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Long-time behavior of many-particle quantum decay
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While exponential decay is ubiquitous in nature, deviations at both short and long times are dictated by
quantum mechanics. Nonexponential decay is known to arise due to the possibility of reconstructing the initial
state from the decaying products. We discuss the quantum decay dynamics by tunneling of a many-particle system,
characterizing the long-time nonexponential behavior of the nonescape and survival probabilities. The effects of
contact interactions and quantum statistics are described. It is found that, whereas for noninteracting bosons the
long-time decay follows a power law with an exponent linear in the number of particles N , the exponent becomes
quadratic in N in the fermionic case. The same results apply to strongly interacting many-body systems related
by the generalized Bose-Fermi duality. The faster fermionic decay can be traced back to the effective hard-core
interactions between particles, which are as well the decaying products, and exhibit spatial antibunching which
hinders the reconstruction of the initial unstable state. The results are illustrated with a paradigmatic model of
quantum decay from a trap allowing leaks by tunneling, whose dynamics is described exactly by means of an
expansion in resonant states.
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I. INTRODUCTION

The exponential decay law of unstable systems is found
across all fields of physics. In the description of nuclear
stability it was already derived in the early days of quantum
mechanics [1]. However, it is precisely quantum mechanics
that imposes deviations of this law during both the short-
and long-time decay [2–5]. In particular, short-time deviations
arise from the finite mean energy of the initial state and
are associated with the quantum Zeno effect, which was
experimentally demonstrated in Ref. [6] and can be exploited
for different applications [7]. The long-time deviations are
exhibited by any physical system, described by a Hamiltonian
ĥ whose spectrum sp(ĥ) is bounded from below. They are
generally characterized by a power-law decay 1/tα with
α > 0 [5,8]. Elusive for about half a century, the observation
of this behavior has been claimed in a recent experiment
[9]. Following the insight by Ersak, the breakdown of the
exponential law can be generally attributed to the possible
reconstruction of the unstable state from the decaying products
[4]. If this reconstruction is inhibited, the decay dynamics is
governed by an exponential law at all times. This argument
was recently sharpened in Ref. [10] where the interference
between the reconstructed and nonreconstructed state was
shown to be responsible for short-time deviations. Further, it
was noticed that the long-time deviations are indeed due to the
state reconstruction in a classical, probabilistic sense. In spite
of the abundant theoretical work on nonexponential decay,
its many-particle counterpart is, to a large extent, unexplored.
Indeed, for a many-body unstable system, the discussion of
the decay dynamics in terms of one-body observables is not
entirely satisfactory. In light of the reconstruction argument,
we might expect correlations between different particles
arising from quantum statistics and their interactions to play
a crucial role. The short-time deviations are under current
investigation and will be discussed elsewhere. In this paper,
we shall describe the multiparticle tunneling decay, paying
particular attention to the long-time nonexponential behavior
and identifying the key signatures of quantum statistics and

hard-core contact interactions. The paper is organized as
follows. In Sec. II we introduce the many-particle nonescape
and survival probabilities and discuss their computation in
bosonized and fermionized systems. In Sec. III we find their
asymptotic behavior in a paradigmatic model of tunneling
dynamics using the resonant-state expansion formalism. The
robustness of these results is discussed in Sec. IV, and their
explanation in terms of state reconstruction is provided in
Sec. V. We close with a brief summary and an outlook.

