H ∈ H was defined in (44) and L is given by (1).
The action of the superoperator and the trace are defined in
(A15) and (A42), respectively. We said in Sec. III C that M
is a generalization of

√
H . So the next logical step would

be to replace
√

H by M. However, this would not keep the
Hermiticity of the terms standing on either side of exp(Lτ ), so
the correct replacements in (100) should be

√
H ĉ −→ M†ĉ,

√
H ĉ‡ −→ M�ĉ‡. (101)

We then obtain

h̄2〈ŷM(t) ŷ�
M(t + τ )〉

= (Tr{(M†ĉ + M�ĉ‡)eLτ [ĉ�M∗ρ(t) + ρ(t)ĉ†M]})�
+ h̄2 I2L δ(τ ), (102)

This is a generalization of the homodyne autocorrelation func-
tion found in Ref. [58] to arbitrary diffusive measurements.

IV. THE BLOCK REPRESENTATION

In this section we parametrize diffusive measurements by
starting in the Heisenberg picture. The advantage of this
is that it allows us to model the measurement by thinking
directly about the physical transformations b̂out must undergo
to produce a suitable current ŷ. We show that the measurement
block in Fig. 3 can be decomposed in a way shown in Fig. 4.

A. Definition

The blocks of Fig. 4 are as follows.
(i) Perhaps the first property of measurements that comes to

one’s mind is detection inefficiencies. For a single output this
can be modelled by placing a beam-splitter with transmission
coefficient η in the path of b̂out. The other input to the beam-
splitter is not excited (i.e., no photons) so it is simply a field

v̂ in the vacuum state. We will choose a phase convention for
the beam-splitter such that its output is

ŝin = √
η b̂out + √

η̄ v̂, (103)

where η̄ ≡ 1 − η. Note that we are retaining only one of the
beam-splitter outputs since this is all that is necessary to model
detector efficiencies. When multiple outputs from the system
are present (103) simply generalizes to

ŝin =
√

H b̂out +
√

H̄ v̂, (104)

where H̄ ≡ IL − H. This is the first block in Fig. 4.
(ii) Next, one is free to mix and phase shift the different

components of b̂out to obtain an arbitrary linear combination
of them. Hence we multiply ŝin by an L × L matrix to get

ŝout = S ŝin. (105)

We assume this mixing of the components of b̂out conserves
total boson number so ŝ†inŝin = ŝ†outŝout. This constrains S to be
a unitary matrix. Note that S can be explicitly constructed from
L(L − 1)/2 beam-splitters and L(L + 1)/2 phase shifters in a
triangular arrangement [33] as shown schematically in Fig. 4.
This scheme assumes that each component of b̂out has the same
polarization, transverse mode structure, and mean frequency.
If this were not the case then the appropriate corrections would
have to be made prior to entering the array in Fig. 4.

(iii) We then split each component of ŝout into quadratures.
The process represented by K in Fig. 4 is shown in detail
in Fig. 5. In general, the intensities of the quadratures
need not be equal so each beam-splitter in Fig. 5 has a
different transmission coefficient which we denote by θk

(k = 1,2, . . . ,L). This gives

d̂ = K
(

ŝout

â

)
. (106)

FIG. 4. (Color online) Decomposition of the measurement box in Fig. 3 into blocks. Vacuum inputs are denoted by orange arrows. We are
ignoring half of the output modes of H. Note that H and K do not mix the input modes (not counting vacuum inputs), i.e., each output mode of
either H or K will not depend on more than one signal mode (mode coming from the left) and one vacuum mode (mode coming from the top).
We represent this in the diagram by using highly asymmetric rectangulars. Each output of K then enters a homodyne detector, set to measure
the input quadrature as defined in (108) (also see Fig. 5).
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FIG. 5. (Color online) Expanded diagram of K. This prepares the
components of ŝout into quadratures ready to be measured by units of
homodyne detectors.

If we define Q = diag(θ ) where θk ∈ [0,1] for every k, and
Q̄ = IL − Q, then K can be written explicitly as

K =
(√

Q
√

Q̄

i
√

Q̄ −i
√

Q

)
. (107)

Note that K is also a unitary matrix since d̂†d̂ = ŝ†outŝout +
â†â.

(iv) Individual homodyne detectors are then placed in
the path of each component of d̂. The detectors are “tuned”
to give a current that is normalized to the local oscillator
amplitude that is inside it. Each homodyne detector is set to
measure Re[d̂k]. This final current can therefore be defined to
be

ŷ = d̂ + d̂‡
√

h̄
. (108)

We see then, that once η, θ , and S are specified, it seems
plausible that steps (i)–(iv) above, by construction, will
simulate an arbitrary diffusive measurement. Grouping these
parameters into a triple B ≡ (η,S,θ ) we define the block
representation (or B-rep for short) of diffusive measurements
by

B = {(η,S,θ ) | ∀ k, ηk,θk ∈ [0,1], S† = S−1}. (109)

(v) We shall henceforth label the B-rep current in (108)
as ŷB. Once ŷB has been obtained one is free to do some
postprocesssing on this current. This will only be so if O is an
orthogonal matrix and the postprocessing produces O�ŷB. We
will have more to say about this in Sec. IV C.

