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Nonlocality of a single photon: Paths to an Einstein-Podolsky-Rosen-steering experiment
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A single-photon incident on a beam splitter produces an entangled field state, and in principle could be
used to violate a Bell inequality, but such an experiment (without postselection) is beyond the reach of current
experiments. Here we consider the somewhat simpler task of demonstrating Einstein-Podolsky-Rosen (EPR)
steering with a single photon (also without postselection). We demonstrate that Alice’s choice of measurement
on her portion of the entangled state can affect Bob’s portion of the entangled state in his laboratory, in a
sense rigorously defined by us and Doherty [Phys. Rev. Lett. 98, 140402 (2007)]. Previous work by Lvovsky
and coworkers [Phys. Rev. Lett. 92, 047903 (2004)] has addressed this phenomenon (which they called remote
preparation) experimentally using homodyne measurements on a single photon. Here we show that, unfortunately,
their experimental parameters do not meet the bounds necessary for a rigorous demonstration of EPR steering
with a single photon. However, we also show that modest improvements in the experimental parameters, and
the addition of photon counting to the arsenal of Alice’s measurements, would be sufficient to allow such a
demonstration.
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I. INTRODUCTION

The nonlocal properties of a single photon or particle
is of continuing interest, both theoretically [1–5] and ex-
perimentally [6–11]. It is well known, and experimentally
verified [7,10], that an incident single photon on a beam
splitter can produce an entangled state. The entanglement
is accessible [12] or extractable [13] providing there exist
other fields that can be interfered with one or both parts
of the entangled state prior to detection (as photodetection
itself is a phase-insensitive operation). In particular, strong
local oscillators (LOs) were used to perform the homodyne
tomography which verified entanglement in Ref. [10], while
it was shown theoretically that weak LOs could be used to
demonstrate Bell nonlocality [1,2]. Recently, these tests of
Bell nonlocality have been realized [11], as well as a different
test using strong LOs [10]. However, all of these experiments
relied on postselection, which can be justified on the basis of
the fair sampling assumption for inefficient photodetection in
the experiments using weak LOs [11].

The advantage of using a strong LO for homodyne mea-
surement is that the high-intensity detectors (photoreceivers)
have an efficiency close to unity, as opposed to photon
counters which typically have a much lower efficiency. In
Ref. [9], the authors used homodyne detection on a split single
photon to demonstrate “remote state preparation,” which, they
say, is a concept that “can be traced back to the seminal
work of Einstein, Podolsky, and Rosen (EPR) [14], who
have considered an entangled state of two particles with
correlated positions and momenta. By choosing to measure
either the position or the momentum of her particle, Alice
can remotely prepare Bob’s particle in an eigenstate of
either observable, thus instantaneously creating either of
two mutually incompatible physical realities at a remote
location.”

In fact, the EPR paper also considered a general pure
bipartite entangled state and a general measurement by

one party (Alice). Moreover, in the same year, Schrödinger
generalized the EPR phenomenon to more than two different
measurement settings by Alice, and dubbed it steering [15]. An
experimentally testable criterion for the original (two-setting)
EPR phenomenon was developed by Reid [16]. However, it
was only in 2007 that a completely general characterization of
EPR steering, for arbitrarily many measurements of arbitrary
type on an arbitrary bipartite state, was developed by us and
Doherty [17]. Even more recently, we and Cavalcanti and
Reid [18] have derived some broad classes of experimental
tests for EPR steering.

Einstein-Podolsky-Rosen steering is strictly easier to
demonstrate than Bell nonlocality [17], which has recently
been shown experimentally using two-photon entangled
states [19]. Thus one might expect that the experiment in
Ref. [9] did demonstrate this effect for a single photon,
without postselection (unlike the above experiment [19],
which did use postselection). The modern theory discussed
in the preceding paragraph provides the tools that allow
us, in this paper, to address this prospect. We show that,
unfortunately, the experimental imperfections of [9] did not
allow a rigorous demonstration of EPR steering with a
single photon. However, we also show that, with modest
improvements in the experimental parameters, and the ad-
dition of photon counting to the arsenal of Alice’s measure-
ments, it should be possible to perform such a demonstra-
tion.

The remainder of the paper is organized as follows. First
we model the experiment in Sec. II and then we elaborate
on the concept of EPR steering in Sec. III. We derive
appropriate EPR-steering inequalities in Sec. IV and establish
the conditions both sufficient and necessary to experimentally
demonstrate EPR steering in Sections V and VI, respectively.
In Sec. VII we compare our results with the experiments of
Lvovsky and coworkers and conclude in Sec. VIII with a
summary of our findings.

