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We propose a Lie-algebraic duality approach to analyze nonequilibrium evolution of closed dynamical systems
and thermodynamics of interacting quantum lattice models (formulated in terms of Hubbard-Stratonovich
dynamical systems). The first part of the paper utilizes a geometric Hilbert-space-invariant formulation of
unitary time evolution, where a quantum Hamiltonian is viewed as a trajectory in an abstract Lie algebra,
while the sought-after evolution operator is a trajectory in a dynamic group, generated by the algebra via
exponentiation. The evolution operator is uniquely determined by the time-dependent dual generators that satisfy
a system of differential equations, dubbed here dual Schrodinger-Bloch equations, which represent a viable
alternative to the conventional Schrodinger formulation. These dual Schrodinger-Bloch equations are derived
and analyzed on a number of specific examples. It is shown that deterministic dynamics of a closed classical
dynamical system occurs as action of a symmetry group on a classical manifold and is driven by the same
dual generators as in the corresponding quantum problem. This represents quantum-to-classical correspondence.
In the second part of the paper, we further extend the Lie-algebraic approach to a wide class of interacting
many-particle lattice models. A generalized Hubbard-Stratonovich transform is proposed and it is used to show
that the thermodynamic partition function of a generic many-body quantum lattice model can be expressed in
terms of traces of single-particle evolution operators governed by the dynamic Hubbard-Stratonovich fields.
The corresponding Hubbard-Stratonovich dynamical systems are generally nonunitary, which yields a number
of notable complications, including breakdown of the global exponential representation. Finally, we derive
Hubbard-Stratonovich dynamical systems for the Bose-Hubbard model and a quantum spin model and use the

Lie-algebraic approach to obtain new nonperturbative dual descriptions of these theories.
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I. INTRODUCTION

The fundamental problem of quantum-to-classical corre-
spondence is an old question that has existed since the birth
of the quantum theory, and which appears frequently in essen-
tially all fields of physics under various covers, in particular, in
the context of the path integral approach to quantum mechanics
of Feynman [ 1], Glauber’s coherent states [2], and their various
generalizations [3-5], integrable systems [6], classical and
quantum chaos [7], AdS/CFT correspondence [8], and more
general Langlands duality [9], etc. One particularly simple
variation of this general problem is to connect classical motion
of a particle or an ensemble of classical particles under the
influence of external time-dependent fields to unitary evolution
of the corresponding externally driven quantum system.
In many cases, including the textbook harmonic oscillator
problem, the one-to-one correspondence between classical and
quantum dynamics has been long known and well-established.
However, the situation remains less clear in some other cases,
notably in dynamical systems where classical motion occurs on
amanifold with constraints, which on the quantum side usually
manifest themselves through topological terms in a quantum
action or nontrivial commutation relations in the Hamiltonian
formalism [10]. The simplest such examples are an externally
driven spin [11-17] or a two-photon system with time-varying
parameters [18]. Various quasiclassical approaches [19-22]
have been proposed to analyze such systems, and the results of
these analyses are often suggestive of classical and quantum
unitary dynamics representing two sides of the same coin, but
no simple general summary of such correspondence appears
to exist to encompass all relevant cases on a systematic basis.
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Apart from the pure fundamental interest to the problems
of unitary quantum evolution and quantum-to-classical corre-
spondence, the recent experimental advances in the fields of
quantum optics, atomic and molecular physics [23-41], and
quantum control [42-48] make these fundamental questions
also practically important and experimentally relevant. Models
that had existed before only in theorists’ imaginations can
now be realized and studied in the laboratory, where unitary
relaxationless dynamics can be directly detected and analyzed.
On the theory side, however, the analytical tools to study such
nonequilibrium dynamics are still being actively developed
[49-53].

Motivated by these recent advances and our recent theo-
retical results [54-57], we use the latter as well as results
from the old [58-61] and more recent [62—-66] mathematical
physics literature and quantum control theory [51] to develop
a general Lie-algebraic framework that describes both unitary
quantum dynamics and classical nonequilibrium evolution on
an equal footing. We utilize the approach pioneered by Magnus
[58,66] and derive a set of differential equations, referred
to below as dual Schrodinger-Bloch equations (DSBEs),
that make quantum-to-classical correspondence manifest. The
major point emphasized throughout the paper is that the
unitary quantum evolution is largely decoupled from
the Hilbert space and can be analyzed completely indepen-
dently of it based on the minimal Lie-algebraic structure
provided by the underlying Hamiltonian. More specifically, we
first consider a Hamiltonian expressed in terms of operators
that close under commutation into a finite-dimensional Lie
algebra, A, which is specified by its structure constants,
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([, Il =i Zf: 1 fabCJVC. The unitary quantum evolution op-
erator, U (1) lies in the Lie group, G4 = exp (i.A), which is
generated by the algebra via exponentiation and it is uniquely
determined by a trajectory, ®“(¢), in the dynamical group as
follows: U(t) = exp[—i)_,P° (1)J,]. The classical equations
of motion for the quantum-mechanical averages, M,(t) =
(W(D)|J,|¥ (1)), follow from the structure constants of the
algebra, Mb(t) = Zz,c=1 Spa E04(@)M (). Classical motion
generally takes place on a classical manifold with constraints,
M, via action of a symmetry group, G(M), in the d-
dimensional adjoint representation, M(z) = e~ 2« ®'©JaM(0),
with £, representing the corresponding generators. It is demon-
strated that this group action is determined by the very same
dual generators, ®(t), that appear in the quantum problem.
This manifests quantum-to-classical correspondence. The dual
generators, ®,(t), satisfy a system of nonlinear differential
equations, the DSBE. New results derived here include a
specific form of these DSBEs for a number of dynamical
systems.

The second part of the paper focuses on a class of more
complicated Hamiltonians, bilinear in algebra generators, that
encompasses a wide variety of interacting many-body quantum
systems of interest to both condensed matter physics and cold
atoms, which include various quantum lattice spin models and
Hubbard-type models. We utilize the path integral formalism to
formulate a generalized Hubbard-Stratonovich decomposition
[54] and to prove that thermodynamic properties of such
many-body systems can be represented as a linear combination
of traces of quantum evolution operators corresponding to all
possible realizations of the Hubbard-Stratonovich fields. This
approach gives rise to Hubbard-Stratonovich quantum dynam-
ical systems, which generally involve nonunitary evolution and
require a complex extension of the underlying Lie algebra. It
is argued and demonstrated on an explicit example of the
familiar Bose-Hubbard model that in treating an interacting
many-body Hamiltonian, it is useful to Hubbard-Stratonovich
decouple the terms associated with single-particle Lie-algebra
generators instead of focusing only on the interacting terms
quartic in creation/annihilation operators in the Fock basis;
that is, the hopping terms, bT(i)b( j), and interaction terms,
bi(i)b(i)b(j)b(j), represent the same level of complexity
from this point of view and are to be decoupled into linear
combinations of b'(i), b(i), and b'(i)b(i), which together
with the identity span the solvable four-dimensional harmonic
oscillator algebra, h4. We solve the corresponding Hubbard-
Stratonovich dynamical system exactly and obtain a new
nonperturbative representation for the partition function of the
Bose-Hubbard model. We also analyze a frustrated quantum
spin model and, using the DSBE, derive a dual representation
of the theory in terms of group generators. It is argued that
such dual descriptions may be helpful in circumventing the
sign problem in certain cases.

Our paper is structured as follows: In Sec. II, we, starting
from the standard Schrodinger equation in a Hilbert space,
derive a Hilbert-space-invariant form of the Schrodinger
equation for quantum evolution that relies only on the
primitive Lie-algebraic structure of the dynamical system. In
Sec. III, we utilize the global exponentiation conjecture (that
quantum evolution can be globally exponentiated from the

PHYSICAL REVIEW A 84, 012118 (2011)

algebra, U () = exp[—i®(t) - J ]) and derive a general form
of the DSBE for the Hilbert-space-invariant generators, ®(¢).
Section IV provides a number of examples of the usage of
the DSBEs: Section IV A derives and solves DSBE for the
harmonic oscillator algebra, Sec. IV B derives DSBE for the
su(2) spin algebra, Sec. IV C establishes a relation between
the latter two dynamical systems, Sec. IV D discusses the
two-photon algebra, and Sec. IV E formulates a generic five-
step procedure of reverse-engineering exact solutions using
DSBE in the higher-rank su(N) dynamical systems. Section V
establishes quantum-to-classical correspondence and Sec. V B
illustrates the meaning of this correspondence on the simple
example of linearly-driven Jaynes-Cummings model that is
solved exactly. Section VI extends the Lie-alegraic ideas to
interacting many-particle systems: A generic Lie-algebraic
lattice model is introduced in Sec. VIA and Sec. VIB
derives a generalized Hubbard-Stratonovich transform and
formulates a generic Hubbard-Stratonovich dynamical system.
Section VII includes two examples of this Lie-algebraic
approach to interacting quantum models: In Sec. VII A, we
solve exactly the Hubbard-Stratonovich dynamical system for
the harmonic oscillator algebra to derive an exact, previously
unknown, representation of the partition function of the Bose-
Hubbard model. Section VIIB formulates, on the example
of a frustrated quantum spin model, a dual path-integral
approach to interacting spin systems where the integration over
Hubbard-Stratonovich fields is replaced with path integration
over the dual generators in the dynamical group. Section VIII
provides a summary and discussion of many open questions.
Appendixes A and B are logically connected to the first
“single-particle” part of the paper; specifically, they relate to
Secs. III and IV and Sec. V, correspondingly: Appendix A
summarizes general algebraic properties and classification of
possible unitary quantum dynamics and Appendix B reviews
the construction of the classical manifold that plays a central
role in the discussion of quantum-to-classical correspondence.

II. FROM SCHRODINGER PICTURE TO A
HILBERT-SPACE-INVARIANT FORMULATION

A. Dynamical Lie algebra

Consider the nonequilibrium Schrodinger equation
i, (1)) = HL()|W(0),
[W(0)) = |¥o),

where H r(®)isan L x L Hermitian Hamiltonian matrix acting
on the wave functions, |W(¢)), in an L-dimensional complex
Hilbert space 7 (L) spanned by the linear combinations,
|[r) = Z,le crlk), where |k) € (L) are orthonormal basis

vectors in the Hilbert space and ¢, € C. |yo) = Z,le c,(co)|k) €
(L) is a normalized initial state. Note that the normalized
wave functions lie on the hypersurface of the (2L — 1)-
dimensional sphere, S2L=1 Tn this section, we assume that
L < oo, but the key results are generalized to a specific class
of infinite-dimensional representations in Appendix A4.

Any such dynamic Hamiltonian can be written in the
form, H. (1) = . B (1)O;, where O; are Hermitian lin-
early independent matrices and B(t) are time-dependent
parameters. Also, assume, without loss of generality, that

(D
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TrO; = 0. If this is not so from the outset, we can always
redefine our operators as follows (5,- — (@i — %Tr @[), where

Iy is the L x L identity matrix, and trivially solve the
Abelian part of the Schrodinger equation that will give
rise to a pure phase dynamics of the wave function as
follows: |W (1)) — exp[—+ Y7 Tr O; [y B'(s)ds]|W (). All
operators in the remaining part of the Hamiltonian will be
traceless and therefore our assumption does not reduce the
practical generality of the analysis. This implies that these
traceless operators, O, certainly belong to an L-dimensional
defining representation of the special linear algebra sl(L,C)
and the unitarity constraint further requires the operators to
belong to the L-dimensional unitary representation of su(L).

However, the quantum dynamical system (1) may generate
a much smaller Lie algebra than the (L? — 1)-dimensional
su(L) (recall that L is the dimensionality of the Hilbert space).
In fact, we argue below that this algebra, A, often has little-
to-no relation to a particular Hilbert space. Consider now all
possible matrix commutators, (’5,» =1 [@i ,O i1, and multiple
commutators, (’A),-, k= —i[@i, ) ix], etc., that are guaranteed
to eventually close into a finite-dimensional Lie algebra, .4 C
su(L) (or more precisely into its L-dimensional representation,
T.[A]). Note that m < d = dim A < (L? — 1).

Choose a basis in Ty [A], that is, a set of d linearly in-
dependent (L x L) Hermitian traceless matrices, fa e T, [A],
which themselves are linear combinations of matrices @,- in the
original Hamiltonian and their multiple commutators. These
generators will satisfy a specific set of commutation relations,

d
—ilJa, 1= fup s ©)

c=1

where the structure constants are guaranteed to be real, f,, © €
R. Finally, we can rewrite the matrix Hamiltonian in terms of
the generators as follows:

d
@) =Y b () Ja- 3)

a=1

Equations (2) and (3) summarize the fact that an arbitrary
time-dependent Schrodinger equation formulated in a finite-
dimensional Hilbert space can be reduced to the Lie-algebraic
form (see also Appendix A4 for a discussion of certain theories
in infinite-dimensional Hilbert spaces).