B. The current vector operator

Working out the input-output relation for each block in
Fig. 4 we arrive at an equation for ŷ that is a function of

B = (η,S,θ ). Let us denote this dependence by using a
subscript on ŷ

h̄ ŷB dt = J dB̂out + J∗ dB̂‡
out + h̄ dυ̂B, (110)

where

J ≡
√

h̄

( √
Q S

√
H

i
√

Q̄ S
√

H

)
(111)

and h̄ dυ̂B is given by

h̄ dυ̂B = V dV̂ + V∗ dV̂‡ + A dÂ + A∗ dÂ‡. (112)

The noise increments dV̂ and dÂ are mutually uncorrelated
quantum Wiener increments. The coefficient matrices in (112)
are defined by

V = 1√
h̄

( √
Q S

√
H̄

i
√

Q̄ S
√

H̄

)
, (113)

A = 1√
h̄

( √
Q̄

−i
√

Q

)
. (114)

Like the current in the M-rep, dυ̂B represents correlated noise
but we can write

h̄ ŷB dt = J ĉ + J∗ ĉ‡ + [dv̂m]B, (115)

where

[dv̂m]B = J dB̂in + J∗ dB̂‡
in

+V dV̂ + V∗ dV̂‡ + A dÂ + A∗ dÂ‡ (116)

has a mean of zero

〈[dv̂m(t)]B〉 = 0, (117)

and the only nonvanishing second-order moment

[dv̂m(t)]B [dv̂m(t)]�B = Î2Ldt. (118)

These can be understood physically by considering a vacuum
input, i.e., b̂out = b̂in. None of the transformations applied to
the vacuum inputs in Fig. 4 alter their statistics, only add one
vacuum field to another, which is again vacuum. We can also
verify this intuition mathematically by using (111), (114), and
(113) to derive (118). All vanishing statistics should be obvious
from the properties of the vacuum inputs. One may also verify
that (87) is satisfied by ŷB.

1. Example: dual-homodyne detection

To illustrate how the B-rep works we will consider the
familiar example of ideal heterodyne detection from quantum
optics in the case of L = 1, for which H ≡ η = 1, S ≡ eiφ ,
and Q ≡ θ = 1/2. Since the measurement has unit detection
efficiency, there is no vacuum field v̂. It is simple to see that

K = 1√
2

(
1 1

i −i

)
, (119)

which transforms ŝout = eiφb̂out and â into d̂ = (d̂1,d̂2)�. From
d̂ the final output ŷB can be seen to be

ŷB =
(

ŷ1

ŷ2

)
= 2√

2h̄

(
X̂out(φ) + Re[â]

X̂out(φ + π/2) + Im[â]

)
, (120)
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where we have defined the the quadrature operator

X̂out(φ) = (b̂out e
iφ + b̂

†
out e

−iφ)/2. (121)

C. Relations among B, M, and U

Now that we have the M-rep, B-rep, and also the U-rep
found previously in Refs. [26,27], it would be instructive to
study how one may convert from one representation to another.
We can first derive a map B → M by noting that if the B-rep
is to realize an arbitrary diffusive measurement then it must be
the case that

〈ŷB〉 = 〈ŷM〉. (122)

Note that this is all we need since the second-order moments
have already been made equal. From (90), (110), and (111) we
obtain

M = J† =
√

h̄H S†(
√

Q , −i
√

Q̄ ). (123)

One can verify from this that MM† = h̄H, as required if M is
to be a valid representation of the measurement. Taking the
real and imaginary parts of (123) we get,

T =
√

h̄

(√
H Re[S�]

√
Q −√

H Im[S�]
√

Q̄
−√

H Im[S�]
√

Q −
√

Q̄ Im[S�]
√

H

)
. (124)

From T we can construct U using the definition (65). This
gives

U11 =
√

H Re[S�]Q Re[S]
√

H

+
√

H Im[S�]Q̄ Im[S]
√

H , (125)

U12 = −
√

H Re[S�]Q Im[S]
√

H

+
√

H Im[S�]Q̄ Re[S]
√

H , (126)

U21 = −
√

H Im[S�]Q Re[S]
√

H

+
√

H Re[S�]Q̄ Im[S]
√

H , (127)

U22 =
√

H Im[S�]Q Im[S]
√

H

+
√

H Re[S�]Q̄ Re[S]
√

H . (128)

By construction this U is positive semidefinite. By noting that
if S is unitary,

Re[S�] Re[S] + Im[S�] Im[S] = IL, (129)

Re[S�] Im[S] = Im[S�] Re[S], (130)

we can verify that the remaining conditions for U to be a
valid parametrization, (67) and (68), are indeed satisfied by
(125)–(128).

Equation (123) says that given a B we can always find
an M. But if we are given a valid M can we always find
a B-rep? To answer this question we begin by counting the
number of parameters required to specify B. The total number
of real parameters in B is simply the sum of the parameters in
each block. It should be clear that H and K each contribute L

real parameters. The number of real parameters in an L × L

unitary matrix is L2 so the B-rep has L2 + 2L real parameters,
the same as the U-rep. We said earlier that M-reps require
3L2 + L real parameters, which is 2L2 − L more than the

B-rep implying that (123) is one-to-many from B to M.
However, observe that for any 2L × 2L orthogonal matrix O

M =
√

h̄H S†(
√

Q , −i
√

Q̄ )O (131)

is not only a valid M-rep but its right-hand side has 3L2 + L

number of real parameters, exactly the number of parameters
required to specify M. It is then very natural to ask whether
every valid M-rep can be factorized in the form of (131).
There does not seem to be a simple proof in general (for
any L) but we do analyze the simplest (L = 1) instance of
(131) in Appendix C. In summary our analysis shows that for
L = 1 and for any M we can find a (B,O) such that (131) is
satisfied. However, it involves the solutions of transcedental
equations. The appearance of these transcedental equations,
even in the simplest case, suggests why proving (131) in
general may be nontrivial. But based on the parameter-count
and the verification of the L = 1 case we conjecture that every
M ∈ M has a matrix decomposition in the form of (131). This
motivates us to define