012110-11050-2947/2011/84(1)/012110(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.140402
http://dx.doi.org/10.1103/PhysRevLett.92.047903
http://dx.doi.org/10.1103/PhysRevA.84.012110


S. J. JONES AND H. M. WISEMAN PHYSICAL REVIEW A 84, 012110 (2011)

II. MODELING THE EXPERIMENT

A. The single-photon state

Consider the case where Alice and Bob share an entangled
state formed from a single photon incident on a beam splitter,

|ψχ 〉 = √
χ |0,1〉 −

√
1 − χ |1,0〉, (2.1)

where χ is a variable defining the beam splitter. For the special
case of χ = 0.5, Eq. (2.1) is a maximally entangled state.
However, in realistic experiments the preparation of the initial
photon is probabilistic, occurring with efficiency η. This means
that in practice Alice and Bob will end up with a mixed state
that has a vacuum component. That is, the state that is actually
prepared in such a situation has the form

Wχ
η = �

√
1 − η|0,0〉 � √

η
(√

χ |0,1〉 −
√

1 − χ |1,0〉). (2.2)

Here � is defined [13] by the equation �α|a〉 ≡ +|α|2|a〉〈a|.
It is this type of state that was used by Lvovsky and

coworkers to demonstrate remote state preparation (i.e., the
EPR-steering phenomenon [9]) and to violate a Bell inequality
using postselected measurement results [10]. The latter (more
recent) experiment had the better experimental parameters:
preparation of states of the form of Wχ

η with η = 0.64.
Since Wχ

η is a two-qubit entangled state, it is quite
straightforward to show that despite the introduction of the
vacuum component, the state Wχ

η always retains at least some
of its entanglement for any nonzero η (provided that χ �= 0,1).
In fact, one finds that this state possesses entanglement
(concurrence) of E = 2η

√
χ (1 − χ ) [20] (which simplifies

to E = η for χ = 0.5).
Clearly, for small η, the state possesses little entanglement,

which may limit the usefulness of Wχ
η for some quantum

information processing (QIP) tasks. For instance, we can ask
whether Wχ

η can be used to violate a Bell inequality. For two-
qubit states, there is an analytical test [21] for determining
whether the state violates the Clauser-Horne-Shimony-Holt
(CHSH) inequality, the simplest sort of Bell inequality (and
the sort tested in Ref. [10]). This test reveals that it is necessary
to have η > 1/[2

√
2χ (1 − χ )] to violate a CHSH inequality.

As one might expect, this is most easily satisfied when
the initial state possesses maximum entanglement, at χ = 0.5,
also as used in Ref. [10]. This gives a necessary condition of
η > 1/

√
2, compared to the η = 0.64 achieved in the experi-

ment. This shows that a CHSH violation without postselection
would have been impossible in this experiment. It is important
to note that η > 1/

√
2 is only a necessary condition—even

if it were achieved in the experiment this does not mean
that Bell nonlocality could have been demonstrated using
the experimental detection techniques. First, the homodyne
detection did not have unit efficiency, and second, it does
not correspond to projective measurements as are most useful
for violating a CHSH inequality. We turn in the following
subsection to describing the experimental detection scheme.

B. Homodyne detection

As discussed above, the experiments [9,10] use the high-
efficiency measurement technique of homodyne detection
with a strong LO. Einstein-Podolsky-Rosen steering is about
whether Alice’s measurements affect Bob’s state (in a sense

to be defined rigorously later); the only efficiency that matters
is Alice’s. Specifically, all we need to know is Bob’s state
conditioned on Alice’s measurement results. We can allow
for the nonunit efficiency ηh of Alice’s measurements by
introducing a finite probably 1 − ηh of photon loss at Alice’s
side prior to her measurement. Thus, we can modify the state
Wχ

η to include this loss, then proceed using the measurement
formalism for perfect efficiency homodyne detection.

We can describe loss by the two Kraus operators, corre-
sponding to losing and not losing a photon respectively,

M̂lose =
√

1 − ηh|0〉A〈1|, (2.3)

M̂keep =
√

1̂ − M̂
†
loseM̂lose = |0〉A〈0| + √

ηh|1〉A〈1|,
(2.4)

where the A subscript reminds us that this is for Alice’s mode.
Therefore, the effective state allowing for Alice’s inefficient
detection is

Wχhom
η = M̂loseW

χ
η M̂

†
lose + M̂keepW

χ
η M̂

†
keep

= [(1 − η) + (1 − ηh)η(1 − χ )]|00〉〈00|
+ ηηh(1 − χ )|10〉〈10| + ηχ |01〉〈01|
− √

ηhη
√

χ (1 − χ )(|10〉〈01| + |01〉〈10|).
(2.5)

The effect operator for homodyne measurement using a LO of
phase θ on a state with at most one photon is [22]

F̂ θ
hom(r) = exp(−r2/2)√

2π
(|0〉〈0| + rσ̂θ + r2|1〉〈1|). (2.6)

Here σ̂θ is defined as

σ̂θ = cos(θ )σ̂x + sin(θ )σ̂y, (2.7)

where the Pauli operators are defined in the usual way given
z = |1〉〈1| − |0〉〈0|, where |0〉 and |1〉 are Fock states. These
operators define a positive operator-valued measure (POVM)
normalized as

∫ ∞
−∞ drF̂ (r) = 1̂, and the measurement result

r is the suitably integrated homodyne photocurrent [22,23].
Thus if Alice makes a homodyne measurement with result r ,
Bob’s conditioned state is

ρ̃θ
B(r) = TrA

[
F̂ θ

hom(r)Wχhom
η

]
(2.8)

Here the tilde denotes an unnormalized state, the norm of
which equals the probability density for Alice to obtain the
result r .

