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Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit
Greenberger-Horne-Zeilinger–class states
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As stated by S. Ghose et al. [Phys. Rev. Lett. 102, 250404 (2009)], there are certain relationships between
tripartite entanglement and tripartite nonlocality for three-qubit Greenberger-Horne-Zeilinger (GHZ) class states.
In the present work, we have experimentally demonstrated the theoretical results of Ghose et al. by using both
three-photon generalized GHZ (GGHZ) states and maximal slice (MS) states with a count of ∼10/s. From the
data, we have verified the agreement of the experimental violation of the Svetlichny inequality with the one
predicted by quantum mechanics given the reconstructed density matrix. For the MS states, it is demonstrated
that the amount of violation increases linearly following the increase of the degree of tripartite entanglement. In
contrast, for GGHZ states, there is a minimal value of the violation when the degree of tripartite entanglement is
1/3. Both of the results are consist with the theoretical prediction.
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I. INTRODUCTION

Quantum entanglement plays a crucial role in quantum-
information processing and the fundamental demonstration
of quantum mechanics. Entangled states can be used to
demonstrate the contradiction between local reality (LR)
and quantum mechanics (QM) [1–4]. It is well known that
pure entangled states of two qubits violate the Bell-type
Clauser-Horner-Shimony-Holt (CHSH) inequality [5,6], and
the amount of violation increases with the degree of the
bipartite entanglement [7,8] in the state. The relationship
between tripartite entanglement and genuine tripartite
nonlocality for three-qubit pure states in the Greenberger-
Horne-Zeilinger class has been analyzed by Ghose et al. [9].
It is shown that there is unique relationship between tripartite
entanglement versus tripartite nonlocality for different types
of three-qubit entangled states, such as the generalized
Greenberger-Horne-Zeilinger (GGHZ) states and maximal
slice (MS) states. The investigation of Bell inequalities for
three-qubit states has important meanings for both the practical
applications and theoretical studies of quantum entangled
states. They are found to have promising applications in the
field of quantum communication such as dense coding [10],
quantum teleportation [11], and quantum cryptography [12]. In
addition, they are useful tools to investigate the entanglement
properties of different types of entangled states and prove the
genuine multiparty entanglement in the quantum states. Here
we focus on the Svetlichny inequality, because its violation is a
sufficient condition for the confirmation of genuine three-qubit
nonlocal correlations [9].

Experimental demonstration of the Svetlichny inequality
with three-qubit GHZ states has been reported [13]. Here,
we demonstrate the test of the Svetlichny inequality for
the whole set of three-photon GGHZ states and MS states.
With the method of quantum-state tomography, we have
reconstructed the detailed density matrices of the states and
achieved the fidelities of the sources. The average of the
fidelity is 0.84 ± 0.01, comparable to the value in recent
work [13], while our intensity is ∼10/s. With these sources,
we report the experimental testing of the Svetlichny inequality
for three-qubit GGHZ states and MS states. Furthermore, we

verify the unique relationship of tripartite entanglement versus
tripartite nonlocality for each type of these quantum states, as
predicted in Ref. [9].

II. THEORY

Svetlichny considered a hybrid model of nonlocal-local
realism where two of the qubits are nonlocally correlated, but
are locally correlated to the third. The Svetlichny inequality
is defined in terms of the expectation value of a Bell-type
operator S, which is defined as

S = A(BK + B
′
K

′
) + A

′
(BK

′ − B
′
K), (1)

where K = C + C
′

and K
′ = C − C

′
. There are three spa-

tially separated qubits, and the operator A = �a · �σ1 or A
′ =

�a ′ · �σ1 is performed on qubit 1, B = �b · �σ2 or B
′ = �b′ · �σ2 on

qubit 2, and C = �c · �σ3 or C
′ = �c′ · �σ3 on qubit 3, where �a,

�a ′ , �b, �b′ , and �c, �c′ are unit vectors, �σi are spin projection
operators, and �a ′ = (sin θa cos φa, sin θa sin φa, cos θa). If a
theory is consistent with a hybrid model of nonlocal-local
realism, the expectation value for any three-qubit state is
bounded by the Svetlichny inequality, |〈ψ |S|ψ〉| = S(ψ) � 4.