BO = {(B,O) | B ∈ B,O� = O−1}. (132)

Equation (131) is then shown in Fig. 2 by the dotted line. This
is a many-to-one map from BO to M as there will be more
than one orthogonal matrix O that will factorize M. This can
be seen directly by considering the L = 1 case which we have
analyzed in Appendix C. From Fig. 6 we can see that given
an M (and therefore r and δ) there is a range of values for
ϕ [which in turn determine O via (C1)] at one’s disposal for
factoring M in the form of (131).

We can connect the orthogonal matrix in (131) and (132) to
Fig. 4. Since given an M ∈ M we can write M′ = MO which
is also in M, (90) and (122) imply that

〈ŷM′ 〉 = 〈ŷMO〉 = O�〈ŷM〉 = O�〈ŷB〉. (133)

That is to say, if ŷB emulates ŷM, then O�ŷB (obtained from
postprocessing ŷB) will emulate ŷMO.

The completeness of the B-rep also means that every valid
U must have a matrix decomposition of the form given in
(125)–(128). The map B → U is thus onto. Even though B and
U are parameterized by the same number of real parameters
the map B → U is actually many-to-one. To see this we can
consider (125)–(128) for L = 1. In this case U is 2 × 2 and
S ≡ eiφ , H ≡ η, and Q ≡ θ as in Sec. IV B 1. It is sufficient
to consider η = 1, in which case (125)–(128) simplify to

U11 = θ cos2 φ + (1 − θ ) sin2 φ, (134)

U12 = (1 − 2θ ) cos φ sin φ, (135)

U22 = θ sin2 φ + (1 − θ ) cos2 φ, (136)

where U12 is identically equal to U21 as can be verified
directly from (126) and (127) for any L. Remembering
that cos(φ + π ) = − cos φ and sin(φ + π ) = − sin φ, we can
see that B1 ≡ (1,eiφ,θ ) and B2 ≡ (1,ei(φ+π),θ ) [recall the
order of the B-rep triple from (109)] both map to the same
U but yet B1 	= B2. We can consider another example in
which B3 ≡ (1,ei(φ+π/2),1 − θ ) and B1 map to the same U
but B1 	= B3 [this time noting cos(φ + π/2) = − sin φ and
sin(φ + π/2) = cos φ]. The relation between B and U is shown
in Fig. 2.
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FIG. 6. (Color online) (F +
r (ϕ) for different values of r ≡ |m1/m2|2 and ϕ. (a) Behavior of F +

r (ϕ) for large values of r . (b) F +
r (ϕ) around

r = 1. F +
r (ϕ) becomes π/2 at r = 1 [see (C18)] and has a “twist” in crossing r = 1. Remember that |m1|2 and |m2|2 are constrained by (C6)

so given an |m2|2 	= 0, |m1|2 cannot be an arbitrary multiple of |m2|2 with |m2|2 staying constant. The limit r → ∞ is thus equivalent to the
limits |m1|2 → 1 and |m2|2 → 0. Similarly, if we are given an |m1|2 	= 0, then |m2|2 cannot be an arbitrary multiple of |m1|2 with |m1|2 staying
constant so the limit r → 0 is equivalent to the limits |m1|2 → 0 and |m2|2 → 1.

V. CONCLUDING REMARKS

A. Summary of key results

In this paper we have put forth two new parametrizations
of diffusive quantum measurements. The first is the M-rep
introduced in Sec. III, defined by (74). This is a characteriza-
tion of diffusive measurements in the Schrödinger picture,
and as a consequence is a rather abstract parametrization.
However, it embodies all diffusive measurements by a single
equation which relates simply to the efficiency with which
each output field is measured

√
H . The M-rep has been

shown to be a complete parametrization; every diffusive
quantum measurement can always be associated with an
M ∈ M, and every M ∈ M must correspond to a diffusive
measurement.

We then turned to the Heisenberg picture in Sec. IV and
proposed a realization for arbitrary diffusive measurements.
This gave another parametrization which we have called
the B-rep, defined by (109). By construction, every B ∈ B

must correspond to a diffusive measurement. In particular we
derived (131) and used it to investigate the existence of B-reps
for arbitrary diffusive measurements. An analysis of (131)
for L = 1 reveals that it requires solutions to transcedental
equations, which do indeed exist, for any M. The occurrence
of transcedental equations even in this simplest case suggests
that proving (131) for any L may be nontrivial or even
formidable. The verification of (131) and the fact that this
equation (131) has the same number of parameters on each side
prompts us to propose it as a general matrix decomposition for
every M ∈ M and thereby conjecturing the completeness of
the B-rep.

Finally, we have explained the relations between the
different parametrizations (including the U-rep) and Fig. 2
provides a summary of these relations.