II. NONESCAPE AND SURVIVAL PROBABILITIES
OF A MULTIPARTICLE SYSTEM

Consider a many-body system described by a wave func-
tion �(x1, . . . ,xN ; t), symmetric (bosonic) or antisymmetric
(fermionic) with respect to permutation of particles. For
simplicity we consider effectively one-dimensional systems
relevant to ultracold gases under tight transverse confinement
where the transverse degrees of freedom are frozen (for this
to be the case the chemical potential and thermal energy are
to be much smaller than the transverse vibrational excitation
quantum) [11]. Let us single out a region of interest �, with
an associate projector (the characteristic function), χ�(x̂). We
define the N -particle nonescape probability as

PN (t) := 〈�|
N∏

n=1

χ�(x̂n)|�〉

=
∫

�N

N∏
n=1

dxn|�(x1, . . . ,xN ; t)|2, (1)

which is the probability for the N particles to be found
simultaneously in the � region. Indeed, PN can be extracted
from the atom number distribution p(n,t) used in full counting
statistics [12] and defined as the expectation value

p(n,t) = 〈δ(n̂� − n)〉, (2)
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where n̂� is the density operator in the subspace � and n ∈ N.
As a matter of fact

PN (t) = p(n = N,t), (3)

where for trapped ultracold gases p(n,t) can be experimentally
measured as in Ref. [13]. Hence, PN (t) is a truly multiparticle
observable which should not be confused with the nonescape
probability defined with respect to the density,

PN (t) := 〈�|χ�(x1)|�〉 =
∫

�

dx n(x,t), (4)

where

n(x,t) =
∫ ∞

−∞

N∏
n=2

dxn|�(x,x2, . . . ,xN ; t)|2 (5)

is the density profile of the cloud, which imposes no condition
on the location of the (N − 1) particles. The behavior of
PN (t), the integrated density profile which is a one-body
observable, has been the subject of recent studies dealing with
dynamics of ultracold gases [14,15].

In the description of single-particle quantum decay prob-
lems of an unstable state |ψ〉 (where for N = 1 the distinction
between P1 and P1 becomes superfluous), the nonescape
probability P1(t) often behaves in the same way than the
fidelity or survival probability S1(t) = |〈ψ(0)|ψ(t)〉|2. The
survival probability is referred to the overlap between the initial
and time-evolved state so its many-particle version simply
reads,

SN (t) := |〈�(0)|�(t)〉|2, (6)

and has recently been used to describe Loschmidt echoes in
one-dimensional interacting Bose gases [16].

A. Fermionized systems

Let us consider an atom number state of a spin-polarized
Fermi gas. Since s-wave scattering is suppressed by the
Pauli exclusion principle, and p-wave scattering is generally
weak, the Fermi wave function of the ground state is well
approximated by a Slater determinant, �F (x1, . . . ,xN ; t) =

1√
N!

detNn,k=1φn(xk; t), where φn(x,0) is the nth eigenstate of the
initial Hamiltonian, whose time evolution for t > 0 following a
quench of the trapping potential at t = 0 is denoted by φn(x,t).
Using the Leibniz formula it reads �F (x1, . . . ,xN ; t) =

1√
N!

∑
P∈SN

(−1)P
∏N

n=1 φP (n)(xn,t), where P labels a per-
mutation of the symmetric group SN with N ! elements and
(−1)P = ±1 is the signature of P . This allows us to rewrite
the N -particle nonescape probability as

P (F )
N (t)= 1

N !

∑
P,Q∈SN

(−1)P+Q

N∏
n=1

〈φP (n)(t)|χ�|φQ(n)(t)〉

= 1

N !

∑
P,R∈SN

(−1)R
N∏

n=1

〈φn(t)|χ�|φR(n)(t)〉

= detNn,k=1[〈φn(t)|χ�|φk(t)〉], (7)

where P,Q,R label different permutations and [17]

〈φn(t)|χ�|φk(t)〉 =
∫

�

dxφ∗
n(x,t)φk(x,t). (8)

Similarly, one can compute the survival probability,

S (F )
N (t) = |〈�F (0)|�F (t)〉|2

= ∣∣detNn,k=1[〈φn(0)|φk(t)〉]∣∣2
, (9)

where detNn,k=1[〈φn(0)|φk(t)〉] is the survival amplitude. The
same expressions in Eqs. (7) and (9) describe as well hard-core
bosons in one dimension, in the so-called Tonks-Girardeau
(TG) regime [18]. Indeed, their wave functions are related by
the Bose-Fermi mapping