C. Photodetection

Although the experiments [9,10] used only homodyne
detection, we will see later that, for the purposes of EPR
steering, it can be useful to also consider photon counting,
even though that typically has a far lower efficiency, ηp. In
this case loss is very easy to include in the description of the
measurement itself, which is described by the photodetection
effect operators

F̂+ = ηp|1〉〈1|, (2.9)

F̂− = 1̂ − F̂+. (2.10)
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corresponding to detecting and not detecting a photon respec-
tively. This time Bob’s conditioned states are

ρ̃
p

B(+) = TrA
[
F̂+Wχ

η

] = ℘+ 1
2 (1̂ + z+z), (2.11)

ρ̃
p

B(−) = TrA
[
F̂−Wχ

η

] = ℘− 1
2 (1̂ + z−z). (2.12)

That is, the states are mixtures of z eigenstates (Fock states),
with

℘+ = ηηp(1 − χ ),

℘− = 1 − ηηp(1 − χ ),
(2.13)

z+ = 〈F̂+ ⊗ σ̂z〉
℘+

= −1,

z− = 〈F̂− ⊗ σ̂z〉
℘−

= 2ηχ − [1 − ηηp(1 − χ )]

1 − ηηp(1 − χ )
.

III. EINSTEIN-PODOLSKY-ROSEN STEERING

A. Defining Einstein-Podolsky-Rosen steering

The concept of steering introduced by Schrödinger in
1935 [15] as a generalization of the Einstein-Podolsky-Rosen
paradox has received renewed interest in recent years (see
for example Refs. [17–19,24–27]). In particular, it was given a
formal definition [17] as a quantum information task involving
two parties, Alice and Bob. They share a bipartite quantum
state, and Alice’s task is to convince Bob that it is entangled
(assuming that it is) even though Bob does not trust her. Alice
can try to convince Bob that the state is entangled if she can
steer Bob’s system into different ensembles of states by making
different measurements on her part of the state, by virtue of the
entanglement and the EPR effect. Bob will only be convinced
however if the results he obtains could not be described by a
local hidden state (LHS) model. That is, he must rule out the
possibility that Alice is simply sending him a pure state, drawn
from some ensemble, and using her knowledge of his state to
pretend to be able to steer it. Thus we define the experiment
to be a demonstration of the EPR-steering phenomenon if and
only if (iff) Bob is convinced that the state is entangled.

We can make the above definition more formal as follows.
To connect more directly with the rest of this paper (and with
experiment) we give a slightly less general formulation than
that in Ref. [17]. Alice and Bob make measurements on their
subsystems. Because Bob trusts his own devices, there is no
necessity for his measurement to be efficient. In fact, we do
not describe his measurement process explicitly (this is the
point of difference from Ref. [17]), but simply assume that he
is able to make measurements that enable him to determine
the average of some set {B̂j } of observables (acting on his
subsystem alone) from an ensemble of repeated experiments.
In a given run, Bob decides which B̂j he is interested in, and
after receiving his subsystem, informs Alice of his choice.
Alice then makes a measurement on her subsystem, which we
can describe without loss of generality by some observable
Âj (in the case of generalized measurements, this operator
would have to be considered to act on an ancilla as well as
her subsystem). We denote Alice’s outcome by aj , a random
variable taking the eigenvalues of Âj as its possible values.
Bob can then calculate the average 〈B̂j 〉aj

of B̂j from each

subensemble corresponding to the different outcomes aj of
Alice.

Now if there is a LHS ensemble for Bob, described by
Bob-states ρξ with weights ℘(ξ ), it must be the case that, for
all j ,

〈B̂j 〉aj
=

∑
ξ

℘(ξ |aj )Tr[ρξ B̂j ] (3.1)

where ℘(ξ |aj ) = ℘(ξ )℘(aj |ξ )/
∑

ξ ℘(ξ )℘(aj |ξ ). Here
℘(aj |ξ ) is the probability that Alice (here assumed by Bob to
be trying to cheat) announces the result aj when she knows
Bob’s state to ρξ . Thus if Bob’s set of expectation values
{〈B̂j 〉aj

}, for all j and all aj , are not consistent with the form
of Eq. (3.1) then he has to admit that Alice cannot be cheating.
That is, she has demonstrated EPR steering of his state, and
the state they share must be entangled.

It was shown in [17] that there exist states that cannot violate
any Bell inequality, but which do allow EPR steering to be
demonstrated. In particular, this was the case for two-qubit
Werner states with a mixing parameter between 0.5 and 0.66.
This gives hope that the mixed states Wχ

η of interest in this
paper could also be steerable even with the experimental η =
0.64. To be useful experimentally, however, what we require
is an inequality involving measurable quantities, analogous
to a Bell inequality, that, if violated, would demonstrate the
EPR-steering phenomenon. An inequality of this nature was
introduced by Reid [16]. A rigorous derivation of a number of
broad classes of these EPR-steering inequalities was given in
Ref. [18]. In the following subsection we review the class of
inequality we require for this paper.