B. Future prospects

Quantum measurements are an integral part of many
quantum computing architectures. The monitoring of qubits
(or qunats [59]) and their unwanted environmental coupling
provides a natural setting to apply quantum-trajectory theory.
Indeed, the applicability of quantum trajectories to quantum
information was recognized in 1995 by Schack and colleagues
[60]. At the same time a second group (Pellizzari et al.) had
already applied quantum trajectories to study decoherence
in the cavity QED architecture of quantum computing [61].
Subsequently quantum-trajectory theory was adopted to study
the effects of decoherence on the quantum information
processing of discrete-level systems to some generality in
Ref. [62] and, more specifically, in quantum error correction
[63–66], gate performance [67], and teleportation (of both
discrete and continuous variables) [68–70].

As we scale up our quantum processors one would expect
quantum trajectories to remain useful. A scale-up of existing
protocols would inevitably mean a scale-up of the necessary
measurement from being a few-port device to many-port ones.
In fact, the error syndrome which conditions the corrective
displacement of just one qunat in the nine-qunat error
correction scheme of Braunstein [71,72] already requires eight
homodyne detectors. If one wanted to simulate the conditioned
evolution based on this eight-homodyne output using (24), then
it is necessary to parametrize this measurement as an M, in this
case of dimensions of 8 × 16. If all we knew was MM†/h̄ ∈ H,
then it is not so easy to see what M should be, at least not
without some thought. Parameterizing this measurement into
a B-rep, on the other hand, is much easier. One could then
use (131) to obtain the appropriate M. This illustrates that
(131) can be useful when given a (B,O) ∈ BO. Given that
simulating (pure-state) quantum trajectories requires less
time and computer memory than a direct integration of the
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corresponding master equation [4] one can expect applications
of quantum trajectories to quantum information to continue in
the foreseeable future.
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APPENDIX A: VECTOR-OPERATOR ALGEBRA

1. Basic operations

In the same manner that we write a set of equations
compactly using vectors and matrices in classical theories, we
would also like to write a set of operator equations compactly.
In order to do this we have to introduce a vector whose elements
are operators which we call vector operators. This Appendix
will make clear particular definitions that we adopt for vector
operators and their algebra.

We begin with the definitions of the vector operator, its
transpose, and its Hermitian conjugate. For an arbitrary vector
operator Â consisting of n components,

Â ≡

⎛
⎜⎜⎜⎝

Â1

Â2
...

Ân

⎞
⎟⎟⎟⎠ ≡ (Â1,Â2, . . . ,Ân)�, (A1)

we define its Hermitian conjugate as

Â† ≡ (Â†
1,Â

†
2, . . . ,Â

†
n) . (A2)

Note the Hermitian conjugate of Â is defined by transposing Â
(as usually defined) and then taking the Hermitian conjugate
of each element of Â. We will say that a vector operator is
Hermitian if and only if Â� = Â†. Matrix operators also appear
in this article and we will define the Hermitian conjugate of an
m × n matrix operator Â as follows:

Â ≡

⎛
⎜⎜⎜⎝

Â11 Â12 · · · Â1n

Â21 Â22
...

. . .
Âm1 Âmn

⎞
⎟⎟⎟⎠ , (A3)

Â† ≡

⎛
⎜⎜⎜⎜⎝

Â†
11 Â†

21 · · · Â†
m1

Â†
12 Â†

22
...

. . .

Â†
1n Â†

mn

⎞
⎟⎟⎟⎟⎠ . (A4)

We will denote, for this Appendix only, matrix operators
(which we refer to as matrix operators), by san serif letters
with a hat on top. We retain the familiar properties of the
Hermitian conjugate for complex matrices:

(Â�)† = (Â†)�, (A5)

(ÂB̂)† = B̂†Â†, (A6)

where Â and B̂ are respectively m × n and n × k matrix
operators. Equation (A5) crops up often so for convenience
we define

Â‡ = (Â�)† . (A7)

It will also be useful for us to define the real and imaginary
parts of an arbitrary scalar operator ĉ to be the Hermitian
operators

Re[ĉ] ≡ 1

2
(ĉ + ĉ†), Im[ĉ] ≡ 1

2i
(ĉ − ĉ†). (A8)

Since we also deal with complex matrices, we have also defined
the real and imaginary parts of a complex matrix C to be

Re[C] ≡ 1

2
(C + C∗), Im[C] ≡ 1

2i
(C − C∗), (A9)

where C∗ denotes the complex conjugate of C. We generalize
the definitions of the real and imaginary parts of a scalar
operator to a matrix operator:

Re[Â] ≡

⎛
⎜⎜⎜⎝

Re[Â11] Re[Â12] · · · Re[Â1n]
Re[Â21] Re[Â22]
...

. . .
Re[Âm1] Re[Âmn]

⎞
⎟⎟⎟⎠ (A10)

= 1

2
( Â + Â‡ ), (A11)

Im[Â] ≡

⎛
⎜⎜⎜⎝

Im[Â11] Im[Â12] · · · Im[Â1n]
Im[Â21] Im[Â22]
...

. . .
Im[Âm1] Im[Âmn]

⎞
⎟⎟⎟⎠ (A12)

= 1

2i
( Â − Â‡ ). (A13)

Note the necessity of taking both the transpose and Hermitian
conjugate in (A10) and (A12) in order to retain an m × n

matrix operator.
Multiplication of Â by an arbitrary scalar operator ĉ is

defined component-wise by

ĉ Â ≡

⎛
⎜⎜⎜⎝

ĉ Â11 ĉ Â12 · · · ĉ Â1n

ĉ Â21 ĉ Â22
...