B. Exponential image and dynamical group

Lie algebras usually appear as a means to study Lie groups,
and are often considered by-products of the latter. In the
context of nonequilibrium quantum mechanics, however, a
reverse view is much more useful [51]. Below, we treat the
Lie algebra, A, arising from the underlying Hamiltonian as
a primary structure and the Lie group it generates, G4 =
exp(i.A), as secondary. A particular Hilbert space will be a
tertiary structure of minor or no importance. To proceed with
this program, we use structure constants in Eq. (2) to define an
abstract Lie algebra, A, spanned by the generators, fa,

(o, Bl =ady Jp = if,, J, 4)
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where here and below a sum over repeating indices is assumed,
unless stated otherwise. Here we put inverse hats on top of
the abstract generators, ]a, of the abstract algebra, A =
span {fl, . ,fd}, to distinguish them from their specific ma-
trix representation arising from the conventional Schrodinger
formulation in the Hilbert space, 5¢(L). We note that the word,
“abstract” here implies that J”s are not matrix objects, nor are
they operators acting on a wave function, but rather vectors
in a linear space equipped with the commutator that makes it

v

into a Lie algebra. It also implies that the products, fa fh, J a"’,
etc., do not make sense in the abstract Lie algebra, but only
commutators do. The products are, of course, well-defined
given a representation but normally have little relation to the
underlying dynamical system. For example, the square of an
su(2) generator from its two-dimensional representation (i.e.,

half-integer spin described by the Pauli matrices) is 6)?’ v /A=

I>/4 and is proportional to an identity matrix that commutes
with any other observable. On the other hand, the square of a
generator from any higher-dimensional representation of su(2)
(e.g., spin-1 particle described by 3 x 3 matrices) is nontrivial
and as such may in principle have nontrivial dynamics. In what
follows, we mostly concentrate on Lie-algebraic invariants,
which are defined as objects or statements, whose definition
or proof relies only on the commutators of the generators in the
dynamic Lie algebra and their linear combinations and does
not involve any other algebraic structures.

However, a particular faithful representation can be used as
a tool to prove certain Lie-algebraic-invariant statements and
identities and demonstrate that they are, in fact, independent of
the representation itself. The Hadamard lemma (think unitary
rotation of an operator into the Heisenberg or interaction
picture),

e—i}??e-'ri)vf — e—iad;(? c A’ (5)

and the Baker-Campbell-Hausdorff (BCH) relation for

eX etV = ¢'Z (think terms in a time-ordered exponential),

1
Z — X+f dsw(eiad;(eisady)y’ (6)
0

stand out as perhaps the most important among such invariant
identities. [In Egs. (5) and (6), we assumed that X,Y € Aand
used the logarithmic derivative of the I" function, defined via its
series, e.g., Y(e%) = > o, %z”, with B, being the Bernoulli
numbers. ]

While the usefulness of Eq. (6) for practical calculations
appears to be limited, it does provide a nice illustration of the
invariance of the BCH product. Let us recall, however, that in
the case of an arbitrary finite-dimensional Lie algebra, the BCH
identity is convergent in a close vicinity of the origin, 0 € A,
but Eq. (6) does not always converge globally [67], with the
algebra as simple as 5[(2,C) being the classic counterexample.
Another manifestation of this problem is that there is generally
no guarantee that in a particular matrix representation a product
of two matrix exponentials of algebra elements can be written
as a single matrix exponential of an algebra element. This
“complication” is also closely tied to the fact that a Lie algebra
is guaranteed to exponentiate into its Lie group only locally,
but does not always do so globally.
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One can argue, however, that in the context of quantum
dynamical system (1), the dynamic algebra does exponentiate
onto a Lie group. Here we recall that the covering problem
of global exponentiation of an arbitrary finite-dimensional
Lie algebra arises due to noncompact generators that do not
necessarily form a subalgebra [68]. However, such generators
are prohibited in the quantum dynamical system described
by Hermitian finite-dimensional matrices. The very existence
of a finite-dimensional Hilbert space guarantees that the set
of matrix exponentials and their products form a subset of
SU(L) group, which is, indeed, compact. This suggests that
the entire dynamic group is a compact manifold that can be
globally generated by an exponential map. An argument here
is that any two points of this compact Riemannian manifold
are connected by a minimizing geodesics and the exponentials
from the algebra generate such geodesics. Therefore, it seems
that we can safely define a compact abstract group, generated
by the abstract dynamic algebra via exponentiation that we
denote as

G4 = (7)

We emphasize that while this dynamical symmetry group may
be a subgroup of SU(L), it generally has little to do with a
particular Hilbert space, which we have used here only to
argue in favor of the existence of a global exponential map
onto the Lie group, G 4. We refer to the assumption about the
existence of this map as to “global exponentiation conjecture”
(we call it a “conjecture,” because the mathematical rigor
of the above arguments is not entirely satisfactory and the
background of the author is insufficient to be able to formulate
a general statement in the form of a rigorous theorem). Finally,
let us stress that this conjecture does not assume that the
specific form of BCH formula (6) and/or Magnus series [58,66]
are globally convergent, but it does imply, in particular, the
following: Given a faithful matrix representation, the matrix
product of two exponentials of algebra elements gives rise
to an exponential of another algebra element, that is, if

X, ¥ e T.[A] then, —i In(eiXeiT) € T, Al

C. Geometric alternative to unitary evolution in a Hilbert space

Returning to our quantum dynamical system (1), we
observe, however, that since the familiar Schrodinger equation
is written in terms of a wave function, it is manifestly represen-
tation specific. Let us now cast it into a representation-invariant
form. In the framework of the Schrodinger formulation (1), our
goal is to find a norm-preserving solution governed by a unitary
L x L evolution matrix as follows:

L
W) = 0LOlpo) = Y U @)1k, (8)

k,p=1

We can now substitute this solution in the Schrodinger equation
to arrive at

i0,UL(t) = Ho()UL(1),

U.0) = 1. ©)

As evident from (9), the quantum evolution operator is
decoupled from the initial condition, which is well known.
What is also known [68], but perhaps less widely appreciated,
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Compact Lie group, G=exp(iA
quantum evolution o

FIG. 1. (Color online) Cartoon illustration of the geometrical
view of quantum dynamics: The Hamiltonian is a trajectory in a
Lie algebra, A, which is a finite-dimensional vector space. This
trajectory gives rise to unitary evolution, which is a trajectory in the
Lie group, G4 = ¢'*, generated by the algebra via exponentiation.
Topologically, this group is a compact connected manifold. As
emphasized in the text, neither .4 nor G 4 are associated with any
particular Hilbert space.

is that the unitary evolution is also decoupled from the Hilbert
space and is representation invariant. To see this, multiply (9)
by U;'(t1) = U} (t) from the right to find i8,0, (1)U} (t) =
H.(1). Based on the global exponentiation conjecture of
the previous section, we conclude that since at t = 0 the
identity U, (0) = I} certainly belongs an L-dimensional rep-
resentation of the group 7.[G 4] it will stay there at all
times. The same conjecture also implies that the solution can
be sought in the form [58] U.(t) = exp[—i@“(t)fa], where
®4(t) are real functions of time [we also use the vector
notations ® = (&', ®2,...,®%), J = (J,Jr,...,J)T, and
a dot-product ®(¢) - J = 09(1)J,]. Now we observe that the
product i 9, UL (t)UZ(t) is representation-invariant, because it
can be calculated using the BCH identity only. Therefore, one
can drop the representation indices and write the Schrodinger
equation in an “abstract form”:

i3, UOU\(t) = i[8,e ®0T1ei®0T — pap)J,,
(10)
Ut)e G4and U@0) =1 = ¢°.

Note that even though, we have “derived” this equation
from the textbook Schrodinger equation (1), Eq. (10) has no
“recollection” about the Hilbert space and can be analyzed
completely independently of it. In fact, we might have as well
started from Eq. (10), which does not involve the notion of a
wave function at all. In this approach, the Hamiltonian

H(t)=b()-J (11)

is atrajectory in the abstract Lie algebra, A, while the evolution
operator is a trajectory in the abstract Lie group, U(f) C G4 =
expli.Al. To solve the quantum-dynamical system (10) implies
to find the latter from the former. Figure 1 illustrates this
geometric view of quantum dynamics.

III. DUAL SCHRODINGER-BLOCH EQUATION

The evolution operator in Eq. (10) is a trajectory in the Lie
group, generated by the Lie algebra of the driving Hamiltonian,
and therefore has the form

U(r) = exp[—i ®(1)J,] and U~ (t) = exp[+i D*(¢)J,].
(12)
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We note that since the vector ®(¢) defines the group, there
appears a problem of its proper parametrization that we discuss
at a later stage (see, Sec. IV F2). However, we do not dwell
on this subtlety for the moment and treat the corresponding
differential equation (10) rather freely, keeping in mind that
there exists a finite-dimensional matrix representation that
always can be used to justify the corresponding algebraic
manipulations.

Equations (10) and (12) leadv to the structure H (t) =
ilim€_>0{é(e"'[d’“(’)*éq’”(’)meid’“(t)J‘* — €%}, which had been
considered before by many, including notably Feynman
(see, e.g., Ref. [59] for a related discussion). Using the
Hadamard lemma (5) and the related operator/matrix identity,

» ' Y ¥ .
LeXteY| o= [, dse!'""*Y X we obtain

1
Lb“(t)/ dse™ @O, _ b“(t)} J. =0, 13)
0

which is to be supplemented by the initial condition, ®(t) = 0.
We see that Eq. (13) involves nothing but commutators and
therefore is representation invariant in the sense that the vector
function @®(¢) determines evolution operators in all Hilbert
spaces.

The operators (adg_y) naturally give rise to a d-dimensional
matrix representation of A, which is known as the adjoint
representation of the algebra, and it is uniquely determined by
the structure constants. The representation is constructed in a
standard way by assigning to each vector ® the (d x d) matrix
F®l=®- f,

—i(adg.7)Jp = @ - f,° ). (14)

The matrices f, ..., fy correspond to the adjoint representa-
tion of algebra generators fl, . ,]d. Notationwise, here and
below, the hat on top of the f matrices signifies the fact that
they are indeed matrices (rather than abstract objects) and the
bold fonts correspond to d-dimensional vectors, for example,
f =(fi.fo,....f)T. Note also that if we go back to the
matrix elements, f,, ¢, werecover the structure constants of the
algebra by construction. Therefore, the adjoint representation
is basically a set of d x d matrices built directly from the
structure constants. Using these matrix notations, we can write
Eq. (13) in the following compact form:

1
/ dse’®OF @) = b(r), ®(0)=0. (15)
0
This is the main equation used throughout the paper. We will
refer to it as the dual Schrodinger-Bloch equation (DSBE),
and use it for actual calculations of quantum and classical
dynamics. Let us emphasize two important properties of the
DSBE, which are elaborated upon in the following sections:
(1) Equation (15) has no “recollection” of the original Hilbert
space and in its explicit form does not contain the Planck
constant; (ii) DSBE is purely real, that is, ;‘ are real-valued
matrices and the sought-after functions ®(¢) are real as well.
A word of caution is in order: Since any matrix, including
(- f) in Eq. (15), commutes with itself, it is tempting to
calculate the integral over s in (15) and rewrite it terms of
the inverse matrix and its exponential (cf. Refs. [62], [63]).
However, one should avoid doing so and exercise care at
this point, because the adjoint-representation matrix does
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not necessarily have an inverse, that is, F “1[®] = 00. We
emphasize that this is not a minor point, but an essential
complication, which should be kept in mind when analyzing
the DSBE. A correct approach is to calculate the matrix
exponential e*®®/ first and evaluate the integral over s in
Eq. (15) only afterward (reversing the order of these operations
may lead to errors in actual calculations).

Concluding this section, let us also recall that the adjoint
representation defines the Cartan-Killing inner product in the
algebra,

(®,0)=Tr{(®- f)(O©- f)}, (16)

which is used as a tool to classify the algebras [68]. This
Cartan-Killing product is nonsingular for semisimple algebras
and in this case the Cartan-Killing product of basis vectors,
can be identified with the metric that gives rise to geometric
structures.

IV. EXAMPLES OF THE DUAL SCHRODINGER-BLOCH
EQUATION

As argued in Appendix A, the variety of all possible quan-
tum dynamical systems formulated in a finite-dimensional
Hilbert space and certain theories formulated in an infinite-
dimensional Hilbert space (see Appendix A4), reduce to an
analysis of dynamical systems in universal simple algebras (for
practical purposes, understanding driven su(L) systems should
be sufficient) and dynamics in nonuniversal solvable algebras
(that are argued to be comparatively trivial and always exactly
solvable via factorization). In this section, we demonstrate
the application of the DSBE for both solvable (harmonic
oscillator) and simple [su(L)] algebras.