�TG(x1, . . . ,xN ) = A(x̂1, . . . ,x̂N )�F (x1, . . . ,xN ),

through the antisymmetric unit function

A =
∏

1�j<k�N

ε(x̂k − x̂j ), (10)

with ε(x) = 1 (−1) if x > 0 (< 0) and ε(0) = 0. Note that this
operator is its own inverse and, consequently,

S (F )
N (t) ≡ S (TG)

N (t) and P (F )
N (t) ≡ P (TG)

N (t) (11)

are shared by both dual systems, as well as any other multipar-
ticle fermionized system with hard-core interactions and inter-
mediate statistics, i.e., the whole family of hard-core anyons
{�θ

HCA = A−θ�F |θ} for which the same mapping holds up to
the replacement ofA byA−θ = ∏

1�j<k�N e−i θ
2 ε(x̂k−x̂j ), where

θ is the statistical parameter [19,20].

B. Bosonized systems

For a noninteracting Bose-gas, the wave function of the
ground state is built as a Hartree product, �B(x1, . . . ,xN ; t) =∏N

n=1 φ1(xn,t), where φ1(x,t) describes the time evolution of
the single-particle ground state of the initial Hamiltonian. It
follows that the N -particle nonescape probability becomes the
N th power of the single-particle nonescape probability P1(t),

P (B)
N (t) = 〈�B |

N∏
n=1

χ�|�B〉 = P1(t)N, (12)

where the P1(t) = ∫
�

dx|φ1(x,t)|2 is referred to evolution

of the ground state φ1(x,t). Similarly, S (B)
N = SN

1 , with
S1 = |〈φ1(0)|φ1(t〉|2. These expressions apply generally to
bosonized systems, those related by the Bose-Fermi duality
to noninteracting bosons, like the so-called Fermionic Tonks-
Girardeau gas and the continuous family of anyonic extensions
[19,20]. Approaching the strictly noninteracting limit in an
ultracold atomic Bose gas is somehow challenging. The same
behavior is observed in a weakly interacting gas in the
mean-field regime, where the Hartree approximation holds,
leading to

P (BEC)
N (t) = P1(t)N, (13)

where P1(t) = ∫
�

dx|ϕ(x,t)|2 (and analogously for SN ), with
ϕ(x,t) being the solution of the Gross-Pitaevskii equation.
Nonetheless, an expanding Bose gas with finite interactions
eventually acquires a Tonks-Girardeau structure [21,22].
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III. MODEL

The study of long-time quantum decay becomes extremely
challenging or merely intractable with the usual numerical
propagation methods based of space-discrete lattices even with
the use of complex absorbing potentials in the boundaries of the
propagation box [23]. As a result, scarce analytic results [3,24]
or specific methods adapted to study quantum decay [5] are
required. We shall use the resonant-state expansion (RSE)
formalism developed by Garcı́a-Calderón and coworkers
[25,26], in combination with asymptotically exact expansions.
We choose the one-dimensional analog of the Winter model,
one of the paradigmatic models of quantum decay by tunneling
[3]. It consists of an initial boxlike potential located in the
interval [0,a] with infinite walls for t < 0 and whose right
wall, located at x = a, is weakened for t > 0 to a δ-function
potential v̂(x > 0) = η′δ(x̂ − a) of strength η = 2mη′/h̄2 >

0, while the left wall v̂(x � 0) remains infinite for all t ,
restricting the dynamics to x > 0. Its piecewise definition
allows for a nearly analytical treatment which facilitates
the study of asymptotics both a long and short times. Let
� := [0,a) be the region of interest. We shall study the time
evolution of the nth eigenstate of the initial boxlike trap,
with the general form φn(x,t = 0) =