. . .
ĉ Âm1 ĉ Âmn

⎞
⎟⎟⎟⎠ , (A14)

and similarly for the action of an arbitrary superoperator N ,

N Â ≡

⎛
⎜⎜⎜⎝
N Â11 N Â12 · · · N Â1n

N Â21 N Â22
...

. . .
N Âm1 N Âmn

⎞
⎟⎟⎟⎠ . (A15)

It is straightforward to see (and will be useful to remember)
from (A14) that

ĉ Â� = (ĉ Â)�, (A16)

(CÂ)� = Â�C�, (A17)

for any k × m matrix C.
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Two special cases of (A6) that we are interested in are the
inner and outer products between vector operators for which
(A6) reads

(Â�B̂)† = B̂†Â‡, (A18)

(ÂB̂�)† = B̂‡Â†. (A19)

The following identities will also be useful for manipulating
vector operator products

(Â�B̂)Ĉ = (Â�B̂Ĉ�)�, (A20)

(ÂB̂�)�Ĉ = [Â�(B̂Ĉ�)� ]�. (A21)

The tensor product for vector operators are defined analo-
gous to standard multiplication rules. If Â and B̂ have different
dimensions then we define

Â ⊗ B̂� ≡

⎛
⎜⎜⎜⎝

Â1 ⊗ B̂1 Â1 ⊗ B̂2 · · · Â1 ⊗ B̂n

Â2 ⊗ B̂1 Â2 ⊗ B̂2
...

. . .
Âm ⊗ B̂1 Âm ⊗ B̂n

⎞
⎟⎟⎟⎠ . (A22)

When Â and B̂ have the same dimension then

Â� ⊗ B̂ ≡
∑

k

Âk ⊗ B̂k. (A23)

We will assign the following symbols for identity operations
with respect to multiplication: (a) 1̂ for a scalar-operator
identity, (b) IN for an N × N identity matrix, and (c) ÎN for a
matrix-operator identity (defined by ÎN = IN 1̂),

While it is common to find special symbols for identity
operations for multiplication in the literature, it is also of
common practice to not denote the identity with respect to
addition by any distinguished symbol except for 0. We will
follow this convention as well except for the zero vector which
we will write as 0.

2. Commutativity

a. Scalar-operator brackets

Unlike normal vectors the order of the vector operators in
an inner product may not be changed in general,

B̂�Â 	= Â�B̂, (A24)

and this motivates us to define the scalar-operator bracket

�Â,B̂� = Â�B̂ − B̂�Â, (A25)

so called because it maps two vector operators to a scalar
operator. We then have the following sufficient (but not
necessary) condition for reordering the inner product,

∀ k, [Âk,B̂k] = 0 ⇒ �Â,B̂� = 0. (A26)

That [Âk,B̂k] = 0 is not necessary for �Â,B̂� = 0 can be seen
in the following example,

Â = (q̂,p̂)�, B̂ = (p̂,q̂)�, [q̂,p̂] = ih̄1̂. (A27)

Here Â1 does not commute with B̂1, and Â2 does not commute
with B̂2 but we still have Â�B̂ = B̂�Â. Note that we have
not overloaded the usual notation for commutator brackets in

(A25) because while the scalar-operator bracket satisfies the
following (which is easy to check)

�Â,B̂� = −�B̂,Â�, (A28)

�Â + B̂,Ĉ� = �Â,Ĉ� + �B̂,Ĉ�, (A29)

it cannot satisfy a property analogous to the Jacobi identity
which the standard commutator does.

The inner product is a scalar operator so by definition
Â�B̂ = (Â�B̂)�. Thus (A26) may also be seen as a sufficient
condition for (Â�B̂)� = B̂�Â.

b. Matrix-operator brackets

For the vector-operator outer product we do have a
necessary and sufficient condition for writing the transpose
of ÂB̂� as a product of transposes:

∀ j,k, [Âj ,B̂k] = 0 ⇐⇒ (Â B̂�)� = B̂ Â�. (A30)

Therefore we define the matrix-operator bracket

�Â,B̂� ≡ ÂB̂� − (B̂Â�)�, (A31)

which maps vector operators to matrix operators and refer to Â
and B̂ as commuting vector operators if and only if �Â,B̂� = 0.
It is easy to see that this satisfies

�Â,B̂� = −�B̂,Â��, (A32)

�Â + B̂,Ĉ� = �Â,Ĉ� + �B̂,Ĉ�. (A33)

The symbol for the matrix-operator bracket in (A31) has the
ceiling (�) on B̂ to remind us of ÂB̂�, which is a matrix
operator. For the scalar-operator bracket of (A25) the ceiling
is placed on Â to remind us of Â�B̂. Note the commutativity
of vector operators thus defined means that an arbitrary vector
operator will not necessarily commute with itself as that is a
question about its components.

From the above one may verify the following formulas
which help simplify expressions containing matrix-operator
brackets: For any matrix C (with the appropriate dimensions)

�CÂ,B̂� = C�Â,B̂�, (A34)

�Â,CB̂� = �Â,B̂�C�. (A35)

For any scalar operator ĉ,

�ĉ,Â� = [ĉ,Â�], (A36)

�Â,ĉ� = [Â,ĉ ]. (A37)

Note that it is the standard commutator which appears on the
right-hand side of (A36) and (A37). We also have

�Â ĉ,B̂� = Â[ĉ,B̂�] + �Â,B̂�ĉ, (A38)

�ĉ Â,B̂� = ĉ�Â,B̂� + ([ĉ,B̂]Â�)�, (A39)

�Â,B̂ ĉ� = (B̂[Â�,ĉ])� + �Â,B̂�ĉ, (A40)

�Â,ĉ B̂� = ĉ�Â,B̂� + [Â,ĉ ]B̂�. (A41)

3. Trace and average

Since both matrices and operators appear we will denote
an operator trace by Tr[ĉ] and the trace of a matrix C by
tr[C]. This distinction is especially important for operators
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with a continuous eigenvalue spectrum where the operator-
matrix analogy breaks down. The trace of an m × n matrix
operator is a matrix in cm×n

Tr[Â] ≡

⎛
⎜⎜⎜⎝

Tr[Â11] Tr[Â12] · · · Tr[Â1n]
Tr[Â21] Tr[Â22]
...