A. DSBE for the Weyl-Heisenberg algebra, b,

Consider the four-dimensional Weyl-Heisenberg algebra
b4 = span {1,a,af,afa} = span {1,%, p,atd}, associated with
a driven harmonic oscillator with the Hamiltonian

Hy (1) = o(t)d'a + a*(0)a’ + a)a +b°0)1,  (17)

where the operators ¢ = ¢~ and &' = a* satisfy the canonic
commutation relations, [, ] = 1 and [afd, &F] = £a* and
X =(a+a")/v2and p =it —a)//2 satisty [¥, p] = il.
We want to find the solution to Eq. (10) corresponding to
(17). To illustrate an application of the general factorization
scheme outlined in Appendix A2, let us decompose the
solvable algebra h,4 into an Abelian and nilpotent components
as follows:

ba = spanf{d'a} + span{i,%,p} = u(1) + b3,  (18)

where the latter, b3, is a nilpotent subalgebra. Solve the other
u(1) component by introducing the evolution matrix Uy1)(¢) =
exp [—idala fot w(t')dt’]. The full evolution operator is given
by the product Um = Uu(l)(t)lym(t), where the last factor is
sought in the form

Up, (1) = exp{—i[@°()] + @' ()% + @*(1)p]}  (19)
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and is to satisfy the Schrodinger equation with the rotated
Hamiltonian,

Hy, (1) = BO()1 + b' ()% + b*(1) p, (20)

where  b'(1) +ib3(1) = Ja®)e O (recall  that
exp[—iQad;izJat = eTRat). Using the regular
representation of f3, we can present the operator (14)
in the DSBE (15) as follows:

0 00
E o=@ -F=| ®2¢) 0 0 1)
—®l(r) 0 0

Due to the nilpotent structure of the algebra, the matrix (21)
exponentiates easily, leaving behind only two nonvanishing
terms in the series, and yields

1 . 1 0 0
f dse’®Of = | ®*)2 1 0
0 —ol(n/2 0 1

The dual Schrodinger-Bloch equation therefore reduces to
®"2(1) = b"2(1) (22)
and
O0t) + LD (P (1) — DX ()P ()] = (). (23)

Hence, we find the exact quantum evolution as follows:

l ! .y " "
(1) +id*(t) = 7 / dr'a(r)e' fo @A (04
0

and
%) = f dt’bo(t’)—l / dr’ f dt” la(@")| e
0 2 0 0
X sin { / dt [o(7) + (') — p(t")] }, (25)

where a(t) = |a(t)|e?®.

Finally, note that the phase space associated with the
harmonic oscillator algebra is not compact, which seems to
be in conflict with the arguments of Secs. Il A and IIC (see
also Fig. 1), which argued that the dynamical group must be
compact. The resolution of the paradox is in that the harmonic
oscillator algebra does not have a finite-dimensional unitary
representation and hence no finite-dimensional Hilbert space
exists, which was a key assumption of Sec. Il A. On the other
hand, the exponential representation still works perfectly well
(see also Sec. IV C and Appendix A4).

B. DSBE for the su(2) algebra

Now consider the simple algebra, su(2), defined via the
commutation relations

[jaa jﬂ] zigaﬁyjys (26)

where the Greek indices run over 1,2,3 = x,y,z and here and
below in this section we make no distinction between the
covariant and contravariant indices. We are interested in spin
dynamics governed by the Hamiltonian,

Heou)(t) =b(t) - J. 27)
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We follow the general prescription outlined above and also in
Ref. [57], where the su(2) case was considered in the context
of two-level system dynamics, and seek the solution in the
form Usu(z) = exp[—iP(?) - J ]. The adjoint operator in the
DSBE (15), (—i adq,(,),j), has a regular matrix representation
as follows:

A A 0 —o, @,
Fapl®W]=@-f=| . 0 =& |, (28
—®, &, 0

and describes a generator of SO(3) rotations. The exponential
of this operator is therefore a finite rotation around the axis
n = ® /P, and the exponential from Eq. (15) reads

L 8ap cossP + nyng[l — cos s P] — g4p, 1 sin s P.
(29)

We now present the time-derivative as follows & = dn +
®n, and keeping in mind that n - n = 0, obtain the DSBE for
the su(2) algebra:

&n+sin®n+ (1 — cos d)[n x ] = b(r). (30)

This equation is not formally solvable for a generic time depen-
dence of the driving field. However, it could be used to prove
certain exact relations [such as, e.g., ®(¢) = fot dtb(t) - n(7)]
and generate exactly solvable models for two-level-system
dynamics [11-17] by inverting the trajectories in the SU(2)
group back onto the algebra.

C. Contracting the DSBE from the 1(2) algebra into
Weyl-Heisenberg

The harmonic oscillator algebra and spin algebra as well
as their dual Schrodinger-Bloch equations discussed above
appear to be completely different: Driven dynamics in by
is solvable, while that in su(2) is not exactly solvable; the
former algebra is associated with the noncompact Euclidean
classical phase space (x,p) € R?, while the latter with the
magnetization dynamics on the Bloch sphere, M € S2. How-
ever, despite these drastic distinctions, the two algebras are
known to be closely connected and this connection beautifully
manifests itself via Lie-algebraic contraction. We recap the
main idea of this particular contraction [68] because such
procedures generally provide an effective means to reduce
Schrodinger-Bloch duals of an algebra to the corresponding
equations in more primitive algebras that descend from it via
contraction.

Consider the four-dimensional u(2) algebra that is obtained
from su(2) by adding to it a one-dimensional Abelian
component,

u(2) = span {Jy, J} = u(1) + su(2), 31)

where [Jy, J,] =0. Define a parameter-dependent linear
transform of the u(2) generators: jo = ]0, t71,2(e) = efy,x,
and %(e) = fz + G_ZJVO. The nontrivial commutation
relations in terms of the new operators are [\73, jl 2l =Fi jz,]
and [J;, Jo] = —ie2 s +iJo. In the limit of € — 0, these
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commutation relations become identical to those in the
Weyl-Heisenberg algebra, h4. That is,

lim u.(2) = lim span (%o, Ji(€). a(e). Fa(e)}
= span {1,%,p,d'da} = bs. (32)

Note that the DSBE for 1(2) follow from Eq. (30) by adding
to it a trivial equation for the Abelian u(1) component. Let us,
however, not solve it but instead rewrite the “trajectory” in
the algebra in terms of the new operators ¢ (t)f = O (t)ja,
which leads to ©° = &% — ¢72d?, B! = P /¢, O! = DY /¢,
and ® = ®°. The corresponding substitutions lead to the
evolution operator, Sy, (2) = exp[—i Za:O ®“(I)$] and new
set of equations for ®“(¢) that in the ¢ — 0 limit cross over to
the DSBE for b4.

D. Six-dimensional two-photon algebra, §4

The two-photon operator algebra, he =
span{i,a,at,ata,a?,@"?), is discussed in detail in
the review by Gimlore et al. [18]. Hence, we just reiterate
the main results in a slightly different form relevant to
the preceding discussion. hg is not semisimple, but in
accordance with the general rule, it can be decomposed into a
simple component and a nilpotent component as follows:

h6=span{%[<a*)2+azl —[@h? - é]%zﬁa}

+ span{1,¥, p} = su(2) + bs. (33)

Using the canonic commutation relations, [, al1= i, we can
verify that the first three generators in Eq. (33) give way to
the commutation relations identical to those of the “usual”
spin J. y,; operators (26). We can also explicitly verify that
[su(2), hs] C b3 in (33). Hence, we can utilize the DSBE
[Eq. (30) to determine the dynamics of the first component and
the factorization trick (A3) or/and the DSBE for the nilpotent
component (22), (23) to determine the total evolution matrix,

Upo(t) = Usuay(t) Uy, (8). 34)

E. Reverse engineering exact dynamics in higher-rank groups;
SU(N) examples

1. Dynamic “‘eightfold way”

The next level of complexity after su(2) is provided
by rank-2 algebras, such as su(3). We first focus on an
su(3) dynamical system [69] associated with the latter eight-
dimensional algebra, which is well-studied in the context of
the standard model. To calculate directly the exponentials of
eight-dimensional matrices in the DSBE (15) is a cumbersome
exercise and we proceed differently in a way generalizable to
other higher-rank algebras.

First, recall that there exists a three-dimensional (defining)
representation of su(3) that can be constructed as follows.
Define, T,.q = Tymye With 1 <l <m <3 and o = x,y,z =
1,2,3 to be three-dimensional matrices such that the only
possibly nonzero elements are (/,0), (I,m), (m,l), and (m,m)
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[here the notation implies(row, column)] and the correspond-
ing 2 x 2 matrices are the familiar Pauli matrices, &,. The
standard Gell-Mann matrices, introduced in relation to the
famous “eightfold way,” are expressed via 7’s as follows: A=
T(l 2)ixs ho = T(l 2)ys A= 2, 2)z’ Ay = T(1,3)x As = (1 3):y»
Ao = T30 A7 = T2.3)y0 hg = —[T(z 3z + T1,3):c]. Note that
only two among these Gell- Mann matrices are diagonal,
A3 and Ag, and they correspond to the three-dimensional
representation of mutually commuting Cartan operators. We
are interested in studying su(2) dynamics driven by the
time-dependent Hamiltonian,

8
T3 Hau(O] = ) b (ha, (35)

a=1

where )11,2 ..... g are the eight three-dimensional Gell-Mann
matrices. Now consider the operator in the exponential of
the DSBE (15) in this representation, that is, the operator
(d“A4,). There exists a unitary time-dependent SU(3) rotation
that diagonalizes this matrix into a combination of Cartan
generators:

() 3(1)ha Ul(0) = 01(1)A3 + n()s. (36)

Now we can use the Bulgac-Kusnezov construction [70] or
alternatively seek the unitary rotation as a product of three
SU(2) rotations,

Uity =[] expl-ix"®- 2.1, (37)
v=(i,j>i)

where we can take x V(¢) tobe “xy vectors,” thatis, x"(¢) - T, =
X" ()T + x "7 (#)T,,y. Note that per elementary properties
of the Pauli matrices, we can write

U= [] f{twocoslx’ @l —iln,(1) - £,]

v=(i,j>i)

sin | " ()1},

(38)

where n,(t) = x"(t)/|x" ()| is a two-dimensional unit vector.
We emphasize that, unlike Eq. (37), Eq. (38) is not represen-
tation invariant. However, it is useful for actual calculations
and can be utilized to relate ®“(¢) and w; »(¢) in Eq. (36), and
these relations are indeed representation invariant.

Now present the unitary rotation in the eight-dimensional
adjoint representation using the invariant form (37) and write
the DSBE as follows:

1 2 .
INGIAG) / dse*® 0L Ol 03(1)®(1) = b(r),  (39)
0

where f, are the known su(3) generators in the eight-
dimensional representation. This rotation brings the form
4(¢) f, to a diagonal form and we have

. 1 A ~ N .
Ug(t) f dse' 1 OLTOR g () = b(r).  (40)
0

Recall that f,—3 = diag{2, —2,0, — 11,1, — 1,0} and
fuzg = +/3diag {0,0,0,1, — 1,1, — 1,0}. Therefore, the ma-
trix exponentiation of the diagonal matrices in Eq. (40)
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is simple and yields for D(r) = fol dse B0 fi+eOf] he
following explicit expression:

D(t) = diag {w[2w, ], w*[201],1,w[v3ws — w1 ],
w* V3w, — o], w30 + o],
w* V3w, + w11}, (41)

where

1 .
w(2z) = / dse 2%t = iz 0L (42)
0 Z

Note that lim,_.ow(z) = 1. The third and eighth matrix
elements that are identically equal to one in the diagonal
matrix function D(r) in Eq. (41) correspond to the zero
eigenvalues of the generic matrix, (¢ ﬁ,), which therefore
does not have an inverse. It is a generic feature of the adjoint
representation, which descends from the simple fact that all
elements in a Lie algebra commute with themselves. Finally,
the Schrodinger-Bloch dual for su(3) can be written as

O @yD@)Og(1)®(1) = b(z), (43)

where Ug(t) is the eight-dimensional representation of the
unitary SU(3) rotation (37) that diagonalizes the rotating
three-dimensional “Hamiltonian” (®“(7)A,), which has three
real time-dependent eigenvalues, [w;(?)/ V3+ wi(t)] and
[—ng(t)/«/g] [see, Eq. (36), and the diagonal matrix ﬁ(t)
is given by Eqgs. (41) and (42). Note that the main difficulty
in deriving the dual dynamical system (43) is to find the
frequencies w »(#) and the rotation matrix 03(t) with the
latter to be expressed in terms of the representation-invariant
generators. Technically, deriving these quantities reduces to
solving a generic cubic algebraic equation, which is cumber-
some but should always be practically doable. This observation
also suggests that an explicit derivation of the DSBE for an
arbitrary simple algebra, A, is possible if the dimensionality of
the minimal faithful representation is L, < 4 and connects
this problem nicely to the Galois theory.

However, even if an explicit representation invariant dy-
namic su(3) system is written down, to solve it [i.e., to find
eight dynamic generators, ®“(¢)] may be a hopeless goal, as it
generally amounts to the gargantuan task of solving a system
of eight coupled differential equations. On the other hand,
just like in the su(2) case, the inverse problem of determining
driving fields that give rise to certain nonlinear evolution is
much simpler. Equation (43) should then be viewed as a result
for the eight-dimensional “su(3) Zeeman magnetic field,” b(¢).