√
2
a

sin(knx)χ�(x), with
kn = nπ

a
, n ∈ N. For t > 0, the time evolution of φn reads

φn(x,t) =
∫

�

g(x,x ′; t)φn(x ′,0)dx ′, (14)

where g(x,x ′; t) is the retarded Green’s function. The RSE
[25,26] will allow us to exploit the analytical properties of the
corresponding outgoing Green’s function G+(x,x ′; k), after
rewriting g(x,x ′; t) as

g(x,x ′; t) =
∞∑

j=1

uj (x)uj (x ′)e−ih̄k2
j t/2m

+ i

π

∫
�

G+(x,x ′; k)e−ih̄k2t/2mkdk. (15)

Here, {uj } are the resonant states with complex eigenvalues

Ej = h̄2k2
j

2m
= εj − iγj /2, lifetime h̄/γj and real energy εj ,

which obey outgoing boundary conditions at x = a and satisfy
the Schrödinger equation. The sum runs over the set of proper
complex poles kj of the scattering S-matrix lying on the fourth
quadrant of the complex k plane with Re(kj ) > |Im(kj )|. The
outgoing Green function G+(x,x ′; k) can generally be written
explicitly in terms of the regular function and the Jost function
of the scattering problem [27]. The integral term involving
it, is responsible for deviations from the exponential law
at ultrashort or very long times and we shall focus on its
contribution. The path � can be chosen as the straight line
on the complex k plane Im(k) = −Re(k), passing through the
origin k = 0 [25]. This expansion holds as long as x,x ′ ∈ �, a
limitation that can be overcome following [28], should that be
necessary. Furthermore, in the RSE of g(x,x ′; t) the sum over
resonant states decays exponentially with time. Rewriting the

countor integral as

i

π

∫
�

G+(x,x ′; k)e−ih̄k2t/2mkdk

= (1 + i)√
π

∞∑
s=1

i3s21−s

(s − 1)!
G

(2s+1)
xx ′

(
m

h̄t

)s+ 1
2

. (16)

where G
(r)
xx ′ = ∂r

kG
+(x,x ′; k)|k=0, we are ready to discuss the

long-time behavior of both PN (t) and SN (t). The long-time
asymptotics of the single-particle wave function is found
to be φn(x,t) ∼ 2(−1)1/4

π3/2
(−1)nx

n(1+ηa)2 (ma
h̄t

)3/2 + O(t−5/2). To leading
order, we find the matrix elements

〈φn(t)|χ�|φk(t)〉 ∝ (−1)n+k

nk(1 + ηa)4

(
ma2

h̄t

)3

, (17)

〈φn(0)|φk(t)〉 ∝ (−1)n+k

nk(1 + ηa)2

(
ma2

h̄t

)3/2

, (18)

so for noninteracting bosons

P (B)
N (t) ∝ S (B)

N (t) ∝ 1

(1 + ηa)4N

(
ma2

h̄t

)3N

. (19)

Hence, the exponent of the power law is linear in the particle
number N . The late exponential quantum decay preceding the
regime in Eq. (19) is governed by the resonance with longest
life time γ1, leading to a multiparticle decay rate

�N = −d lnPN (t)/dt � Nγ1. (20)

Deviations set in during the crossover

exp(−�Nt) ≈ PN
1 (21)

characterized by a nonmonotonic behavior, and hence the
onset of the PN (SN ) asymptotics is the same as in the
single-particle dynamics and can be characterized by the single
resonant criterion, which demands a small ratio R = ε1/γ1 for
deviations to occur [29].

In the case of fermions (N > 1) the first order of the
expansion vanishes due to symmetry in Eqs. (7) and (9) to
O(t−3N ), and higher-order terms are to be taken into account.
The exact expression of G+(x,x ′; k) in the 1D analog of the
Winter model can be constructed [30]. One can use it to
compute the matrix elements entering in the definition of SN

andPN and find the leading contribution for different N , which
takes the form [31]

P1 ∼ 4

3π3

1

(1 + ηa)4

(
ma2

h̄t

)3

,

P (F )
2 ∼ 3

175π10

1

(1 + ηa)8

(
ma2

h̄t

)10

,

(22)

P (F )
3 ∼ 1024

6015380679π21

1

(1 + ηa)12

(
ma2

h̄t

)21

, . . .