. . .
Tr[Âm1] Tr[Âmn]

⎞
⎟⎟⎟⎠ . (A42)

From this it should be simple to see that

Tr[Â�] = (Tr[Â])�, (A43)

(Tr[Â])∗ = Tr[Â‡ ]. (A44)

Particular cases of (A43) and (A44) which we are interested
in are

(Tr[Â] )† = Tr[Â†], (A45)

(Tr[ÂB̂�])∗ = Tr[Â‡B̂†]. (A46)

If Â is any m × n matrix operator and B̂ is n × k, then we have
the “cyclic” property

Tr[(ÂB̂)�] = Tr[B̂�Â�]. (A47)

Special cases of the “cyclic” property (A47) are

Tr[ ĉ Â] = Tr[Â ĉ ], (A48)

Tr[(ÂB̂�)�] = Tr[B̂Â�]. (A49)

On some occasions we will want to permute a product of three
vector operators inside a trace and the following identity may
be verified,

Tr[Â B̂�Ĉ ] = Tr[B̂�Ĉ Â] = Tr[(ĈÂ�)�B̂]. (A50)

An important tool from quantum statistics that we will
use is the quantum regression formula, also known as the
quantum regression theorem, formulated by Lax [73,74]. A
good discussion of this can be found in Ref. [37]. In essence
this result expresses the average of a product of two operators,
each at a different time, as a trace in the Schrödinger picture.
To write down the vector-operator counterpart of this result we
first recall the regression formulas for scalar operators: Given
any two operators Â and B̂ in the system Hilbert space, and
the solution to the Markovian master equation ρ̇ = Lρ,

〈Â(t) B̂(t + τ )〉 = Tr {B̂(0) eLτ[ρ(t) Â(0)]}, (A51)

〈Â(t + τ ) B̂(t)〉 = Tr {Â(0) eLτ[B̂(0) ρ(t)]}, (A52)

for any τ > 0 . Let us define the quantum average of a matrix
operator Â at time t as

〈Â〉 = Tr[ρ(t)Â]. (A53)

A corollary which follows from this definition and (A45) is

〈ĉ Â〉† = 〈Â† ĉ†〉, (A54)

obtained by letting Â → ρĉÂ in (A45). We can now extend
(A51) and (A52) to

〈Â(t) B̂�(t + τ )〉 = (Tr{B̂(0) eLτ[ρ(t) Â�(0)]})�, (A55)

〈Â(t + τ ) B̂�(t)〉 = Tr{Â(0) eLτ[B̂�(0) ρ(t)]}. (A56)

4. Superoperators of special interest

When considering continuous measurements terms of cer-
tain forms arise frequently. Here we will define superoperators
whose forms allow us to write these frequently occurring terms
compactly. For an arbitrary scalar operator ŝ we define

J [Â]B̂ ≡ Â B̂ Â† . (A57)

Note that Â here should be treated as a parameter and B̂ the
input forJ [Â], the output of the superoperator is another scalar
operator given by the right-hand side of (A57). The definition
(A57) thus implies that J [Â†]B̂ = Â† B̂ Â.

Often we encounter a sum of terms in the form of (A57) so
we define

J [Â]B̂ ≡
∑

k

J [Âk]B̂ =
∑

k

Âk B̂ Â
†
k = Â�B̂ Â‡. (A58)

From (A15) and (A58) the action of J [Â] on a vector operator
produces another vector operator, given by

J [Â] B̂ =
∑

k

Âk B̂ Â
†
k = (Â B̂�)�Â‡. (A59)

This also gives J [Â‡]B̂ = (Â‡B̂�)�Â . Here we note that
J [Â‡] is formally equivalent to its superoperator adjoint.7

From (A57) we can define what is sometimes referred to as
the “dissipator” [35]

D[Â]B̂ ≡ J [Â]B̂ − 1
2 {Â†Â,B̂}, (A60)

where {Â,B̂} ≡ ÂB̂ + B̂Â. When Â = Â† one may prefer to
write the dissipator as a nested commutator,

D[Â]B̂ = − 1
2 [Â,[Â,B̂]]. (A61)

As in (A58), we shorthand a sum of dissipators by

D[Â]B̂ ≡
∑

k

D[Âk]B̂. (A62)

Equations (A15) and (A62) then permit us to write

D[Â] B̂ = J [Â]B̂ − 1
2 {Â†Â,B̂}

= (Â B̂�)�Â‡ − 1
2 {Â†Â,B̂}. (A63)

In the case when Â = Â‡ the vector-operator generalization of
(A61) is

D[Â] B̂ = − 1
2 {(Â��Â,B̂�)� + �B̂,Â�Â}. (A64)

The appearance of a dissipator D[Â] in the master equation
is associated with the coupling of the system to the environ-
ment via Â. If the system is also under continuous observation,
then measurement back-action terms arise and they can be
written concisely by defining