If a quantum state violates an EPR-steering inequality that
means that it cannot be that there exists an ensemble of local
hidden states (LHSs) for Bob’s subsystem that will explain the
observed correlations. That is, violation of an EPR-steering
inequality is a sufficient condition for demonstrating EPR
steering. In many cases we can find explicitly a LHS model
that saturates the bound of the inequality. In such cases we will
say that the the EPR-steering inequality is tight.

B. Additive convex
Einstein-Podolsky-Rosen-steering inequalities

A general approach to deriving EPR-steering inequalities is
to begin with a constraint that holds for Bob’s system given that
it is described by a quantum state. A particularly useful type
of constraint on Bob’s system for determining EPR-steering
inequalities are those constraints that take an additive, convex
form. The convexity of the constraints on Bob’s system is the
key feature that allows derivation of the inequalities.

Consider the case where Bob’s expectation values are
constrained (by the assumption that they are derived from
a quantum system) by an inequality of the following form:

∑
j

fj (〈B̂j 〉,αj ) � c, ∀αj ∈ λ(Âj ), (3.2)

where fj is a convex function of the variable 〈B̂j 〉 and λ(Âj )
are the eigenvalues of operator Âj . We term this an additive
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convex constraint. The convexity property of fj means that
inequalities of the following type must be satisfied:

fj [px + (1 − p)y,α] � pfj (x,α) + (1 − p)fj (y,α), (3.3)

for all p ∈ [0,1].
Now if Bob’s system possesses a LHS, then we know that

Bob’s expectation value given Alice’s result aj is given by
Eq. (3.1), which we rewrite as

〈B̂j 〉aj
=

∑
ξ

℘(ξ |aj )〈B̂j 〉ρξ
. (3.4)

Using this definition for 〈B̂j 〉aj
and recalling the convexity

property of fj one finds

fj (〈B̂j 〉aj
,αj ) �

∑
ξ

℘(ξ |aj )fj (〈B̂j 〉ρξ
,αj ). (3.5)

Now consider the following expectation value involving Bob’s
expectation values and Alice’s measurement results:

EAj
[fj (〈B̂j 〉aj

,aj )] =
∑
aj

℘(aj )fj (〈B̂j 〉aj
,aj ). (3.6)

Substituting for 〈B̂j 〉aj
and using Eq. (3.5) we find

EAj
[fj (〈B̂j 〉aj

,aj )] �
∑
ξ,aj

℘(ξ,aj )fj (〈B̂j 〉ρξ
,aj ). (3.7)

Taking a sum over the possible measurements j∑
j

EAj
[fj (〈B̂j 〉aj

,aj )] �
∑
ξ,aj

℘(ξ,aj )
∑

j

fj (〈B̂j 〉ρξ
,aj ),

(3.8)

and finally, using the initial constraint Eq. (3.2) gives∑
j

EAj
[fj (〈B̂j 〉aj

,aj )] � c. (3.9)

Thus we have arrived at an EPR-steering inequality, the vio-
lation of which is an experimental criterion for demonstrating
EPR steering. This is a condition that allows detection of EPR
steering of Bob’s state based on measured expectation values
for his system (conditioned on the results Alice reports), and
the results Alice reports. Note that in deriving this inequality
no assumption was made that Alice’s results derived from the
measurement of a quantum system; this is necessary for a
skeptical Bob to be convinced.

IV. EINSTEIN-PODOLSKY-ROSEN-STEERING
INEQUALITIES FOR A QUBIT

In this section we apply the general formalism of the
preceding section to derive EPR-steering inequalities for a
qubit, as describes Bob’s portion of a split single photon.

A. Linear inequality for an infinite number of measurements

A special case of additive convex EPR-steering inequaities
is that of linear inequalities. Here we consider such inequalities
for an infinite number of different observables by Bob, which
we call equatorial observables. By this we mean observables
defined by axes around the z = 0 plane of the Bloch sphere.

Hence we consider the following operator sum for Bob’s
system

Ŝplane = 1

π

∫ π/2

−π/2
dθαθ σ̂θ , (4.1)

where σ̂θ = cos(θ )σ̂x + sin(θ )σ̂y as before. We only consider
the half-plane |θ | � π/2 because θ = −θ + π and so these are
not distinct observables. We assume that for all θ , αθ ∈ {−1,1},
the same set of possible values as the measurement outcomes
aθ ∈ {−1,1} for the measurement Âθ that Alice performs
on being informed of Bob’s choice of θ . Note that while
Alice must (or at least, should, in her own best interest)
make a different measurement for each θ , Bob can determine
the average of θ for any θ by sometimes measuring x and
sometimes y (or, with more relevance to the split-single-
photon case, by making any set of tomographically complete
measurements, such as homodyne measurements [10]).