P (F )
N ∝ 1

(1 + ηa)4N

(
ma2

h̄t

)N(2N+1)

,

where the scaling in the last equation has been verified for
finite values of N by explicit expansion of PN . The survival
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probability exhibits the same long-time asymptotic law, the
first few terms being

S1 ∼ 8

π5

1

(1 + ηa)4

(
ma2

h̄t

)3

,

S (F )
2 ∼ 729

16π18

1

(1 + ηa)8

(
ma2

h̄t

)10

,

(23)

S (F )
3 ∼ 8000000

531441π39

1

(1 + ηa)12

(
ma2

h̄t

)21

, . . .

S (F )
N ∝ 1

(1 + ηa)4N

(
ma2

h̄t

)N(2N+1)

.

The result is that for spin-polarized fermions, and fermionized
systems such as the Tonks-Girardeau gas, the exponent of
the long-time power-law decay becomes quadratic (instead of
linear) in the number of particles N .

IV. STABILITY OF THE SCALING

The leading contribution of every term in the Leibniz
expansion of the determinant formula of the nonescape
probability goes as 1/t3, and as 1/t3/2 in the case of the
survival amplitude. The appearance of any power law other
than that in Eq. (19) results from the cancellation of this leading
term by symmetry and the contribution of higher-order terms.
The question arise as to whether the symmetry of the system
is responsible for the multiparticle scaling. The asymptotic
behavior is robust against a finite shift of the potential barrier
to a position d �= a, d < ∞, up to the numerical factors and
the role played by the initial width of the cloud a. For bosons
Eq. (19) holds with

P (B)
N ∝ S (B)

N ∝ 1

(1 + ηd)4N

(
mad

h̄t

)3N

, (24)

while in the fermionic case

P (F )
N ∝ S (F )

N ∝ 1

(1 + ηd)4N

(
mad

h̄t

)N(2N+1)

. (25)

The limit of a vanishing barrier is nonsingular and can
be solved analytically; see Appendix. The case N = 2 was
recently considered in Ref. [32]; see also Ref. [33].

V. DISCUSSION

One might be tempted to conclude that the faster long-
time decay of fermionized systems in comparison with
bosonized gases results from the higher mean energy of
the former. To appreciate that this is not the case, con-
sider an excited state of N bosons with a permanent
(per) structure and degenerate with the ground state of the
noninteracting spin-polarized Fermi gas, with one single
atom in each single-particle eigenstate, �(EB)(x1, . . . ,xN ; t) =

1√
N!

perNn,k=1φn(xk; t) = 1√
N!

∑
P∈SN

∏N
n=1 φP (n)(xn,t), where

EB denotes excited Bose gas. The corresponding nonescape
and survival probabilities can be found to be

P (EB)
N (t) = perNn,k=1[〈φn(t)|χ�|φk(t)〉], (26)

S (EB)
N (t) = ∣∣perNn,k=1[〈φn(0)|φk(t)〉]∣∣2

. (27)

The density profile of fermions and EB becomes indistinguish-
able

n(F )(x,t) = n(EB)(x) =
N∑

k=1

|φk(x,t)|2, (28)

whence it follows that these systems share the same one-body
nonescape probability derived from the integrated density
profile

P (F )
N ≡ P (EB)

N ∝ 1/t3. (29)

Nonetheless,

P (EB)
N ∝ S (EB)

N ∝ 1/t3N, (30)

at variance with

P (F )
N ∝ S (F )

N ∝ 1/tN(2N+1). (31)

Indeed, the same scaling in Eqs. (19) and (30) holds for thermal
states in the canonical ensemble, showing the independence on
the mean energy of the initial state. Moreover, these long-time
power laws are not specific of the 1D Winter model but actually
hold for all potentials in half-space, where the RSE formalism
can be applied [25,26].