2. Generalizing the results to su(N)

The above discussion is not specific to su(3), but generalizes
to an arbitrary simple algebra and in particular to su(N). su(N)
is the most symmetric among all algebras and can be viewed
as N(N —1)/2 su(2)’s tied together. The N-dimensional
defining representation of su(/N) can be constructed in much
the same way as in su(3), by introducing Pauli matrices,
Tyq Withv = (7,j),suchthat 1 <i < j < Nand o = x,y,z.
However, only (N — 1) linearly independent diagonal gen-
erators (Cartan operators, fz;) exist, which is exactly the
rank of the algebra, tantsu(N) = N — 1 = r. Therefore, the
entire algebra is spanned by N(N — 1)/2 Pauli matrices
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of the x and y type (or equivalently, by raising/lowering
operators, 7,.1) and the (N — 1) Cartan operators, which,
of course, correctly reproduces the dimension of the algebra
dim[su(N)] =2N(N — 1)/2+(N — 1) = (N> = 1) =d.

In order to reverse engineer an exact quantum dy-
namics in su(N), one can follow the following five-
step prescription: (i) First, choose r = N — 1 arbitrary
frequency functions for the mutually commuting Cartan
operators, w;(t), with j =1,2,...,r. (ii) Second, choose
N(N — 1)/2 arbitrary two-dimensional vector fields, y, (),
and use them to build an SU(N) rotation as a product
of N(N — 1)/2 noncommuting SU(2) rotations, UN(I)z
[T {fv0cos xo (1) —ilm,(t) - T,]sin x, (1)}, cf. Eq. (37).
(iii) Determine the generators of the exact solution from
/)Tyl = Y 0,00 () Tyl 10x(). Note that the
latter is a doable straightforward calculation in the N-
dimensional representation described above. (iv) Determine
the unitary rotation and the diagonal operator D(r) =
fol ds exp{—is Z;:l wj(t)f"Nz_l[ﬁj]}, which are expressed in
terms of the simple universal function w(z) in Eq. (42) but
involving some nonuniversal combinations of @’s. (v) Finally,
evaluate b(r) = Ul,_ ()D(6)Uy:—,(1)®(r), which therefore
provides a precise driving field needed to perform the desired
evolution.

Let us mention here that the su(4) case may be of interest
to quantum computing. A particular realization of this 15-
dimensional algebra is a pair of coupled half-integer spins
with the most generic Hamiltonian of the form

Hau(t) =bi(t) - 61+ bo(t) - 62+ Y JP(1)61,062 .
a.p
(44)

where 6, (i) are the standard Pauli matrices and we allow all the
15 parameters to be functions of time. The full Hilbert space
of the problem is spanned by the wave functions of the form
V) =ciltt) + c2ltl) + sl 1) +calld). The normalized
states reside on the seven-dimensional sphere and include,
in particular, entangled states. Using the proposed five-step
procedures, one may engineer time pulses that “untie” the
entangled states back into pure states and vice versa, thereby
untying the corresponding second Hopf fibration, S7/S° =
S*, which was proposed to describe two-spin entanglement
[71,72].

F. Two remarks on the global exponential representation
1. Square-root and fractional powers of the evolution matrix
If the dynamic symmetry group can be represented globally
as an exponential of algebra elements, this representation leads
to a very curious “natural” definition of matrix powers, as
follows. Assume that G 4 is a dynamic group and consider its

element Uvz exp[—i® - J ]. Define an arbitrary real (¢ € R)
power of U as follows:

U® = exp[—ia® - J] € G4. (45)

For example, a square root of an SU(2) matrix (in two-
dimensional representation), U = ¢2®¢, would be simply

\/5= ei®d,
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It appears that using such fractional powers one can
construct mixed Schrodinger-Heisenberg representations of
quantum evolution (which may conceivably be used for
derivation of generalized “rotating-wave approximations”).
Consider, for example, an average of operator products (not
a Lie-algebraic invariant), Cg,(t) = (W(1)|J,Jp|W(r)) with
|W(t)) = U, |¥o) = exp[—i® - J]|Wo). We can write it as

1 1

ks ks N3

Can) = WOI0; 2072 50,0, G0 Owey  a6)

or, equivalently, as
Cap(t) = (W20 Y2 0) JP (0)| w2 (1)), (47)

(W2(0) = expl—5@ - TliYo) and  J;'(0) =
e2*e) J are the wave function and operator, respectively,
in such a mixed 1/2-Heisenberg-1/2-Schrodinger
representation.

While it is admittedly unclear whether the exotic mixed
representations and our ability to raise group elements to
an arbitrary power are useful for practical calculations, the
existence of this operation brings up a more serious question
about its multivaluedness and most importantly about the
“analytical properties” of the global exponential map. This
leads to the following section.

where

2. Parametrization problem

Here we point out an important problem of parametrization
of the dynamic symmetry group that is present in both the
DSBE “single-exponential approach” [58] advocated here
and product representation methods routinely used in the
mathematical and quantum control literature [60,61,66], that
is, where U (¢) = ]_[Zzl e~i%(Ji (no summation). Namely, the
problem is to determine a domain where the dual generators
®(r) [or x(¢)] are actually defined. A naive view is that
they can be taken arbitrary d-dimensional vector fields in a
one-to-one correspondence with the driving field, b(¢), which
at any given time, ¢, is a vector of the d-dimensional vector
space, R?, associated with the underlying d-dimensional
algebra, A. This naive approach, however, cannot be entirely
correct, because the generators are supposed to parametrize
group elements, and the group G4 = ¢’ is in most cases
quite different from and in some intuitive sense “smaller
than” the Euclidean space, R¢ ~ A*. For example, the su(2)
algebra is just R? as a vector space, while its covering group,
SU(2), is topologically a three-dimensional sphere. This entire
SU(2) group is reproduced in the two-dimensional defining
representation via the elementary identity: U[®] = ¢~ 2%
I cos[ ]—i(n- or)sm[ ]. Clearly, if ®; = &, + 4wk and
ny =n, orif &, = 471k ®, and n; = —n, (with k € Z*
being positive integer), both ®; and ®, give rise to the same
actual group element. Interestingly, these twisted conditions
are much reminiscent to the Hopf fibration, §* = §3/S!, with
the modulus of dual generator ® = |®| to be assomated with
S! and its “direction,” n with S%. This example suggests that,
in fact, proper parametrization of the dynamic groups may be
far from trivial.

Let us now recall that what seems to be a standard approach
in the mathematical literature to relating the Lie group and its
Lie algebra is to define the elements of the latter as equivalence
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classes of curves passing through the identity in the former.
While the author is not qualified to provide any valuable
insight into the mathematical aspects of this old mathematical
construction, he would like to speculate that in the context
of quantum dynamical systems, a reverse procedure, if at all
possible, would have been of great interest in that the algebra
rather than the dynamic group is suggested as a primary
structure. An interesting mathematical question is whether
one can define group elements of G4 = ¢’ as equivalence
classes of the algebra elements instead along the lines of the
Hadamard construction in [73]. Let us conclude this somewhat
obscure mathematical discussion by noting that the formal
question of parametrization of dual generators may, in fact, be
of importance to physics, where proper parametrization of the
dual generators may circumvent the sign problem in certain
interacting theories; see, for example, Sec. VII B, where a dual
Hubbard-Strtonovich approach is presented for a quantum spin
model.

V. QUANTUM-TO-CLASSICAL CORRESPONDENCE

We have been calling Eq. (15) “the dual Schrodinger-
Bloch equation,” but did not explain why we have chosen
to associate Bloch’s name with the equation that seemingly
focuses on quantum dynamical systems only. We show below
that the equation is, in fact, equally applicable to describe
the corresponding classical evolution. Note that we have been
using the units where the Planck constant is set to one,
h = 1. Had we not chosen this convention for the units, we
nevertheless would still have found that in most sensible
physically motivated cases, the DSBE does not actually
include the Planck constant anyway and therefore is unchanged
in the semiclassical limit, 7 — 0. Also, it has been empha-
sized that the Lie-algebraic approach is, by construction,
representation invariant, and hence all results apply equally
well to large-dimensional representations, including the limit
L — oo, usually associated with the quasiclassical approxi-
mation. These arguments suggest, and the simple discussion
below explicitly shows, that the DSBE equation (15) is indeed
as applicable to describe classical dynamical systems as it is
to describe the corresponding unitary quantum evolution.

A. Generalized Bloch equations

In a typical nonequilibrium quantum-mechanical problem
with a well-defined Hilbert space, 7#°(L), we are interested in
calculating observables such as averages

M() = (ol J () 0) (48)
and correlation functions. For example, a general two-point
correlator can be presented as

Cltr,t) = Y ¢ (t1,0) (ol Jat) o) IY0),  (49)

k,p

where |W) € (L) is a wave function that describes an initial
state of the actual physical system and J (1) = U T(t)] 0 (1)
are Heisenberg operators acting in .7Z(L). Note that these
Heisenberg operators belong to the algebra, because

Ju(t) = exp[—iadg. 71 Ju = R, (1) ]y, (50)
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which involves nothing but commutators. On the other hand,
the observables such as the matrix elements (48) depend
on the Hilbert space and the initial conditions and are not
algebraic invariants. However, the amount of information we
“need from the Hilbert space” is very small for the purpose
of calculating (48) and reduces to the initial conditions for
the averages, M(0) = (Wo|J|1Wo). In fact, one can specify
arbitrary initial conditions without reference to any Hilbert
space (or quantum mechanics altogether), with the caveat that
an arbitrary classical choice may fail to satisfy quantization
requirements, which automatically arise in the quantum-
mechanical formulation. Given a set of initial conditions,
M(0), the full time-dependence follows

M(1) = R[®(1)IM(0), (51

where R[®(1)] = ¢ F120)] are the matrices uniquely deter-
mined by the solutions to the DSBE and therefore they
are Lie-algebraic invariants. As to correlations functions,
only averages of the commutators are expressed in terms
of Lie-algebraic invariants in the same way as M(¢). For
example, a correlator involving a commutator of two operators
Caya,(t1,12) = —i (Yol Ja, (1), Ja,(22)]10) evolves into

Car.ar(t1,2) = R (D) R (1) S M(0),  (52)

where f, ,° are the structure constants (4) of the underlying

algebra, A, and the tensor R(t) is a Lie-algebraic invariant
defined via (51). Therefore, to find the correlator, Cy,q4,, the
only required piece of information that is not representation-
invariant (and thus may depend on the Hilbert space) is the
initial conditions, M(0). Let us note here that this not generally
true for an arbitrary correlation function of type (49), which
involves operator products apart from “pure commutators,” or
more generally for any observable that is not a member of the
algebra. This can be seen by assuming the contrary and finding
a counterexample, for example, in, perhaps, the simplest
case of the two-dimensional representation of su(2) with the
“correlator” (1 |622(t) [1) = 1, which s identically equal to one
independently of evolution, while for all higher-dimensional
representations, fL2>2[fz] is not proportional to the identity
matrix and may exhibit a nontrivial time dependence.

Let us now confine ourselves to considering Lie-algebraic-
invariant dynamics in the sense defined above, that is, averages,
correlators, Berry phase, etc. The averages can be described
in terms of generalized Bloch equations that follow from the
Schrodinger equation (1), or equivalently, from the familiar
Heisenberg equations of motion,

J@) = it’@), J @),

where the Hamiltonian, H(t) = b(t) - J and the structure
constants (4) of A yield

My(t) = f,, b ()M (1), (53)

which have to be supplemented by the initial conditions, M(0).
The generalized Bloch Equations (53) are the analog to the
classical equations of motion for an arbitrary Lie algebra.
For some solvable algebras, such as the harmonic oscillator
algebra, they reduce to the Newton equations of motion in a
Euclidean space (or more precisely to Hamilton’s equations
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of motion). For the simple algebra, su(2), these are the usual
Bloch equation on the two-dimensional sphere, M = b(#) x
M. In general, Eqgs. (53) represent classical dynamics on a
nontrivial manifold with constraints, M, embedded into the
d-dimensional Euclidean space.

We have shown that the solutions to both quantum and
classical dynamics are uniquely determined by the generators,
®“(t). The classical solution is governed by the action of the
operator R in Egs. (51) or equivalently below

M(t) = e~ 07 M(0). (54)

Recall that the classical averages form a d-dimensional
vector that is acted upon by the (d x d)-dimensional matrix,
F[®(1)] = &) - jA” from the adjoint representation of the
underlying algebra. The Casimir invariants constrain the vector
of classical averages to lie within a classical manifold, M.
In most cases of physical significance, this manifold is a
symmetric Riemannian space with the metric that is uniquely
determined by the Cartan-Killing product (16). Therefore,
Eq. (54) represents action of a symmetry group, G(M), on
the classical manifold, M. Topological construction of the
classical manifold as a coset representative of the dynamic
symmetry group is discussed, for example, in Ref. [18]. For
completeness, we also review it in Appendix B, where it is
argued that in the context of the dynamical system at hand,
the Perelomov’s construction, which is slightly different from
that of Gilmore in that it allows an arbitrary reference state
to be used, is preferable and it is natural to associate the
reference state with the initial condition, |¥), so that the
classical manifold is M = G_4/H(|v)), where H(|y)) is
the maximum stability subgroup of the initial state.