For any quantum state for Bob’s system, the expectation
value of the operator Ŝplane will be bounded,

〈Ŝplane〉 = 1

π

∫ π/2

−π/2
dθαθ 〈σ̂θ 〉 � cplane, (4.2)

where the bound is obtained by calculating

cplane = max
{αθ }λmax(Ŝplane). (4.3)

Clearly the maximum over {αθ } occurs when αθ = 1 ∀θ . Under
this condition, we simply need to perform the integral and
calculate the maximum eigenvalue, which results in cplane =
2/π and thus

〈Ŝplane〉 = 1

π

∫ π/2

−π/2
dθαθ 〈σ̂θ 〉 � 2

π
. (4.4)

Due to the additivity of the integral operation and the convexity
of the expectation value we have arrived at a constraint on
Bob’s system that takes an additive, convex form. Thus, using
the method of Sec. III B, one can derive from Eq. (4.4) the
following EPR-steering inequality

1

π

∫ π/2

−π/2
dθEAθ

[aθ 〈σ̂θ 〉aθ
] � 2

π
. (4.5)

Noting that the conditional expectation value EAθ
[aθ 〈σ̂θ 〉aθ

]
can be more simply expressed as 〈Âθ σ̂θ 〉, we can rewrite
Eq. (4.5) as

1

π

∫ π/2

−π/2
dθ〈Âθ σ̂θ 〉 � 2

π
. (4.6)

The violation of this inequality by the measured correlations
on a bipartite quantum state would be a demonstration of EPR
steering. We will address the problem that it is not really
possible for Alice to perform an infinite number of different
measurements in an experiment in Sec. IV C.

We now exhibit a simple LHS model to simulate corre-
lations of the form 〈Âθ σ̂θ 〉 around the equator of the Bloch
sphere. Due to the symmetry of the measurement arrangement,
a suitable ensemble would consist of an infinite number of pure
states |ξ 〉 on the z = 0 unit circle. For any measurement axis
θ , the ensemble can be partitioned into two even halves as
shown in Fig. 1. When Bob reveals his axis θ , then, Alice
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FIG. 1. (Color online) An infinite LHS ensemble on the equator
of the Bloch sphere. If the measurement axis is in the direction of the
black vector, then Alice would report results −1 or +1 depending on
the state she has sent in the aligned (blue solid circles) or antialigned
(red circles) subensemble.

could report the +1 result if she sent a pure state closer to the
positive measurement axis, or −1 result for a state closer to
the negative axis. It is easy to verify that such a scheme would
give the correlation 〈Âθ σ̂θ 〉 = 2/π . Thus the inequality (4.6)
is tight.

B. Nonlinear Einstein-Podolsky-Rosen-steering inequality

As discussed in Ref. [18], nonlinear EPR-steering in-
equalities are in general better able to detect experimental
steerability than simple linear inequalities. As we will show,
that is the case here. In order to derive the inequality we
make use of the linear inequality of the previous section
involving equatorial observables, and augment it with a single
additional nonequatorial Bob-observable, z. Once again, this
involves no more extra work on Bob’s behalf, if he is already
making a set of tomographically complete measurements,
such as homodyne measurements [10]. For Alice, it is in
her best interest now to make a different measurement, Âz,
whenever Bob tells her that in this run he is interested in
z. For simplicity we assume that Âz also has two possible
outcomes: az ∈ {−1,1}. We show below, however, that even if
Alice makes no measurement in this case, and merely always
reports az = +1 (for instance), the inequality we derive is still
stronger in general than the preceding one, Eq. (4.6).

Consider the following function

f ({〈σ̂θ 〉},〈σ̂z〉) = 1

π

∫ π/2

−π/2
dθaθ 〈σ̂θ 〉 − 2

π

√
1 − 〈σ̂z〉2,

(4.7)

which, as shown in Appendix A, is a convex function of its
arguments and satisfies f � 0 ∀ aθ ∈ {−1,1},∀ ρ. Therefore,

the constraint f ({〈σ̂θ 〉},〈σ̂z〉) � 0 defines an additive convex
constraint on Bob’s system and using the approach of Sec. III B
leads to the nonlinear EPR-steering inequality

1

π

∫ π/2

−π/2
dθEAθ

[aθ 〈σ̂θ 〉aθ
] − 2

π
EAz

[√
1 − (〈σ̂z〉az

)2

]
� 0.

(4.8)

Here Az (Aθ ) denotes the measurement Alice performs (or,
as far as Bob is concerned, purports to perform) when Bob
reveals that he has measured z (θ ). Noting that the first term is
the same as Eq. (4.5), and rearranging the inequality gives

1

π

∫ π/2

−π/2
dθ〈Âθ σ̂θ 〉 � 2

π
EAz

[√
1 − 〈σ̂z〉2

az

]
. (4.9)

Finally, using our assumption that Alice’s observable Âz is
dichotomic, we can write out the conditional expectation on the
right-hand side explicitly to obtain the nonlinear EPR-steering
inequality

1

π

∫ π/2

−π/2
dθ〈Âθ σ̂θ 〉 � 2

π

[
℘+

√
1 − z2+ + ℘−

√
1 − z2−

]
,

(4.10)

where ℘± is the probability that Alice obtains results ±1 and
z± = 〈z〉± are Bob’s respective conditional expectation values.