H[Â]B̂ ≡ ÂB̂ + B̂Â† − Tr(ÂB̂ + B̂Â†)B̂. (A65)

7The standard definition of the adjoint of a superoperator N [35] is
another superoperator N†, such that for any scalar operator Â, and
any state ρ, Tr[Â(Nρ)] = Tr[(N†Â)ρ]. We can generalize Â in this
definition to a vector operator Â so N† is such that Tr[Â(Nρ)] =
Tr[(N†Â)ρ]. From this it follows that (J [Â])† = J [Â‡].
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We will invariably be considering H[C�Â] with C = C∗. In
this case one may prefer to generalize (A65) to

H[Â]B̂ ≡ ÂB̂ + B̂Â‡ − Tr[ÂB̂ + B̂Â‡]B̂ (A66)

and write

H[C�Â] = C�H[Â]. (A67)

Note that (A65) and (A66) each contain a term which is
nonlinear in B̂. One may find it useful to also define the linear
versions of (A65) and (A66),

H̄[Â]B̂ ≡ ÂB̂ + B̂Â†, (A68)

H̄[Â]B̂ ≡ ÂB̂ + B̂Â‡. (A69)

APPENDIX B: DERIVATION Of EQ. (46)

We first write (suppressing the time dependence)

Tr[(ρ + dρc)2] = 1 + 2

h̄
Tr[ρ (h̄dρc)] + 1

h̄2 Tr[(h̄dρc)2], (B1)

where the change in the state is given by

h̄ dρc = Lρ dt + H[dw�M†ĉ]ρ. (B2)

Recall that L is defined by (1). We will assume that ρ(t) is
unconditioned and such that Tr[ρ(t)] = 1 and ρ2(t) = ρ(t).

We first work out the second term in (B1). Taking the trace
of (B2) against ρ,

Tr{ρ (h̄ dρc)} = Tr{ρLρ}dt + Tr{ρH[dw�M†ĉ]ρ}. (B3)

From (A65) we find, for any Â,

Tr{ρ H[Â]ρ} = 0. (B4)

From (1) we get

Tr{ρLρ} = 〈ĉ†〉〈ĉ〉 − 〈ĉ†ĉ〉. (B5)

Therefore (B3) is

Tr{ρ (h̄ dρc)} = Tr{ρLρ}dt = (〈ĉ†〉〈ĉ〉 − 〈ĉ†ĉ〉) dt. (B6)

To order dt the third term in (B1) is proportional to

Tr[(h̄dρc)2 ] = Tr[(H[dw�M†ĉ]ρ)2 ]. (B7)

For any Â,

(H[Â]ρ)2

= (Âρ)(Âρ) + (Âρ)(ρÂ†) − (Âρ)Tr[Âρ + ρÂ†]ρ

+ (ρÂ†)(Âρ) + (ρÂ†)(ρÂ†) − (ρÂ†)Tr[Âρ + ρÂ†]ρ

+ Tr[Âρ + ρÂ†]Tr[Âρ + ρÂ†]ρ2. (B8)

Taking the trace and using ρ2 = ρ,

Tr{(H[Â]ρ)2} = 2(〈Â†Â〉 − 〈Â〉〈Â〉). (B9)

This gives, for Â = dw�M†ĉ,

Tr{(H[dw�M†ĉ ]ρ)2} = 2(〈ĉ†MM†ĉ〉 − 〈ĉ〉MM†〈ĉ〉) dt.

(B10)

Thus substituting (B6) and (B10) into (B1),

Tr[(ρ + dρc)2 ]

= 1 + 2

h̄
tr[〈(ĉ − 〈ĉ〉)‡(ĉ − 〈ĉ〉)�〉(IL − MM†/h̄)�]dt

= 1 + tr[H (IL − MM†/h̄)�] dt. (B11)

The matrix H was defined in (47).

APPENDIX C: EQ. (131) FOR L = 1

We can show that for L = 1 it is always possible to find
a decomposition in the form of (131) for an arbitrary M. The
most general 2 × 2 orthogonal matrix can be parameterized by
a single variable ϕ,

O =
(

cos ϕ sin ϕ

∓ sin ϕ ± cos ϕ

)
, (C1)

where the sign in the second row corresponds to det(O) = ±1.
This gives, from (131),

M� = √
h̄η eiφ

(√
θ cos ϕ ± i

√
θ̄ sin ϕ√

θ sin ϕ ∓ i
√

θ̄ cos ϕ

)
. (C2)

If we define

M� =
(

m1

m2

)
=

( |m1|eiα1

|m2|eiα2

)
, (C3)

then our problem is to find (η,φ,θ,ϕ) such that

|m1|eiα1 =
√

h̄η eiφ(
√

θ cos ϕ ± i
√

θ̄ sin ϕ) (C4)

|m2|eiα2 =
√

h̄η eiφ(
√

θ sin ϕ ∓ i
√

θ̄ cos ϕ), (C5)

given m1, m2, which determine η by

|m1|2 + |m2|2 = h̄ η. (C6)

Equations (C4) and (C5) are true if and only if the modulus
and argument (phase) of each side are equal, i.e.,

|m1|2 = h̄η [θ cos2 ϕ + θ̄ sin2 ϕ], (C7)

|m2|2 = h̄η [θ sin2 ϕ + θ̄ cos2 ϕ], (C8)

and

α1 = φ + arg(
√

θ cos ϕ ± i
√

θ̄ sin ϕ), (C9)