Note also that the classical symmetry group is generally
expected to be smaller than the covering group generated by
the algebra, that is, G(M) C G 4 = exp(i.A). For example,
in the previously considered case of the su(2) algebra [57],
G(S8?) = SO(3) is the group of three-dimensional rotations to
which SU(2) = Gy is a double cover, SU(2)/SO(3) = Z,.

Concluding this section, we reiterate its main conclusion
that quantum-to-classical correspondence manifests itself in
that the dynamics of classical averages (54) and correlation
functions (52) are governed by the same generators, ®(t),
that determine evolution of the quantum wave function [see
Egs. (8) and (12)] and satisfy the dual Schrodinger-Bloch
Equations (15).

B. Example of quantum-to-classical correspondence for a
linearly driven Jaynes-Cummings model

Here we provide an explicit simple example that illustrates
quantum-to-classical correspondence and demonstrates the
Lie-algebraic approach in action. Consider the driven Jaynes-
Cummings Hamiltonian:

s 6o 80 r g
Hic(t) = Ap()b'b + AS(t)E + T(b 6_+b6;). (55)
Here b'/b are canonical boson creation/annihilation operators;
6, and 6+ = (6 = i6,) are the standard Pauli matrices; and
Ap(t), Ls(2), and g(¢) are arbitrary functions of time. As the

title of this section indicates, we are specifically interested
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in the linearly driven Landau-Zener problem with A (¢) =
—Ap(t) = At and g(r) = g = const. X

First note that the operator N = b'h + % commutes with
the Hamiltonian and any other operator present in Eq. (55).
That is,

[N,b'b)=[N,6,1=[N,b'6_1=[N,b6,.1=0. (56)

Therefore, we can treat the operator N as a ¢ number.
Second, let us also define the following operators:

bé, (57)

_=———)lé_, (58)
and
$3=0"b-N=—. (59)
These operators span the su(2) algebra, that is,
[£.,3 1=2%3and [55, 3.1 =43, (60)
The Hamiltonian (55) becomes
Hict) = Ap(ON + As(0)85 + 0S4 + 2. (61)

with As(t) = [As(t) — Ap(?)] and g(¢) = /2N + 1g(¢). The
first Abelian term in Eq. (61) gives rise to a trivial phase
dynamics and can be factorized away. In the specific case of
linear drive, we end up with the Landau-Zener Hamiltonian
for Hy = Hyc(t) — Ap()N:

Ay =203+ 82, +35). (62)

The evolution operator. Since the algebra of X operators
is isomorphic to su(2), we can look for solution in any
faithful representation, including the two-dimensional spin-
1/2 representation. This maps the original problem onto the
exactly solvable Landau-Zener problem in its canonic form
[74]:

i8,W(1) = [M6, + 86, 19(1), (63)

where W(¢) is a two-component spinor. Note that the symmetry

of Eq. (63) with respect to time-reversal demands that if

Wy (1) =(") is a particular solution, then W(#) =( vt’) is also
v u*,

a solution. If an arbitrary particular solution is known, then a

full S matrix can be constructed as follows [54]:

N 1 ugu; — vovt, uevr, — vyu,
Uz(t) = ———| . . . .
luol* — lvol* \ ugvy — vou™, uou™, — vyvr

where W(0) =(*°) is an initial condition that the known
vo

solution satisfies.
A particular exact solution was derived, for example, by
Lim and Berry [75] as follows:

W) = e ¥ <—i”””zDv—l[’7(I>]>
: D, [n(®)] ’

where y = g2/A, v =iy/2, and D,(z) are known parabolic
cylinder functions with well-studied asymptotes. They give

(65)
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rise, in particular, to the standard Landau-Zener exponential
transition rate as well as to nonanalytic corrections to it, as
discussed in the appendix of Ref. [75]

From Eqgs. (64) and (65) and the identity ULz(t) =
e~ 2®z06 — ) cos(%)—i(an-t?)sin(%), we can find
the representation-invariant and Hilbert-space independent
dual generators. The evolution operator for the original Jaynes-
Cummings problem therefore reads (here we restored the
trivial phase dynamics):

Ujc = exp {—i [%zzﬁ + ®5() - z“ ) (66)

Note that short of exotic initial conditions with entangled spin-
boson states, simple initial states (e.g., “spin-up” at t = 0)
will evolve in exactly the same way as they would in a pure
spin-1/2 problem with the same driving field and the presence
of the bosonic bath will manifest itself only in a rescaling of
the Landau-Zener parameter. Another way to make the same
statement is to focus on evolution of the classical averages,
which occurs via the action of the SO(3) rotation group

2N + 1172 (bl6_ + bé) )
i[2N + 1173 (b6, — bis_) | = M) = =0T M(0),
(6:/2)

(67)

where the (3 x 3) finite-rotation matrix, Fﬁu(z)[tbLZ(t)], is
given by Eq. (28). Note that the classical theory is formulated
here in terms of the averages of products of the bosonic
and spin operators, as opposed to a formulation in terms of
(b(r)) and (6(r)). The latter representation was used [76]
in the context of the Dicke model (which in effect is a
nontrivial generalization of the Jaynes-Cummings model for a
higher-dimensional representation of spin). The “semiclassical
approximation” used there involved replacing the average of
operator products with a product of averages. For certain driven
dynamics, this approximation can be shown to become reliable
when the dimensionality of the representation (or equivalently
the number of spins in the Dicke model) becomes large, but it is
the least reliable in the opposite limit of the Jaynes-Cummings
model.

VI. LIE-ALGEBRAIC APPROACH TO INTERACTING
MANY-PARTICLE QUANTUM MODELS

A. Lie-algebraic formulation of a quantum lattice model

So far we have focused on single-particle quantum dynam-
ical problems for a Hamiltonian linear in algebra generators.
We now address a more general Hamiltonian associated
with an interacting many-body quantum system. The general
system we have in mind is a lattice model with pairwise
interactions between particles associated with the sites. In the
Lie-algebraic sense, it is equivalent to having a representation
of a finite-dimensional algebra associated with each site [e.g.,
b4 for bosons, u(2) for spins, u(3) for “quarks,” etc.].

Define a discrete set, S, for example, corresponding to
a lattice in physical space. Assign to each site i € S, a
finite dimensional Lie algebra, A(i) = span { Jo(i), . .. ’jd,- @)}
and its L;-dimensional representation. Define an interact-
ing Hamiltonian as a form bilinear in generators of the
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single-particle algebras. In what follows, we focus on the case
where the single-particle entities on all sites are identical to
each other, that is, Vi € S, A(i) ~ A and the corresponding
representations are the same, L(i) = L. This is not the most
general case that can be considered [e.g., the textbook Dicke
model discussed in the previous section does not belong to this
category as it involves two different algebras, §4 and u(2), on
two “sites”]. Let us also require that the algebra A includes an
Abelian u(1) component, fo (.e., [fo, Jva] = 0), which always
can be incorporated into the theory. In what follows, we
identify it with the unity operator JL (D) Jo( j)= J.(i). Note
that for the interacting problem, it is important to specify
the physical dimension of the single-particle Hilbert space
as the many-particle algebra generated by the interacting
Hamiltonian will generally include powers, J”, which acquire
a precise meaning only given a representation. With this, let us
write down the interacting Hamiltonian in the following form:

d d
A= Y Y WO+ 5 3 D KGN
ieS a=l i,jeS a=1

(68)

where Qg is the number of sites in the discrete set, S, u“
are real parameters that may correspond to external fields or
a chemical potential, and A%(i,j) = A%(j,i) is a symmetric
interaction matrix. Note that in Eq. (68), we have excluded
from consideration interactions between different elements in
the algebra, but even with this simplifying assumption the
model (68) still remains very general and includes a huge
number of condensed-matter Hamiltonians (excluding certain
topological lattice models). For example, the hopping terms
of the Bose-Hubbard model can be written as b} b, + B;El =
2182+ p1pa, where & = (b+b)/v2and p = i(b" — b)/v2
on any site. Note that the usual density-density interactions,
5{31132132, also are bilinear in terms of generators h'h from
h4. In this Lie-algebraic sense, there are not considered any
more complicated than the hopping terms, even though writing
them down involves an expression quartic in terms of boson
creation/annihilation operators.

There are two ways one can proceed along in considering
the Hamiltonian (68). A first approach is to define new
composite operators )A(f’j” = J,(i)Jp(i), and take all nonzero
terms in the Hamiltonian or their special linear combinations
and commute them with one another, (ad’;»()?’), continuing
to do so until the algebra closes. For any finite-dimensional
representation of the single-particle algebra, A4, it is certainly
guaranteed to happen because any matrix satisfies its character-
istic equation and so the number of linear-independent powers
of X" is limited (note, however, that for infinite-dimensional
representations, e.g., for the boson case with no restriction on
their number on a site, it is not generally so). In any case,
the many-particle Hamiltonian (68) then can be viewed as
a linear form in and a member of the new, possibly huge,
many-particle algebra, Ajy, that gets generated this way.
Such an approach may be a sensible thing to pursue if the
many-particle algebra formulated in terms of some physically
relevant generators closes into a tractable form or factorizes
into simpler components. This would not be unexpected in
integrable cases, or when the rank of the many-particle algebra
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(or equivalently the number of conserved quantities or Casimir
operators) grows steadily with the “system size.” According to
the preceding “single-particle” section, as long as the many-
particle algebra remains finite-dimensional, the classical and
quantum dynamics (formulated in terms of the new generators
of A;y) are related to each other, and therefore classical
integrability and quantum integrability are in a one-to-one
correspondence as well, in the sense that the dynamics of the
averages in the many-particle algebra, (X(7)), determines the
dynamics of the operators and their commutators. Again,
the existence of such correspondence may be established via
the dual Schrodinger-Bloch Equations (15) for Ay, although
its practical application may be challenging.

B. Hubbard-Stratonovich dynamical systems

However, a general case, relevant to most ‘“real-life
Hamiltonians,” is that the many-particle algebra “explodes”
fast and often becomes infinite-dimensional. Also the integra-
bility status of such generic models is rarely known. Having
this sort of a case in mind, we proceed via a different route,
generalizing a construction of Ref. [54]. We concentrate on the
thermodynamic problem first, that is, on a time-independent
interacting Hamiltonian (68). We assume the applicability of
a path-integral representation for the following quantity:

Zu)=Tre ™, u=p+it, (69)

where the trace is over the entire L‘*s-dimensional Hilbert
space of the many-particle problem. Notice that we allow
the parameter, u, in Eq. (69) to be a complex number
such that u = 8 = 1/ T corresponds to the partition function,
while Z(u = it) reflects the property of a unitary evolution
[77] (e.g., describing a free evolution after a quench in
system parameters). Now assume that the usual path-integral
representation of the partition function, Z, applies, that is,
—i Y SBerry[Mi]

[[PMi)le &

M, (0)=My () k€S

X exp {— /M d‘L’H[Mk(‘L’)]} , (70)
0

Z(u) =

where Sperry[Mi] is a topological term on a site k, enforcing
proper commutation relations for single-particle generators,
and H[M(7)] is a Hamiltonian (68) with all operators
replaced with the corresponding coherent-state vector fields.
The integration over 7 in Eq. (70) is along a straight line in the
complex plane T = v’ + it” that goes from 0 to u = 8 + it
and the coherent-state trajectories are required to form loops,
M(0) = M(u). Note that the existence and validity of such
a path-integral representation is a “big if” from a formal
mathematical standpoint. One problem related to the previous
discussion is the choice of a classical manifold, M, where the
loop-trajectories reside. The single-particle construction does
not necessarily apply here, because it relied on single-particle
pure states, while here entangled states are possible and
generally unavoidable. This is, however, not a concern if group
action covers the entire Hilbert space (e.g., spin-1/2 systems)
and also some version of the path integral construction is more
likely to remain reliable in cases where the classical manifold
is representation-independent (e.g., the lattice bosonic models
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associated with the solvable single-particle algebra, bs). At
this point, we just assume that this is so and that classical
trajectories remain in a singly connected classical manifold
M(t) € M. Now let us focus on the interaction term in the
action

e~ = exp __Z)ﬂ(, J)/ dtM; (T)M; o(7)

i,ja

(71)

We can decouple the interaction terms for each nonzero
A, j) # 0, using the following identity:

o~ Lud-Mi M Z/OO dA
oo 27N

x exp{y/ —Zusgn A A(M, + M»)},  (72)
where A € R and 2, = u/|u| = (B +it)//B* + 12 is a unit

vector in the complex plane associated with the choice of
the time-integration contour in Egs. (69) and (70) (e.g.,
for thermodynamics, it is just equal to one, Zg = 1). If we
implement this transform (72) in the path integral (71), it
renormalizes the on-site interactions as

2 N
— g+ 2 2 M +M3)

AUis0) = A9(0L0) = A%(i,0) — % > G

jel(i)

(73)

[where the summation is over all interacting links containing
a given site, /(i)], but it does not generate any other terms. We
now can introduce another set of Hubbard-Stratonovich fields
on sites, B;(t), to decouple the remaining on-site interactions
to arrive to a representation in which for each particular
realization of the Hubbard-Stratonovich fields, A;(r) and
B;(7), the remaining path integrals over the coherent states
decouple on different sites and correspond to a single-particle
driven dynamics, where the time-evolution in the algebra is
governed by the corresponding Hubbard-Stratonovich fields.
Therefore, we can “roll back” the path-integral construction
into the Hamiltonian formulation to find the following main
general result:

zw= [ 1 [pa] [T 08 I[Teta®

a;l€links a;i esites

|4¢ (o) | B (0|
XCXP{__[ |:Zl: |Aa Z |)ua

g

(74)

where [ denotes all lattice links [ = (i,j) for which the
interaction is nonzero, i is a site index, and

zi = Tr pi(u)

is the trace of the time-evolution matrix that governs the
behavior of the single-particle quantum-dynamical system,
where the driving field depends on a particular Hubbard-
Stratonovich realization

3. p(0)p (7)) =
p(0) = 1.