The GGHZ state |ψg〉 and the MS states |ψs〉 are defined as
follows [9]:

|ψg〉 = cos θ1|000〉 + sin θ1|111〉, (2)

|ψs〉 = 1√
2
{|000〉 + |11〉(cos θ3|0〉 + sin θ3|1〉)}. (3)

The maximum expectation values of S for the GGHZ and MS
states are respectively

Smax(ψg) =
{

4
√

1 − τ (ψg), τ (ψg) � 1/3,

4
√

2τ (ψg), τ (ψg) � 1/3,
(4)

Smax(ψs) = 4
√

1 + τ (ψs), (5)

where the three-tangle τ (ψ) quantifies tripartite entanglement
[14], with τ (ψg) = sin2 2θ1 and τ (ψs) = sin2 θ3. Ghose et al.
show theoretically that, for MS states, the amount of violation
increases linearly following the increase of the degree of

012111-11050-2947/2011/84(1)/012111(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.250404
http://dx.doi.org/10.1103/PhysRevA.84.012111


LU, ZHAO, WANG, AND CAO PHYSICAL REVIEW A 84, 012111 (2011)

TABLE I. Special angles chosen in our experiment. Several special angles θ3 = 90◦, 58◦, 40◦, and 22◦, can be derived from the experiment
data. From θ3, we can calculate θc = θc

′ = arctan(
√

2 tan θ3) = 90◦, 66.2◦, 49.9◦, and 29.7◦, respectively.

θa θa
′ θc θc

′ θd θd
′

τ (ψg) � 1/3 0 0 0 0 π 0
τ (ψg) � 1/3 π/2 π/2 π/2 π/2 π/2 π/2
MS states π/2 π/2 arctan(

√
2 tan θ3) arctan(

√
2 tan θ3) π/2 π/2

φa φa
′ φc φc

′ φd φd
′

τ (ψg) � 1/3 / / / / / /
τ (ψg) � 1/3 −π/2 0 0 π/2 π/2 0
MS states π/4 −π/4 π/4 −π/4 π/2 0

tripartite entanglement, while for GGHZ states, Smax(ψg)
initially decreases monotonically with τ , and then increases
for τ (ψg) > 1/3.

According to Ref. [9], to achieve Smax(ψg) in Eq. (4), we
could measure by the following possible sets of unit vectors:
for τ (ψg) � 1/3, �a, �a ′ , �b, �b′ , and �c are all aligned along �z, and
�c′ is aligned along −�z; for τ (ψg) � 1/3 all the measurement
vectors lie in the x-y plane with φadc = φad

′
c
′ = φa

′
d

′
c = 0,

φa
′
dc

′ = π , and φd − φd
′ = π/2, where φijk is defined as

φijk = φi + φj + φk . The theoretical values of the lower and
upper bounds are consistent with the the numerical bounds in
Ref. [15].

With respect to the MS state, a set of measurement angles
which realize Smax(ψs) in Eq. (5) is θa = θa

′ = θd = θd
′ =

π/2. tan θc = tan θc
′ = √

2 tan θ3, φadc = φad
′
c
′ = φa

′
d

′
c = 0,

φad
′
c
′ = π , φc = −φc

′ = π/4, and φd − φd
′ = π/2. The only

difference between these angles and the optimal measurement
angles for the GGHZ states in the regime τ (ψg) > 1/3 is that

�c and �c′ do not lie in the x-y plane. In our experiment, we
choose a set of special angles as Table I.

III. EXPERIMENTAL SETUP

The first step of the experiment is to generate polarization-
entangled three-qubit GHZ states. Following our previous
work [16], as shown in Fig. 1, a mode-locked Ti:sapphire laser
outputs an infrared (IR) pulse with a central wavelength of
780 nm, a pulse duration of 100 fs, and a repetition of 80 MHz,
which passes through a LiB3O5 (LBO) crystal and is convert
to an ultraviolet (uv) light pulse with a central wavelength of
390 nm. Then the uv light pulse passes through five dichroic
mirrors (DMs) which are used to separate the mixed infrared
and ultraviolet light components. Behind the five DMs, the
uv light is focused on a β-barium borate (BBO) crystal to
produce a pair of entangled photons (|H2H3〉 + |V2V3〉)/

√
2

in paths 2 and 3, while the transmitted ir light is attenuated
to a weak pseudo-single-photon source which is prepared
in the state (|H1〉 + |V1〉)/

√
2 in path 1, where H and V

represent horizontal and vertical polarization separately. Then,
photon 2 is combined with photon 1 on a polarizing beam
splitter (PBS12). By finely adjusting the delay between paths
1 and 2 to make sure photon 1 and photon 2 arrive at the
PBS12 simultaneously, the three-qubit GHZ states |ψGHZ〉 =

1√
2
(|HHH 〉 + |V V V 〉) can be obtained. In order to get a better

fidelity of the output states, we lowered the average power of

the laser to 90 mW, and the two-photon coincidence count
rate to 6 × 103 s−1. The visibility of the two-photon entangled
state is 97% in the H (V ) basis and 95% in the + (−) basis,
where |+〉 = 1√

2
(|H 〉 + |V 〉), |−〉 = 1√

2
(|H 〉 − |V 〉). We use

the maximum-likelihood technique to construct the density
matrix of the state, and from the estimated density matrix, we
calculate the fidelity characterizing the quality of the state as
F = 〈ψGHZ|ρ|ψGHZ〉 = 0.84 ± 0.01.