We further note that from the invariance of PN and SN

under Bose-Fermi mappings, it is actually inappropriate to
attribute the different scaling to the symmetrization imposed
by quantum statistics. The different asymptotic behavior is
indeed a consequence of the hard-core interactions, which lead
to fermionization in the sense of the Bose-Fermi duality [19],
not to be confused with its dynamical counterpart [20,34]. For
polarized fermions, the effective hard-core constraint follows
from the Pauli exclusion principle. Either way, these systems
exhibits spatial antibunching which hinders the reconstruction
of the initial state in comparison with the case of bosonized
systems, those dual to noninteracting bosons and free of
hard-core interactions. An exponential decay law holds for all
times in the absence of state reconstruction [4], while a slowly
decaying asymptotic power law is favored in those bosonized
systems which tend to spatial bunching, hence facilitating
the reconstruction of the initial state localized in the trap.
Hard-core interactions lead to a faster power-law decay as a
result of spatial antibunching.

In view of the interaction effects on state reconstruction just
discussed, and the results by Taniguchi and Sawada (restricted
to free decay in half space of N = 2 fermions with both
attractive and repulsive Coulomb interactions) [32], we notice
that the stages of quantum decay can be further modified
whenever the interparticle potential is of finite range. In the
attractive case, the asymptotic power law can be slowed down
with respect to that of bosonized systems, while in the repulsive
case long-time deviations can be suppressed, extending the
regime of validity of the exponential decay law.

VI. CONCLUSIONS AND OUTLOOK

Summing up, we have analyzed the many-particle quantum
decay from a leaking trap by tunneling, characterizing the
fundamental deviations from the exponential decay law. The
long-time behavior, governed by a power law in time, exhibits
a signature of quantum statistics and short-range contact
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interactions which drastically modifies the exponent of the
power law as a function of the particle number. Hard-core
interactions lead to spatial antibunching which hinders the
initial state reconstruction and ultimately induces a faster
power-law decay than in those systems free of them. We have
also shown that this behavior is not related to the higher mean
energy of the initial state, whose effect is restricted to the
short-time dynamics. As an outlook, we point out that the
use of the exact Bose-Fermi mapping for one-dimensional
Bose gases with finite interactions [22,35] might lead to
novel asymptotic regimes of tunneling decay, not captured
by mean-field theories.

Note added. Recently, the quantum decay in the same
potential model in the two-particle case was discussed in
Ref. [36].
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APPENDIX: FREE DECAY IN THE HALF-AXIS

For a vanishing barrier η → 0, the dynamics is free in the
positive semiaxis and a fully analytical solution is available,
writing the propagator by the method of images in terms of
the free one [26]

g0(x,x ′; t) =
√

m

2πih̄t
exp

[
im(x − x ′)2

2th̄

]
(A1)

as

g(x,x ′; t) = g0(x,x ′; t) − g0(−x,x ′; t). (A2)

The free expansion in the whole space, under g0(x,x ′; t) was
discussed in Refs. [20,26,37]. Using it in the superposition
principle Eqs. (14) and (A2), introducing τ = h̄t/m, one
finds

φn(x,t) = i√
2a

∑
α,β=±1

αβ[M(βx − a,αkn,τ )

+M(βx,αkn,τ )]. (A3)

We have used the definition of the Moshinsky function

M(x,k,τ ) = ei x2

2τ

2
w(−z), (A4)

where

z = 1 + i

2

√
τ

(
k − x

τ

)
, (A5)

and w is the Faddeyeva function w(z) = e−z2
erfc(−iz)

[26].
Either using the asymptotic form of the Moshinsky function

[26] or the expansion

g(x,x ′; t) = −1 + i√
π

(
m

h̄t

)3/2

xx ′ + O(t−5/2), (A6)

one can recover for bosons the result in Eq. (19). For
fermionized systems one needs to keep higher orders in the
expansion and take into account the slowest power law, which
leads to the scaling in Eq. (22).
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