H,‘(T), (75)
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We call this system of differential equations the Hubbard-
Stratonovich dynamical system. The corresponding Hamilto-
nian is generally non-Hermitian and has the form

d
Ai(r) =) (u'() — F(x) — /=2 BY (DM,

a=1

(76)

with Ff(r) = Z,z(i’j) V=2 A%t) and & defined in
Eq. (73). Note that for a generic interacting Lie-algebraic
model of type (68), the time-evolution, p, is not necessarily
unitary, nor it is associated with any real form. From the
Lie-algebraic point of view, the main difference between
the Schrodinger equation Eq. (9) and Eq. (75) is that the
latter is generally to be implemented in a complex extension
of the underlying single-particle algebra. This leads to a
number of catastrophic complications such as a breakdown
of the global exponentiation conjecture, which relied on the
compactness of the underlying dynamic group (however, as
noted in Appendix A4, certain noncompact dynamical groups
still allow global exponential map; see also Sec. VII A). In the
general case, we are forced to look for solution in a product
form (see, e.g., Wei angi Normap [60,61]) or in a mixed form
of type, p(t) = e R@J=i®®-J '\yhich may be “admissible”
in certain cases [e.g., any SL(2,C) matrix can be represented
in this form].

VII. EXAMPLES OF THE LIE-ALGEBRAIC APPROACH
TO MANY-PARTICLE LATTICE MODELS

A. Nonunitary quantum evolution on the example of the
Bose-Hubbard model

Consider the Bose-Hubbard model [78-80] on a two-
dimensional simple square lattice in equilibrium,

Hon=—t Y blbj—pod ai+UY aih; — 1),
I=(i. ) i i
(7

where ¢ is the hopping amplitude, o is the bare chemical
potential, U is the on-site repulsion, the indices i and j label
sites of the square lattice, and / = (i, j) label its links. The
bosonic creation and annihilation operators satisfy the familiar
commutation relations, [B,-, 13}] =4 ji, n = l;jl;,- is the density
operator. On every site, 7;, BT, Ei, and 1 span the harmonic
oscillator algebra.
The partition function of the model is

Zpn = f [ [1D%6ioy1e5),

where the action is

(78)

B
Spi = — /0 dr{ 3 1B (1)@ — wbi(1) + Ulbi(0)]']

—t Zl}i(r)bj(r)}.

(i.J)

(79)

Here we used the prescription for operator-ordering of
Ref. [81], which was suggested in order to reproduce the
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correct result in the single-site toy model. Therefore, u =
o + U in Eq. (79).

The conventional approach is to use Bogoliubov mean-
field or Gross-Pitaevskii analysis that lead to a reliable
mean-field description of the superfluid phase and classical
fluctuations deep in the phase. This description however
becomes unreliable on the Mott insulating side and in the
vicinity of the superfluid-to-Mott-insulator transition as well as
in the classical high-temperature liquid. To build an unbiased
approach, we notice that from the Lie-algebraic point of view,
the interaction terms are not any more complicated than the
hopping terms, as both these terms represent bilinear forms
in terms of elements of the harmonic oscillator algebra. In
accordance with the general “prescription” from the previous
section, we decouple the hopping terms first using the
following algebraic identity

_ _ 2 _

eﬁrl(bib]-i'b/bi) — d°a e—Sf[,l|<lt|2+(5131+Bld/)—t(n,+n])]

9
e/t

where [ = (i,j) denotes a nearest-neighbor link (the links
themselves form a square lattice), &, corresponds to a single
imaginary time step in the truncated path integral, and

By(7) = bi(t) — bj(1), (80)

where we adopt the convention that for the horizontal links,
[ = (i,i + X), the plus sign in Eq. (80) corresponds to the ith
site on the left, and for the vertical links, / = (i,i + §), the plus
sign corresponds to the ith site in the bottom. This yields

ZBH = / 1_[ [Dzbl(‘[)] 1_[ [Dzal(_[)] e_,l Z[ joﬁ d‘f\a1(‘[)|2
i !
/3 -
X HCXP{—/ dt[bi(r)(ar — ) bi(t)
i 0

+ {Fiobi@) +ec+U |b,-<r>|4]}, @81)

where i = o+ U — 4t and

Fi(r) = curlia(t) = ag,ivs) — Ai-z,i) + AGi+§) — Ai-3.i)
(82)

is a curl of the Hubbard-Stratonovich field on the site i, which
is a plaquette of the link lattice.

1. Hubbard-Stratonovich dynamical system for the harmonic
oscillator algebra, b4

Let us now follow the general prescription of Sec. VIB and
decouple the on-site interaction as well with another set of real
Hubbard-Stratonovich fields to arrive at the following general
expression:

o = / [T a@I[[IDVi(r)le s T & drlaor
! i

-y B4 VA(z)
xe O T nepp), (83)
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where the imaginary-time evolution operator, p;(t), satisfies
the non-Hermitian Schrodinger equation

—8,pi(v) = ([i Vi(z) — @b’ + [Fi(v)b + Fi(0)b 1} pi (1),
(84)

with the initial condition p;(0) = 1. Note that there is known
to exist an ambiguity in selecting a channel in the Hubbard-
Stratonovich transformation, as discussed in Refs. [82], [83],
and [84]. In our case this subtlety manifests itself in that we can
decompose the on-site term into linear combinations of either
bh" and bb or bth, which gives way to different single-particle
algebras.

We choose the latter decoupling, which leads to the action
in Eq. (83) that is not only local, but also corresponds to the
(nonunitary) dynamics in the b4 solvable algebra. Using the
method introduced in Sec. IV A, we find the exact solution to
Eq. (84) as follows:

pi(T) = exp[_Wi(I)I;TE]67W+.i(T)ET677]7.1‘(7)267(7—’)’ (85)

where Wi(t) = —ft +i [ dsVi(s), nii(t) = [ dsFi(s)
e, n_i(v) = [y dsFi(s)e™ "),
and vi(t) = [, ds [, ds'F;
()Fi(s") exp[Wi(s') — Wi(s)].

To analyze the path integral (83), we need to calculate the
“dynamic partition function,”

)
Tr p\l(ﬂ) — eVi(ﬁ) Z e—Wi(ﬁ)ﬂ (n|e—'l+,;(ﬂ)b76—ﬂ7.f(ﬂ)b|n>,
n=0
(86)

where |n) = (I;T)" /+/n!|0) are the usual harmonic oscillator
eigenstates. As long as this series is convergent (the interaction
U is not too large), this trace can be evaluated exactly utilizing
the Glauber coherent states and the result reads

o (B) [_ N+ (BIn-.i(B) } , (87)

Tepi(B) = 7w &P [ — WP
The exact nonperturbative action is therefore given by the
sum of these terms,

Sw= Y { nei(BIn-i(B)

v Vi) +Inll — eW/(ﬁ)]} ,
ieS

(88)

where the functions involved in Eq. (88) are defined below
Eq. (85) and we recall that F;(t) = curl;a(t), with g;(t) being
acomplex field defined on the links, V;(7) is areal field defined
on the sites. The exact partition function is a path integral over
both ¢;(t) and V;(7),

Zpy = f [ [P*a@] [IDVi(r)le St V]
! i

= J7 drld P -7 ,va(r)]' 89)
We emphasize that the full action (88) contains simple
Riemann integrals over imaginary time. Also, notice that had
the field, V;(t), been absent, the partition function (87) would
have been manifestly real and positive definite and therefore it
would not exhibit any sign problems. The presence of this field

xXe

012118-14



QUANTUM-TO-CLASSICAL CORRESPONDENCE AND ...

complicates matters in the quantum limit. However, since the
main part of the action, Sest[a, V], has been evaluated into an
explicit form and the other two terms are comparatively trivial,
the numerical analysis of the action (8§9) may be an alternative
to the conventional Monte Carlo technique.

Also note that the fields a; and V; can be shown to be related
to the superfluid and Mott order parameter, correspondingly.
Therefore, the exact nonlinear action (83) should contain a
theory of the two competing orders, as well as a complete
description of the superfluid-to-Mott-insulator quantum phase
transition. However, if the interaction becomes relatively
strong, the series (86) becomes manifestly divergent [85]
and its careful resummation is required to get a meaningful
result [86]. These complications are not unexpected because
we know that the U — oo “hardcore boson” limit gives
rise to the XY quantum spin model [87] formulated in the
complex extension of su(2), and the corresponding sl(2,C)
Hubbard-Stratonovich dynamical system is not exactly solv-
able for an arbitrary quantum fluctuation field [54]. Note here
that, interestingly, the hardcore-boson limit can be viewed
mathematically as a contraction of the infinite-dimensional
single-site Bose-Hubbard algebra,

~

b2 = span {A%,4,b",b,1,...} (90)

into su(2) as U — oo. Clearly, the dual description of the
corresponding XY model should not include fluctuations of
the site-field, V;(r), which will implement the no-double-
occupancy constraint and reduce Eq. (81) to the dual partition
function of the following type (here by “dual” we imply an
unusual form of duality in lattice link space; cf. Ref. [88],
which is also different from duality in the preceding sections
and Sec. VII B, which refers to the imaginary-time domain or
equivalently quantum fluctuations):

ZXY = /H[DZQI(T)]e_ILZlfoﬁdﬂal(f)\z (91)
1

B
X l_[ {1 + ¢ HoB exp |:2Re / dr curl; a(r):H .
; 0

Here pg is related to a uniform Zeeman magnetic field in the z
direction in the spin formulation and the curl of the link fields,
a;(1), is defined in Eq. (82).

2. Hubbard-Stratonovich dynamical system for the
infinite-dimensional single-site Bose-Hubbard algebra, )*

Finally, let us present yet another approach to analyze
Bose-Hubbard model, which appears to be especially useful
for constructing various doping-dependent mean-field approx-
imations of the theory [86]. Notice that action (81) was already
local in site-fields and we introduced the additional on-site
Hubbard-Stratonovich fields in order to reduce the problem
to a tractable dynamical system for the solvable algebra, h4.
Alternatively, we can bypass this step and present the partition
function in the following form instead:

! i
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where now the “density matrix” is governed by the following
Hubbard-Stratonovich dynamical system

—8,P;(v) = (U} —fuh;i+[F (0)bi+Fi (Db} Pi(r).  (93)

Recall that the operators, {ﬁl.z,ﬁ i ,l;i ,13;[ , i}, and their commuta-
tors do not close into a finite-dimensional algebra, but form
an infinite-dimensional algebra instead (90). Equation (93)
does not appear to be solvable in the operator form for an
arbitrary time dependence of its coefficients. However, in the
regime of strong interactions and on Mott insulating side, we
can approximate the problematic interaction term as follows,
ﬁlz ~ f;(n;(t)), which leads to a tractable self-consistent
theory that retains quantum fluctuations. An analysis of the
Bose-Hubbard model in the nonperturbative regime, including
a careful analysis of its hardcore spin limit, will be presented
elsewhere [86].

B. Dual action for a maximally frustrated quantum spin model

The single-particle part of this paper has focused on the
dual approach to real-time dynamics for closed quantum
systems in which the trajectory in the algebra, that is, the
driving field, b(r), was related to the trajectory in the compact
dynamic group, ®(¢). It is interesting to see if a similar
dual approach can find its use in the many-particle context.
The motivation for looking into this question is that a dual
description gives the solution to quantum dynamics right
away, that is, it immediately determines “the effective action,”
Sett = — »_; In[Trp;(B)], and circumvents the need to solve
the corresponding differential equations. This approach is
especially attractive in the cases where we integrate over all
possible trajectories in the algebra and hence we may expect
that such integration can be replaced by a path integral over
the dual fields with readily available quantum dynamics.