Next, we generate the GGHZ states and MS states based
on the setup from which we get the GHZ states. In order
to obtain the GGHZ state |ψg〉, we used a half-wave plate
(HWP1) (see Fig. 1), which is placed behind PBS1 and set at
an angle θ1. The photon 1 after HWP1 is prepared in the state
(cos θ1|H 〉 + sin θ1|V 〉)/√2. By superposing photon 1 with
photon 2 on PBS2, we can get a three-qubit state:

|ψ〉GGHZ = cos θ1|V1V2V3〉 + sin θ1|H1H2H3〉. (6)

For instance, by choosing θ1 = π/4, the output states will be
1√
2
(|HHH 〉 + |V V V 〉), which is exactly GHZ states. From

the experimental results, we calculate θ1 by following the
equality

θ1 = arcsin
√

NHHH/(NHHH + NV V V ), (7)

where NHHH and NV V V denote three-fold coincidence counts
in the basis H1H2H3 and V1V2V3. In the experiment, we have
measured the fidelity and Svetlichny inequality at nine points,
which have the proportion of NHHH /NV V V as 1:1, 1:2, 1:4,
1:6, 1:8, 1:10, 1:14, 1:20, and 1:60. This will correspond to
θ1 = 45◦, 35.3◦, 26.6◦, 22.2◦, 19.5◦, 17.5◦, 15◦, 12.6◦, and
7.4◦, respectively.

Compared to the generation of the GGHZ states, it is
more complicated to generate the MS state |ψs〉. We carry
out the following steps to produce this state. First, HWP1

is set at π/8, which will result a three-qubit GHZ state
1√
2
(|H1H2H3〉 + |V1V2V3〉). Second, we insert another half-

wave plate HWP3 in path 3, which is set at 22.5◦ and can makes
the change |H3〉 → |+3〉, |V3〉 → |−3〉. This will convert the
GHZ state into 1√

2
(|H1H2+3〉 + |V1V2−3〉). Then, we use a

polarization dependent beam splitter cube (PBC), which has
properties as follows: It transmits the horizontal polariza-
tion photons with the probability a2, while for the vertical
polarization, the transmission is b2. The PBC is a custom-
made component. The values of a and b can be adjusted
through the changing of the axis of PBC. After the PBC, the
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(a)

(b)

FIG. 1. (Color online) Scheme of the experimental setup. (a) The
setup to generate the required three-photon GGHZ state, here setting
HWP2 at 45◦. The entangled photons are generated by pumping
the uv laser beam on a BBO crystal and a pseudo-single-photon
source is prepared by attenuating the infrared light after the DM. The
average power in the experiment is 90 mW and the average twofold
coincidence is 6 × 103 s−1 in modes 2 and 3. Prism 
d1 is used to
ensure that the input photons arrive at the PBS12 at the same time.
Half-wave plate (HWP) 1 is used to prepare the single-photon state

1√
2
(|H 〉1 + |V 〉1) and HWP2 is used to prepare the desired two-photon

state. To achieve good temporal and spatial overlap at PBS12, every
output is spectrally filtered (
FWHM = 3 nm) and monitored by fibre
coupled single-photon detectors. Throughout the experiment, the
coincidence time window is set to be 5 ns, which ensures that
accidental coincidence is negligible. (b) Setup for preparing the MS
state. HWP1 is set at π/8, and the superposed three-qubit state is GHZ
state 1√

2
(|H1H2H3〉 + |V1V2V3〉). Then we set HWP3 at 22.5◦ and

can make the change |H3〉 → |+3〉, |V3〉 → |−3〉. This will convert
the GHZ state into 1√

2
(|H1H2+3〉 + |V1V2−3〉). After that we use

a polarization dependent beam splitter cube (PBC). Therefore the
state is 1√

2
[|H1H2〉(a|H3〉 + b|V3〉) + |V1V2〉(a|H3〉 − b|V3〉)], then

another half-wave plate (HWP4) setting at an angle chosen according
to the transmissions a and b is used behind PBC. Its function is as
follows: It changes a|H3〉 + b|V3〉 → |H3〉, while a|H3〉 − b|V3〉 →
cos θ3|H3〉 + sin θ3|V3〉.