In general, the nonlinear bracketed term on the right-hand
side of Eq. (4.10) will be less than 1 and hence this side
of the inequality will be less than 2/π . Thus, as expected,
the nonlinear EPR-steering inequality that incorporates an
additional measurement setting, will be generally easier to
violate than Eq. (4.6). Note that even if Alice’s observable is
trivial (Âz = 1̂), so that there is only one result (℘+ = 1) we
obtain

1

π

∫ π/2

−π/2
dθ〈Âθ σ̂θ 〉 � 2

π

√
1 − Tr [zρ]2, (4.11)

where ρ is Bob’s unconditioned reduced state. The right-hand
side here is still less than that of Eq. (4.6), except in the case
that Tr[zρ] = 0. This is the only case where Eq. (4.10) is not
stronger than Eq. (4.6).

This example is similar to the so-called inept state example
of Ref. [28] that suggests the following LHS model for the
correlations considered here. Consider two rings of pure states
on the Bloch sphere centered around the z axis, at z = z− and
z = z+. The ensemble is weighted so that it is invariant under
rotations around the z axis, and so that the weighting of the
upper (lower) ring is given by ℘+ (℘−). By construction, such
an ensemble will produce the correct correlations when Bob
measures σ̂z, if Alice announces az = +1 (az = −1) when the
LHS state she has sent is in the upper (lower) ring. Thus,
we simply need to determine how well such an ensemble
simulates correlations of the form 〈Âθ σ̂θ 〉. A straightforward
calculation shows that the radii of the rings of pure states are
given by (1 − z2

±)1/2. Taking the average over half of each ring
centered around the measurement axis of interest results in the
integral of Eq. (4.6), multiplied by each ring’s radius. Taking
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the weighted average, this LHS model can simulate a value for
the left-hand side of Eq. (4.10) equal to

2

π

(
℘+

√
1 − z2+ + ℘−

√
1 − z2−

)
. (4.12)

This proves that this ensemble of LHSs is optimal for these
observables, and hence that Eq. (4.10) is a tight inequality.

C. Finite-setting inequality

The inequalities derived in the previous subsections assume
that Alice can make an infinite number of measurements: a
different Âθ for each value of θ tested by Bob. In practice, a
realistic experiment will be constrained to some finite number
of measurement settings, such as a finite set of θ values. One
might expect that using a finite number of settings will make
it more difficult to demonstrate EPR steering. While this is
indeed the case, we show that we can modify Eq. (4.10) to
account for this, and that the increase in difficulty is small
even for moderate values of n.

Consider the case analogous to Sec. IV A but with n evenly
spaced equatorial measurements, which implies that the {θi}
are separated by π/n. Assuming a LHS model for Bob’s
subsystem ensures

〈
Ŝ

(n)
plane

〉 = 1

n

(n)∑
i=1

αi〈σ̂θi
〉 � f (n), (4.13)

where the bound is a function of the number of measurement
axes and is given by

f (n) = max
{αi }λmax

(
Ŝ

(n)
plane

)
. (4.14)

Following the approach used in the examples of Ref. [19],
one finds that the eigenvectors associated with the maximum
eigenvalues obtainable for Ŝ

(n)
plane occur along the direction

of the measurement axes and a direction midway between
measurement axes for n odd and even respectively. Calculating
these eigenvalues for the first few small n allows one to obtain
by induction

f (n) = 1

n

(∣∣∣sin
(nπ

2

)∣∣∣ + 2
�n/2∑
k=1

sin
[
(2k − 1)

π

2n

])
.

(4.15)

Proceeding analogously to Sec. IV A, the constraint Eq. (4.13)
results in the EPR-steering inequality

1

n

n∑
i=1

〈Âi σ̂θi
〉 � f (n). (4.16)

We can also incorporate an additional measurement axis
orthogonal to the n equatorial measurements, analogously to
the proof in Sec. IV B. We find that Eq. (4.10) is modified
to

1

n

n∑
i=1

〈Âi σ̂θi
〉 � f (n)

[
℘+

√
1 − z2+ + ℘−

√
1 − z2−

]
. (4.17)

Also following the method of Sec. IV B it is easy to see that
the a two-ring LHS construction is optimal, but now with each

FIG. 2. (Color online) Finite LHS ensembles around a circular
plane. In each case the black vectors denote n measurement axes,
and the colored dots denote pure states. Plots (a) and (c) correspond
to the first two even cases, n = 2 and n = 4, respectively and have
optimal ensembles of states lying midway between the measurement
axes. Plots (b) and (d) correspond to the first two odd cases, n = 3
and n = 5, respectively and have optimal ensembles aligned with
the measurement axes. In each case the blue (solid) and red coloring
of the pure states denotes the partitioning of the ensemble that Alice
would use if the y axis was the measurement of interest for a particular
run of an experiment.

ring containing a finite number of evenly spaced pure states. It
follows on average the finite ensembles will predict

1

n

n∑
i=1

〈Âi σ̂θi
〉 = g(n)

[
℘+

√
1 − z2+ + ℘−

√
1 − z2−

]
. (4.18)

To prove that Eq. (4.17) is tight it remains for us to prove that
the functions g(n) are the same as the f (n) of Eq. (4.15) for the
optimal arrangement for the pure states in the LHS ensemble.