As noted in the end of Sec. VIB, the direct mapping of
the dual quantum-mechanical description based on the global
exponentiation conjecture is not always possible for a generic
Hubbard-Stratonovich dynamical system that arises in the
many-particle context. This is because the corresponding dy-
namical system (75), id;5p ' = B(1) - J, involves complex
driving fields that double the dimensionality of the real algebra
into its complex extension by adding noncompact generators.
Due to the noncompactness of the corresponding dynamical
group, there is a fundamental restriction that in this case we
cannot write down the nonunitary quantum evolution operator
as a single exponential of algebra generators; that is, generally,
0(t) # exp{—[R(z) + i®(7)] - J} and we only know that a
factorized version of the solution is available [60,61].

In some interacting many-particle models, however, the uni-
tarity of quantum dynamics persists for Hubbard-Stratonovich
dynamical systems as well. A rule of thumb for the Hubbard-
Stratonovich dynamical group to remain compact is that the
interacting model should include only repulsion (in the particle
language) or antiferromagnetic terms (in the spin language).
To provide an example, consider a quantum spin model with
Heisenberg interactions

~ . .
H:E(Za,> : o;l. (%94)
J
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As evident from (94), the model assumes all spins interacting
with each other, and therefore the geometry and dimensionality
of the lattice play no role. Note that if the number of spins is
three, N = 3, the model (94) becomes a canonic toy model to
illustrate the phenomenon of frustration. For a larger number
of spins, it remains frustrated to a maximum due to the infinite-
range antiferromagnetic interactions. Let us stress that the goal
of this section is not to solve the spin model (94), but rather to
illustrate the key features of the dual approach, which manifest
themselves in more complicated models as well.

The thermodynamic partition function of the model (94)
reads in the path-integral representation

V4 =/H[DQJ'(T)]6_Z/ Swz[Mj1-J[Y; M}(‘[)]Z’ ©5)

where M ;(7)is the unit vector-field on the Bloch sphere for the
Jjth spin, 2;(7) is the corresponding solid angle, and Swz[M]
is the Wess-Zumino topological term in the action, whose
explicit form is well known [10], but we do not need it (note
that our general construction relies only on the existence of a
path-integral). Let us now decouple the interaction term via a
single Hubbard-Stratonovich field, A(t), as follows (we omit
below an insignificant overall constant):

Z = /D3A(I)H[DQJ(T)]6—$ JFdra’(x)

=2 Swz[M;1+i foﬁ dtA(t)-M(7)

Again, we can “roll back” the partition function into its
Hamiltonian formulation to arrive at

Z= /D3A(r)e*$‘/deAZ(T)ZN[A(T)], o7

where N is the number of spins and z[A] = Tr 5(8), where the
matrix p(t) follows from the Hubbard-Stratonovich dynamical
system:

i9:p(1)p~"(v) = 3A(x) - 6,

A 98

p0) = 1. ©8)
Due to the imaginary constant in Eq. (98), the dynamical group
for this system is SU(2) and therefore the problem maps onto
unitary spin dynamics. Using the results of Sec. IV B, we can
write the solution in the dual form p(t) = exp[—%d)(r) -0],
where the dual field satisfies the dual Schrodinger-Bloch Equa-
tions (30) and thereby connects it to the Hubbard-Stratonovich
field. Furthermore, using the elementary properties of the Pauli
matrices, we find the “dynamic partition function,” z[A], in
Eq. (97) as follows:

Z[A] =2 cos[P(B)/2], 99)

which takes on a very simple “boundary form” in the dual
language. On the other hand, the Gaussian A” term in Eq. (97)
becomes nontrivial.

If we now replace the integration over the original Hubbard-
Stratonovich field with that over its dual counterpart, we can
write symbolically the following “dual” expression for the
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partition function:

Z= /D3<I>(t) det (%) eNln{Zcog[%“
0P

B i 2
X exp {—;/ dt (hz(r) sin® |:<I>;r)i|+|:<b;t)i| )} ,
0

(100)

where ®(1) = ®(t)n(t) with |n(t)| = 1 and det(g—g) denotes
a Jacobian of the transform from the original Hubbard-
Stratonovich field covering all possible trajectories in the
Euclidean space, R? to the dual field covering all trajectories
in the group, SU(2) ~ S3. Let us reiterate that in doing
this transformation, we “trade off” the simplicity of the
Gaussian term in the direct approach of Eq. (97) for the
simplicity of the quantum evolution term, TrA(8). The
price we pay for this, however, is that the former, initially
trivial Gaussian term that penalizes any fluctuations takes
on the form of a nonlinear functional [see the last term
in Eq. (100)]. Remarkably, this factor in new variables
describes a free particle moving in a three-dimensional sphere.
Indeed, if we set n = (sin @ cos ¢, sin 6 sin ¢, cosf) and w; =
rcosf, wy =rsinf cos ¢, wz = r sin6 sin ¢ cos(P/2), and
w4 = r sin@ sin ¢ sin(P/2), then the Lagrangian in Eq. (100)
becomes L = %(izz(r) sin2[¥] + [%]2) = Z?zl w? pro-
vided that » = 2/+/7 is held constant.

Finally, let us mention a curious property of the dual
representation (100): If the number of spins is even, all
terms in the partition function (100) are manifestly real and
positive definite. This is to be contrasted with the direct
Hubbard-Stratonovich representation (97), which exhibits a
“sign problem” because different trajectories of the field, A(7),
give rise to fast-oscillating terms in the path integral. This
observation suggests that the dual approach proposed here
may be a promising avenue to cure the sign problem in certain
theories.

VIII. SUMMARY

In this paper, we have put together a general Lie-algebraic
approach to analyze quantum dynamics. The punchline of
the first part of the paper is that for a large class of
nonequilibrium quantum systems, the notion of a Hilbert
space, central to the conventional Schrodinger formulation,
is somewhat of a red herring, as the choice of a specific
representation hides a more primitive Lie-algebraic structure
of the Hamiltonian. We suggest and demonstrate on a number
of explicit examples that the dual Schrodinger-Bloch equation
for the Hilbert-space-invariant generators is a conceptually
viable and practically useful alternative to the conventional
approach. Let us emphasize that this and some other results
and statements of Secs. II and III are not new and they appear
to be scattered over the literature [S8—66] on quantum control
theory [51], generalized coherent states [18], as well as in
the mathematical literature on the Lie theory and dynamical
systems [68]. In fact, the equation identical to what we
called here “dual Schrodinger-Bloch equation” appears in
the introductory chapters of many mathematical textbooks
on Lie algebras [89] in the context of the derivation of the
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Baker-Campbell-Hausdorff formula. However, this particular
form (15) of the equation is not normally assigned major
importance, perhaps because the mathematical researches
often tend to study Lie groups in their utmost generality
and it has been long known since the late 19th century
that for generic noncompact groups, a global exponential
map generally does not exist. Due to this well-known fact,
there has been no reason to study the equations of motion
for “global generators” in the case of a generic dynamical
system. On the other hand, as emphasized in this paper, a
large number of quantum-dynamical systems seem to give rise
to dynamic groups with surjective exponential map, where
quantum evolution operator allows global exponentiation from
the algebra. This observation seems to enhance the importance
of the dual approach based on the Magnus representation [58]
and in fact one may argue that whether to take the Schrodinger
equation in a Hilbert space in its canonical form (1), or its
dual Hilbert-space-invariant version (15) as a starting point
becomes a question of convention and convenience in this
case.

We further argued in this paper that the dual generators
®(¢) provide a transparent and simple way to establish
a correspondence between unitary quantum evolution and
deterministic dynamics of the corresponding classical system.
A concise summary of quantum-to-classical correspondence
is as follows: Quantum dynamics maps an initial normalized
state into a final normalized state in an L-dimensional Hilbert
space, |W(1)) = exp[—i®(r) - JL1|W(0)) C §**' C A(L),
via action of a dynamic group in the L-dimensional unitary
representation (i.e., J . above are L x L Hermitian matrices).
Classical dynamics maps the initial coordinate vector onto
a final coordinate vector in such a way that both lie within a
classical manifold, M, embedded in a d-dimensional classical
phase space, M(t) = exp[—®(¢) - f,IM(0) C M C R?, and
this dynamics occurs via action of a symmetry group in its d-
dimensional adjoint representation (i.e., }d are d x d matrices
with real entries). Quantum-to-classical correspondence is in
that the group action in both cases is governed by the same dual
generators, ®(7), and thereby determines the solution to both
the Schrodinger equation and the corresponding generalized
Bloch equations. The simplicity of this formulation raises the
question of how general it is and also concerns in relation to
chaotic systems, where quantum-to-classical correspondence
is far from clear-cut. Note that our approach hinges on the
existence of a global exponential map, which is guaranteed to
exist for a certain (limited) class of finite-dimensional algebras.
The general conditions to have such a map appears to remain
an open mathematical question under debate and even less
is known about infinite-dimensional algebras. Therefore, our
construction does not directly apply to quantum models with
infinite-dimensional algebras, nor to chaotic systems.

Let us also point out that while the dual approach does not
perform the miracle of solving differential equations that are
otherwise unsolvable in the direct formulation, it does appear
amazingly useful in constructing exactly solvable nonlinear
models. Reference [57] and Sec. IV B have demonstrated that
the method can be used to reverse-engineer a variety of exactly
solvable two-level-system dynamics and Sec. IV E put forward
a constructive five-step procedure of reverse-engineering exact
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solutions in more complicated higher-dimensional groups. In
fact, the inspection of the latter five-step procedure indicates
that it should be possible to start with a rather generic poly-
nomial P(w,t) =[] [ — w(t)]"%, which with some minor
restrictions on the functions wy(¢) and v, € Z*, can be viewed
as a secular equation of an algebra, and then build upon it a
quantum dynamical system, which would be exactly solvable
by construction.

While quantum-to-classical correspondence and the gen-
eral structure of the theory in the single-particle case (finite-
dimensional algebra) appear to be understood, it is far from
being so in the case of interacting many-particle models.
In Sec. VIA and Ref. [54], we attempted to extend the
Lie-algebraic view to a certain wide class of quantum lattice
models (excluding various topological models, where inter-
actions between different algebra generators, or equivalently
generalized “magnetic fields” and/or “spin-orbit-couplings,”
would be allowed). The key new step proposed here is to
use a generalized Hubbard-Stratonovich decomposition [54],
which maps a large, often infinite-dimensional, interacting
algebra into an ensemble of finite-dimensional single-algebra
(think single-particle) Hubbard-Stratonovich dynamical sys-
tems. One major difference between our approach and that of
conventional Hubbard-Stratonovich decomposition is that we
focus on algebra generators instead of counting the number
of creation/annihilation operators in the conventional Fock
representation. As demonstrated in Sec. VII A, this approach
is quite useful, especially for lattice models based on solvable
algebras (such as the Bose-Hubbard model built of harmonic
oscillators on lattice sites), where an arbitrary dynamical
system, unitary or nonunitary, is explicitly exactly solvable.

In conclusion, let us note that an important wide-open
mathematical question in addressing the many-particle lattice
models of type (68) is the applicability of the path-integral
approach itself [90]. In particular, a recent Letter of Wilson
and the author [81] has demonstrated that the standard normal-
ordered path-integral seems to break down even for a model
as simple as the single-site Bose-Hubbard model and while
a way out was found to correct the theory into a sensible
form, the latter non-normal-ordered construction is not based
on any solid mathematical arguments, and therefore a careful
investigation of this controversy is clearly called for.
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APPENDIX A: GENERAL PROPERTIES OF QUANTUM
DYNAMICS

The explicit form of the Hilbert-space-invariant DSBE (15)
depends critically on the structure constants of the underlying
Lie algebra. In this appendix, we make a few general remarks
about unitary evolution and the structure of Eq. (15), which can
be classified in a one-to-one correspondence with classification
of Lie algebras.
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1. Decomposition of the algebra into a standard form

There exist powerful and effective methods of decomposing
an arbitrary Lie algebra into a standard form [68]. The first step
involves factorization of A into a solvable subalgebra, 4y, and
a semisimple component, Agepsim- The Levi decomposition
[91] below exists for any finite-dimensional algebra with no
exceptions:

Ng
A= AO + Asemsim = AO + ZAV’

v=I

(A

such that [-Asem sim> -Asem sim] C -Asemsim’ [-AO’ AO] C -AO’ and
[Asemsim» Aol C Ap. By definition, the semisimple component
may be decomposed into a combination of mutually commut-
ing simple subalbegras: Agem sim = Zy;l A, , where we Nj is
the number of such simple subalgebras. Note that our ability
to actually decompose the algebra into this form and also to
extract the simple components is tied closely to our ability
to solve a generic eigenvalue problem on the algebra, which
corresponds in our case to finding the spectrum of a generic
stationary Schrodinger equation.