α2 = φ + arg(
√

θ sin ϕ ∓ i
√

θ̄ cos ϕ). (C10)

Rearranging (C7) we find

θ = |m1|2 − h̄η sin2 ϕ

h̄η cos(2ϕ)
. (C11)

If we now substitute (C6) into (C11) and define r =
(|m1|/|m2|)2, then we get

θr (ϕ) ≡ r cos2 ϕ − sin2 ϕ

(r + 1)(cos2 ϕ − sin2 ϕ)
. (C12)

Note that ϕ must also ensure 0 � θ � 1. For small r we find,
from (C12),

θ0(ϕ) = − sin2 ϕ

cos2 ϕ − sin2 ϕ
, (C13)
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while for r large θr (ϕ) approaches

θ∞(ϕ) ≡ cos2 ϕ

cos2 ϕ − sin2 ϕ
. (C14)

At these extremes the only values of ϕ that enforce θ ∈ [0,1]
are integer multiples of π/2, for which θ is either 0 or 1.

If we now attempt to eliminate θ in (C8) by substituting
in (C12) we simply arrive at (C6), which is independent of ϕ.
Thus (C7) and (C8) are solved simultaneously with any ϕ and
(C12). The value of ϕ is determined from solving (C9) and
(C10) simultaneously. First eliminating φ we see that ϕ must
satisfy

δ ≡ α1 − α2 = F±
r (ϕ), (C15)

where we have defined the argument of m1/m2 as

F±
r (ϕ) ≡ arg

[√
θr (ϕ) cos ϕ ± i

√
1 − θr (ϕ) sin ϕ√

θr (ϕ) sin ϕ ∓ i
√

1 − θr (ϕ) cos ϕ

]
. (C16)

We have written θr (ϕ) in (C16) to signify that here we
are substituting in (C12). Recall the signs here correspond
to det(O) = ±1. Equation (C15) is transcendental. We plot

F+
r (ϕ) in Fig. 7 as a function of r and ϕ. We find that for

det(O) = 1

Im

[√
θ cos ϕ + i

√
1 − θ sin ϕ√

θ sin ϕ − i
√

1 − θ cos ϕ

]

=
√

θ (1 − θ )

θ sin2 ϕ + (1 − θ ) cos2 ϕ
� 0, (C17)

which means the range of F+
r should be between 0 and π as

seen in Fig. 7. A noteworthy feature occurs at r = 1. From
(C12) we get θ1 = 1/2 which gives

F+
1 = arg

[
cos ϕ + i sin ϕ

sin ϕ − i cos ϕ

]
= arg[i] = π/2. (C18)

We also plot F+
r (ϕ) (solid blue line) together with θr (ϕ)

(purple dashed line) for selected values of r as a function of ϕ

in Fig. 6.
Observe that F+

r (ϕ) always has a support which corre-
sponds to θr ∈ [0,1]. We illustrate this region in Fig. 6(b) with
a light shade. It can be seen in Fig. 6 that this region persists for
the various values of r that we have chosen. This illustrates that
there is always a value of ϕ which solves (C15) for δ ∈ [0,π ],
and for which θ ∈ [0,1]. Note that more than one value of
ϕ will solve (C15) for a given δ which means that M can be

FIG. 7. (Color online) Plots of F +
r (ϕ) (solid blue line) and θr (ϕ) (dashed purple line) for selected values of r: (a) r = 0.05, (b) r = 0.5

(c) r = 2, and (d) r = 20.

012119-18



COMPLETE PARAMETRIZATIONS OF DIFFUSIVE . . . PHYSICAL REVIEW A 84, 012119 (2011)

factorized by more than one O [recall (C1) and (C2)]. Having
obtained a value of ϕ we can then substitute it back into either
(C9) or (C10) to obtain φ.

In the above we have concentrated on the case δ ∈ [0,π ].
Here we show how M can be factorized by (131) if we were
given δ ∈ [−π,0]. The analysis up to (C15) would remain the
same but in this case we can first let α′

2 ≡ α2 ± π and solve

α1 − α′
2 = F+

r (ϕ′) (C19)

for ϕ′. The factorization of M� is then given by

( |m1|eiα1

|m2|eiα2

)
=

( |m1|eiα1

|m2|ei(α′
2∓π)

)
=

(
1 0
0 −1

)( |m1|eiα1

|m2|eiα′
2

)
,

(C20)

where ( |m1|eiα1 , |m2|eiα′
2 )� is factorized by( |m1|eiα1

|m2|eiα′
2

)
=

√
h̄η eiφ

(
cos ϕ′ − sin ϕ′
sin ϕ′ cos ϕ′

)( √
θ

−i
√

θ̄

)
.

(C21)

Substituting this into (C20) and taking the transpose we see
that M has the form of (131) with the orthogonal matrix O
given by

O =
(

cos ϕ′ sin ϕ′

− sin ϕ′ cos ϕ′

)(
1 0

0 −1

)
, (C22)

where ϕ′ is defined by (C19). Note that (C22) now
has a determinant of −1. We see then for δ ∈ [−π,0]
M is still factorized by (131) but with an O such that
det(O) = −1.
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[25] R. Garcı́a-Patrón, J. Fiurášek, N. J. Cerf, J. Wenger, R. Tualle-
Brouri, and Ph. Grangier, Phys. Rev. Lett. 93, 130409 (2004).
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