Consider the first few even and odd examples for n as
shown in Fig. 2 (in the diagram a single ring is shown, but
the optimal arrangement of LHSs will be the same for both
rings). For the first even cases, n = 2 and n = 4, the ensembles
that minimize g(n) have pure states lying midway between the
measurement axes (this reflects the directions of the maximum
eigenvectors of Ŝ(2) and Ŝ(4)). For the first odd cases, n = 3
and n = 5, the optimal ensembles have pure states aligned
with the measurement axes (reflecting the directions of the
maximum eigenvectors of Ŝ(3) and Ŝ(5)). Partitioning each of
these ensembles in half (as indicated in Fig. 2) leads to g(2) =
1/

√
2, g(3) = 2/3, g(4) ≈ 0.6533, and g(5) ≈ 0.6472. It is

straightforward to show that these results generalize as one
would expect for larger n (with ensembles of 2n pure states
off axis per ring for even n, and 2n pure states on axis per ring
for odd n). Moreover, g(n) = f (n) for all n. Thus, Eq. (4.18)
saturates the right-hand side of Eq. (4.17) and so the latter is
indeed a tight EPR-steering inequality.

It can be seen in Fig. 3 that the function f (n) quickly
approaches its asymptotic value. Hence, it takes relatively
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FIG. 3. (Color online) The finite correction factor f (n) for some
small values of the number of equatorial measurements used, n.
We see that f (n) quickly approaches the asymptotic value of 2/π

(indicated by the red dotted line).

few equatorial measurement settings to arrive at an EPR-
steerability criterion that works almost as well as the ideal
criterion, which incorporates an infinite number of measure-
ment settings. Note that in the limit n → ∞, f (∞) → 2/π

and Eq. (4.17) is equivalent to Eq. (4.10).

V. EINSTEIN-PODOLSKY-ROSEN STEERING OF A
SINGLE PHOTON

A. Evenly split single-photon state

We will now apply the EPR-steering inequalities derived
in the preceding section to the single-photon state introduced
in Sec. II A, with Alice’s measurements constrained (as in
experiment) to homodyne detection as introduced in Sec. II B,
supplemented by photon counting as introduced in Sec. II C.
We begin by considering the case where χ = 0.5, that is, when
the intended initial state Wχ

η is maximally entangled in the limit
η → 1.

Consider the most general case using the nonlinear EPR-
steering inequality defined in Eq. (4.17), as this allows for
both homodyne (Aθ ) and photodetection (Az) measurements.
We must take into account the homodyne measurement inef-
ficiency when evaluating the left -hand side of the inequality;
the photodetection inefficiency will manifest in the right-hand
side of the inequality.

Thus we wish to calculate the maximum value of
1
π

∫ π

0 dθ〈Âθ σ̂θ 〉 allowed by quantum theory, given that Alice
is restricted to homodyne measurements. However, this may
be simplified by noting that in the state Wχ

η , for every angle θ

the maximum value of the correlation will be obtained when
Alice chooses the phase of the local oscillator to be θ , and
reports a result aθ = a(r), where a(r) is negatively related to
her homodyne measurement result r . This will result in the
same value for the correlation function for every direction.

Hence the correlation function becomes independent of θ and
we have

1

π

∫ π/2

−π/2
dθ〈Âθ σ̂θ 〉 = max

a(r)

(∫
drTr[ρ̃0

B(r)σ̂xa(r)]

)
, (5.1)

where ρ̃0
B(r) is Bob’s conditioned state defined in Eq. (2.8),

evaluated for θ = 0, and the function a(r) is Alice’s reported
result. Recall that in deriving the inequality in Eq. (4.17) we
assumed that a(r) ∈ {−1,1}, but apart from that restriction,
Alice is free to report any function of her result r . Using
Eq. (2.8), Eq. (5.1) evaluates to

max
a(r)

(
−η

√
ηh

∫ ∞

−∞
dr

r√
2π

exp(−r2/2)a(r)

)
. (5.2)

The maximum over a(r) occurs when Alice chooses a(r) =
−sgn(r) and thus we have

1

π

∫ π

0
dθ〈Âθ σ̂θ 〉 =

√
2

π
η
√

ηh. (5.3)

Recall that η is the efficiency of production of the single
photon, while ηh is the efficiency of Alice’s homodyne
measurement. It is easy to verify that exactly the same equation
holds when the left-hand side of Eq. (5.3) is replaced by a finite
sum, as in the left-hand side of Eq. (4.17).