2. Factorization of the evolution operator for solvable algebras

We recall that a solvable Lie algebra is spanned by
the generators Ay = span {] 1(0), ) 5(?)} such that V X ¢
A, adgJ© =3, L2J\” (nilpotent algebras include a
strict inequality in the sum, that is, b > a). In the language of
the quantum dynamical problem defined by (11), including its
DSBE form (15), it implies the following: The nonequilibrium
dynamics in the solvable algebra reduces to a chain of ordinary
differential equations that can be solved one-by-one using the
graded structure. A solution can be obtained via factorization
of the evolution operator as follows. Consider the Hamiltonian,
which is a trajectory in a solvable algebra, Ay, Ho(t) =
b*(t)J©). First, solve for dynamics of J*, as follows U, (t) =
exp[—iJ” f, dt'b'(t)]. Determine new “driving fields”
for1 <a <do Y, b*OUOTOU @)=Y, b*)JO.
Note that no J fO)-dependent terms are produced in the solvable

a>1 a>1

case. Repeat the procedure by solving for dynamics of fz(o) in
the new field, U(r) = exp[—iJ; [; dt'B*(t")], etc., until the
last generator is eliminated and the problem is solved in the
following factorized form:

do
Ua(t) =[] Uato).

a=1

(A2)

The difference between this factorized solution [60,61] ob-
tained from the standard Schrodinger equation (10) and a
solution to the DSBE (15) is that the latter would determine the
evolution operator as a single exponential directly, effectively
implementing the BCH identity in the product (A2), U 4,() =
exp[—i Zj“zl CDg(t)JvéO)]. However, the solvable structure re-
mains in the DSBE as well, which should factorize into a
chain of ordinary differential equations. An example of such a
solution for the nilpotent algebra, 3, is presented in Sec. [V A.
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3. Simple-algebra components

The standard Lie-algebraic terminology becomes a bit
misleading when we consider the simple algebra components,
which, in fact, are the most complicated, because a simple
algebra is an algebra whose generators in a sense are all “tied
together” via commutators (any element in a simple algebra
is expressible as a commutator of two other elements). In this
case, the factorization trick is not useful and the corresponding
DSBE has the form of coupled matrix differential equations,
as opposed to a chain of ordinary differential equations for
solvable or nilpotent algebras. On the other hand, the simple
algebras have a very rigid structure. A rank-r simple algebra
can always be represented as an Abelian subalgebra of r-
mutually commuting generators, /; [analogous to J in su(2)]
and “raising/lowering” operators E, and E_, [analogous
to J* in su(2)] labeled by allowed root vectors in the r-
dimensional Euclidean root space and such that (i, Esy] = +
o; E,. The possible root vectors in the simple algebra are
strictly constrained and so are the commutation relations,
[E,x, Evﬂ], which gives rise to a complete classification of
the simple algebras based on the analysis of root spaces and
Dynkin diagrams, as discussed in the vast literature on the
subject (see, e.g., Ref. [68]).

If the dynamics of the simple component(s) of A have
been determined, to treat the remaining nonuniversal solvable
component, Ay, if any, becomes a straightforward exercise that
can be accomplished via the same factorization trick. Indeed,
assume that the mutually commuting evolution operators
are known explicitly, U4 (1) = exp[—i ®")(r) - 7"]. Then,
the total evolution operator can be written in the following
factorized form:

Uﬂn=[rhuﬁﬂ&mm (A3)

where the last factor, U A, (1) = exp[—i Po(2) - J (0)], satis-
fies the Schrodinger equation in “interaction representa-
tion,” 8,04, (1) = Bo(r) - 7' U4, (¢), with the rotated dynamic
fields, b (¢) determined via

T
bm{ﬂdmﬂi@hIWﬁﬁ=%mﬁ%

Note that since [A,, Ag] C Ay, the “interaction representation
form” of the Schrodinger equation closes within the solvable
component and the remaining exact solution in 4y can be
obtained from a chain of ordinary first-order differential
equations.

Therefore, classifying possible quantum dynamical systems
and the corresponding DSBE reduces to an analysis of the
corresponding equations within each of the classical algebras
li.e., Ay ~su(l + 1), B ~ s0(2] + 1), D; ~ so0(2]), and C; ~
sp(l) ] and the five exceptional algebras, G,, Fy, Eq, E7,
and Eg. These possibilities exhaust completely all possible
unitary and non-unitary quantum dynamics that can possibly
arise (modulo a nonuniversal solvable or nilpotent part, whose
solution is comparatively trivial as discussed above). Apart
from fundamental mathematical restrictions on the structure of
the simple components, physics provides further constraints:
If a problem can be formulated in a physical L-dimensional
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Hilbert space, then we must demand that the group, G 4, be
a subgroup of SU(L). Even though, as we discussed above,
quantum dynamics is completely decoupled from the Hilbert
space, the very existence of it and the unitarity requirement
provide certain constraints on types of allowed evolutions,
U(t) € G4 C SU(Lyin) (here Ly, can be taken to be the
minimal dimension of a faithful unitary representation).

4. Generalizing theory to certain infinite-dimensional
representations

Our original discussion has descended from the text-
book Schrodinger equation (1) with the assumption that the
Hamiltonian be a finite-dimensional Hermitian matrix. This
led to a finite-dimensional Lie algebra, which by construction
had a finite-dimensional faithful representation. This in turn
led to the conjecture about the global exponentiation of
the algebra onto a compact Lie group. For our purposes
motivated by applications to physics, it is the existence of a
global exponential map that is crucial, while the compactness
of the group is not germane and, in fact, there are many
theories involving infinite-dimensional representations where
it is manifestly not so (e.g., the harmonic oscillator).

The global covering problem in its full generality is an
old and very complicated mathematical question [92] and
we are in no position to comment on it here. However, we
outline a class of models, where global exponentiation should
hold irrespectively of the compactness of the dynamic Lie
group, G 4. Consider a Lie algebra, A = span{Ji, ..., J;} with
structure constants fa ,» <> which admits global exponentiation.
Form parameter-dependent linear combinations of genera-
tors, ju = ZZ:O Cab (e)fb. This leads to parameter-dependent
structure constants, f,, “(¢). Taking the singular limit, ¢ — 0,
yields in certain cases a new algebra A = lim,_, ¢ A(e) distinct
from the original algebra. This procedure is called a Lie-
algebraic contraction (a famous example of it is provided by
the Galilean group viewed as a nonrelativistic limit/contraction
of the Lorentz group as the speed of light is taken to infinity,
& = 1/c — 0). Another example more relevant to the ongoing
discussion is provided in Sec. IV C, which briefly reviews
how the harmonic oscillator algebra, b4, can be obtained via
contraction from the su(2) spin algebra plus an Abelian u(1)
component. Both u(2) and h4 allow global exponentiation,
even though the latter exponentiates in a noncompact group
with no finite-dimensional unitary representation. We want
to view this fact as a manifestation of the general conjecture
that if an algebra, A can be contracted from a Lie algebra,
A = lim,_,¢ ./2((8), that allows global exponentiation onto a
dynamic Lie group, then the former also does. In the context
of models of relevance to condensed matter, this conjecture
implies, in particular, that a variety of lattice boson models
would allow global exponentiation even in the absence of a
finite-dimensional matrix unitary representation.

APPENDIX B: CLASSICAL MANIFOLD AND PATH
INTEGRAL FOR QUANTUM DYNAMICS

The interesting question reviewed in this appendix is how
to generally obtain the classical manifold, M, where classical
motion is taking place. This is best elucidated in the context
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of the path integral formalism that can be generalized to
describe dynamics descending from a generic Lie algebra and
making use of generalized coherent states [18,93] introduced
by Perelomov [4] and Gilmore [5] for an arbitrary Lie group.

The usual path-integral construction [94] calculates av-
erages or transition amplitudes directly and therefore must
include information about the Hilbert space. This is despite
the fact that the “bulk” of the path integral calculates the
unitary evolution, which, as we just saw, is decoupled from
both the initial conditions and the Hilbert space. The first
step in building a path-integral representation is to express the
evolution operator as follows:

N
Ut) = Te 'l o jim [[e ®'®h ¢ G4, (BI)

N—o0
n=0

where f, = tn/N represent time slices. Then a particular
representation is chosen, Ty [.A], and a representation of unity
in a proper basis, for example, the overcomplete basis of
coherent states, is inserted between each pair of exponentials in
the product (B1) for the given representation. This procedure
is based on the existence of a set of states, |g) € JZ(L),
parametrized by the group, g € G 4, such that

i, = /G du(®)lg)gl. (B2)

where du(g) is a de Haar measure in the group, G 4.
Being parametrized by the continuous Lie group, the set of
states, |g), is way overcomplete. However, as emphasized
by Perelemov [4], a part of the group integration is always
redundant and in fact a more convenient parametrization
exists, still overcomplete, but where the basis runs over a
smaller manifold, M, to be identified with the manifold, where
classical dynamics is taking place for the generalized Bloch
Equations (53).

The Perelomov construction is as follows: Take an arbitrary
normalized state, |1/), in the Hibert space. In the context of the
dynamical quantum system at hand (1), the initial condition
provides the most natural choice of such a state, that is, |{() =
|W(0)). Define a subgroup H(|¥)) C G4 as a set of group
elements, heG A, such that

hivo) = "M |yy), (B3)

that is, whose action on the initial condition reduces to a
multiplication by a complex phase factor [in Eq. (B3), h =
T, (71)]. This maximum stability subgroup, H(|v)), defines a
coset M = G 4/H, which does not necessarily have a group
structure, but retains a topological structure. The coherent
states of Perelomov, |[M), are an overcomplete basis in the
Hilbert space parametrized over the manifold, M € M =
Gy/H.

As to the path integral itself, its precise form depends on
what we wish to calculate using it. A rather generic structure
is the transition amplitude between two coherent states, which
we can call a Green’s function,

M(1)=M,

GM;,Mp; 1) = / [DM(r)] exp{—i SIM(1)]}. ~ (B4)

M(0)=M;

Here M(1) € M C R? ~ A*; thatis, the generalized coherent
states lie in the manifold M embedded without crossings into
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the d-dimensional Euclidean space, R?, associated with the
underlying algebra. Since dim(G 4) = dim(A) = d and M =
G 4/ H, the dimensionality of M is always smaller than d.
Quite generally, we expect dim(M) < dim(A) — rank(.A). For
example, the Bloch sphere, M = §? = SUQ2)/U(1) ~ §3/S!
is two dimensional and is embedded in the three-dimensional
space associated with the su(2) algebra.

If we follow the usual logic in deriving the path integral and
postulate on physical grounds the continuity of the correspond-
ing trajectories on M, the explicit form of the action will take
the form S = Sy [M(#)] + Sgerry[M(?)], where the first Hamil-
tonian term is Sy [M(7)] x fot dsb(s) - M(s), and the second
Berry phase term, Spery[M(f)] for ds(M(s)|0;|M(s)), in-
corporates commutation relations and/or topological effects
such as the Wess-Zumino term in the spin path integral. The
exact form of the Berry phase action is determined by the
structure constants of the algebra. For example, for spin algebra
with f9%¢ = g% it is the Wess-Zumino term, Sperry[M(7)] =
iS fol du fot dsfebed, M, (u,s)d; My(u,s)M.(u,s), where the
dynamic magnetization, M(¢), has been assigned an auxiliary
argument, u, in a nonunique way, but such that M(0,7) = My
and M(1,s) = M(s), therefore describing a string sweeping
the sphere over time [10,95]. An interesting question is to
see if the topological terms arising from dynamics in other
compact groups may be cast in such a form, being expressed
through the structure constants of the algebra and measuring a
volume covered on the manifold in the course of a particular
realization of classical evolution.

Path-integral lore due to Feynman suggests that if we now
introduce a set of local coordinates (61, ...,0p) in M [where
D = dim M is the dimensionality of the classical manifold],
which is always possible since it is a topological space, then the
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minimization of the action with respect to 6; will reproduce the
classical equations of motion from Sec. V, that is, generalized
Bloch Equations (53), but now manifestly defined on the
classical manifold, M.

Finally, let us make the following remarks: If we con-
sider all possible Hilbert spaces associated with physical
representations of a given algebra, A, we shall obtain a set
of classical manifolds. In complicated higher-rank algebras,
such as SU(3), they may, in principle, differ in topology
and even dimensionality [18]. However, there exists perhaps
a reasonable “estimate” on their possible dimensionality
as follows: dim[G 4/ U(r)] < dim(M) < dim[G 4/U"(1)] =
d — r, where r = rank(A). All possible classical manifolds,
M, can be embedded into the Euclidean space, RY ~ A*,
which is the complete phase space of the classical problem
(53) for the averages. If we parametrize all manifolds in some
coordinate system in R¢ and use certain units along the axes,
which naturally should be related to the Planck constant, 7,
we shall obtain a variety of possible classical manifolds that
do not fill the entire phase space R?, but select the regions
of dynamics for the averages, which are allowed by quantum
mechanics. These manifolds also should respect and actually
follow from the constraints imposed by r independent Casimir
invariants defined by the algebra. For example, for su(2), the
set of allowed dynamic manifolds are the concentric Bloch
spheres in R? with the radii |[M| = g,h, % .... This is a way
to visualize the quantization constraints imposed by quantum
mechanics. On the other hand, the Bloch Equations (53) do
not include the Planck constant and are formally not restricted
by any quantization constraints. We can take arbitrary initial
conditions for M(0) in R, and even if they contradict the
quantization constraints, the classical Bloch equations would
remain solvable.
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