state becomes 1√
2
[|H1H2〉(a|H3〉 + b|V3〉) + |V1V2〉(a|H3〉 −

b|V3〉)]. Finally, another half-wave plate (HWP4) is placed
behind the PBC and is set at a chosen angle according to the
transmissions a and b. It has the function as follows: a|H3〉 +
b|V3〉 → |H3〉, and a|H3〉 − b|V3〉 → cos θ3|H3〉 + sin θ3|V3〉,
where θ3 = arcsin [b/(a + b)]1/2. All these steps will result a
MS state as

|ψs〉 = 1√
2
{|H1H2H3〉 + |V1V2〉(cos θ3|H3〉 + sin θ3|V3〉)}.

(8)

IV. EXPERIMENTAL RESULT

In order to characterize the prepared three-qubit GGHZ
states and MS states for different θ1 and θ3, we have extracted
their density matrices by the method of overcomplete-state
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FIG. 2. Fidelity of GGHZ states and MS states. The fidelity
equals 〈ψ |ρ|ψ〉. Each experimental value is obtained by measuring
in an average time of 120 seconds. The error bar of the fidelity is
calculated by performing a 100 run Monte Carlo simulation of the
whole state tomography analysis, with Poissonian noise added to each
experimental datum in each run.

tomography [17]. This is implemented by collecting the
experimental data for 20 s for each of 216 combinations of
measurement basis {|H 〉,|V 〉,|+〉,|−〉,|R〉,|L〉}, where |R〉 =

1√
2
(|H 〉 + i|V 〉) and |L〉 = 1√

2
(|H 〉 − i|V 〉). With these data,

the maximum-likelihood technique is used to construct the
density matrix of the state. The results are shown in Fig. 2,
from which we can see that the fidelities of GGHZ states and
MS states for different θ1 and θ3 are all larger than 0.8.

Based on the generated state in Eqs. (8) and (10) and the
special chosen angles in Eqs. (6) and (7), we have measured the
Svetlichny inequality. The concrete results are given in Fig. 3.
For each measurement point, we have collected the data for
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FIG. 3. (Color online) Experimental results. The dashed line
shows the plot of Eqs. (3) and (4) for Smax(ψg) versus τ for the
GGHZ states [9]. The labeled lines show the experimental result of
Svetlichny inequalities, where the calculation value is calculated from
the state density matrix and the measured value is the measured value
of the Svetlichny operator.
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120 s. In Fig. 3, we have plotted the experimental Svetlichny
operator values and the one calculated from the estimated state
density matrices. The theoretical values are also drawn using
a dashed line in Fig. 3. From the experimental results, we can
draw three conclusions: First, the experimental violation of the
Svetlichny inequality is quite consistent with the one predicted
by quantum mechanics given the reconstructed density matrix;
second, for the MS states, the amount of violation increases
linearly following the increase of the degree of tripartite
entanglement, while for GGHZ states there is a minimal value
of the violation when the degree of tripartite entanglement is
1/3. Third, the experimental values of the violation are smaller
than the theoretical values. There are two important reasons for
the experimental nonideal data. On the one hand, the multipair
generation of entangled states contributes the main noise of
the results due to the probabilistic character of the parametric
down-conversion sources. On the other hand, the imperfection
of the linear optics elements such as the beam splitter also
makes the results nonideal.

V. CONCLUSION

In summary, in our experiment, series of GGHZ states and
MS states with high fidelity F > 0.8 have been prepared and
we have demonstrated the test of the Svetlichny inequality with
these states. Tripartite entanglement versus tripartite nonlocal-
ity in three-qubit GHZ-class states has been experimentally
reported.

There are many open experimental and theoretical ques-
tions which are worthy of investigation in the future. The-
oretically, it is interesting to generalize the relationship of
entanglement and nonlocality to the case of entangled states
with more than three qubits. Also, it is worth studying the
Svetlichny inequality for other types of state, such as the W

state [18]. Third, since there is a certain relationship of mul-
tipartite entanglement and nonlocality, we could use certain
Bell inequalities to detect genuine multiparty entanglement.
For a specific state, how to obtain the optimum witness is an
important research direction. Finally, there are various types
of Bell inequalities for three-qubit generalized GHZ states,
such as the MABK (Mermin-Ardehali-Belinskii-Klyshko)
inequality [19–21], the Gisin inequality [22], the Zukowski-
Brukner inequality [23,24], and the Svetlichny inequality [25].
In the future, it would be interesting to investigate which one
is more robust against the noise, and thus more suitable to
characterize states.
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