Now we evaluate the right-hand side of Eq. (4.17) for the
case when Alice conditions using inefficient photodetection.
The quantities in the right-hand side of Eq. (4.17) were already
determined in Sec. II C. Substituting these in with χ = 1/2,
we find that Eq. (4.17) will be violated iff√

2

π
η
√

ηh > f (n)
√

η(2 − η − ηηp). (5.4)

In the limit n → ∞, this can be rearranged to give the simple
inequality

η >
4

2 + πηh + 2ηp

. (5.5)

This is a sufficient condition on the three parameters (η,ηh,ηp)
for experimental demonstration of EPR steering. It may be
visualized by a contour plot as shown in Fig. 4. The contours
show the required minimum value of η, as a function of ηh

and ηp. Note that for low measurement efficiencies no contours
are plotted as the preparation efficiencies required according
to Eq. (5.5) would be unphysical (η > 1). Note also that
even without photodetection (ηp = 0), it would be possible
(in principle) to satisfy this sufficient condition provided ηh

and η are high enough. But with ηh = 0 the inequality can
never be satisfied, and this is because it is impossible for Alice
to demonstrate EPR steering with a single measurement.

B. Unevenly split single-photon state

The above analysis generalizes easily to the case of an
unevenly split photon Wχ

η , where χ can take any value between
0 and 1. The specific cases reported in [9] were χ = 0.5
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FIG. 4. (Color online) The pale contours indicate the value of
η required to demonstrate steering with inefficient homodyne and
photodetection measurements. For lower measurement efficiencies
there are no contours, as it would require unphysical values of η (i.e.,
η > 1) to satisfy the steerability criterion. The black contour (η =
0.64) marks the preparation efficiency limit achieved experimentally
in [10].

and χ = 0.92. We predict that the EPR-steering inequality
Eq. (4.17) can be violated if

2

√
2

π
η
√

ηhχ (1 − χ ) > f (n)
√

4ηχ [1 − ηχ − ηηp(1 − χ )].

(5.6)

Retaining this time a fully general result by not taking the
number of Alice’s homodyne settings to infinity, we find the
following sufficient condition:

η

[
χ + (1 − χ )

(
ηp + 2

π

ηh

[f (n)]2

)]
> 1. (5.7)

In Sec. VII we give examples showing when Eq. (5.7) with
finite settings could be satisfied in a real experiment.

VI. NECESSARY CONDITION FOR
EINSTEIN-PODOLSKY-ROSEN STEERING

While the sufficient condition of Eq. (5.7) is a useful
guide to experiments, failure to satisfy this condition (in the
limit n → ∞) does not mean that it would be impossible to
demonstrate EPR steering with the state Wχ

η using homodyne
detection (with arbitrary phase) and photon counting, with
efficiencies ηh and ηp, respectively. This is because there
may exist a better EPR-steering inequality than the one
(4.17) we have derived, that is, an inequality that can be
violated in a larger region of parameter space. Perhaps
surprisingly, however, we can derive a necessary condition on
the experimental parameters χ , η, ηh, and ηp for EPR steering
to be demonstrated that makes no assumption on the inequality
to be tested.

First, we consider the basic fact that in order for EPR
steering to take place, Alice must be able to perform at least
two distinct measurements. In an experimental setup, if an
imperfectly prepared (with efficiency η) single photon is mixed
with the vacuum at a χ : (1 − χ ) beam splitter, then we arrive
at the situation where Alice and Bob share the state Wχ

η . In
such an experiment, Alice is assumed to receive on average a
proportion (1 − χ )η of the light from the initial single photon.
We now consider what Alice could do with this light.

It is central to the definition of EPR steering that Bob cannot
trust Alice. Thus he should not simply believe her if she says
that her photodetectors and homodyne photoreceivers have
efficiency ηp and ηh respectively. It could be that she actually
has perfect detectors. Let us assume that to be the case. It
follows that if the inequality

(1 − χ )ηηp + (1 − χ )η2ηh � (1 − χ )η (6.1)

is satisfied then Alice could use a complicated scheme
to partition her fraction of the light and simultaneously
perform photodetection and homodyne measurements of two
orthogonal phases, with efficiencies ηp, ηh, and ηh. This is
demonstrated in Fig. 5 (for the case where the inequality is
saturated)by showing the proportion of the original single
photon, which Alice is able to send to each of her (assumed
perfect) detectors. Now homodyne measurements of two
orthogonal phases with efficiency ηh enable Alice to simulate
the result of a homodyne measurement at any phase θ , by
suitably combining the two results, with the same efficiency
ηh. Thus this setup allows Alice to perform all of her possible
measurements in a single measurement (i.e., with no change of
the apparatus). By definition, however, a single measurement
by Alice cannot demonstrate EPR steering. Therefore, it is
necessary that Eq. (6.1) be violated in order for EPR steering
to be possible.

It is obvious that Eq. (6.1) reduces to the much simpler
condition ηp + 2ηh � 1. We write the condition as in Eq. (6.1)
to more easily relate conceptually to the next inequality we
derive, which is not as straightforward, and which is a stronger
inequality. Recall that a nontrusting Bob is the concept at the
heart of the definition of EPR steering. Such a Bob would
know that a clever Alice could obtain a larger fraction of the
light from the initial single photon than the (1 − χ )η shown
in Fig. 5. Rather, a devious Alice may obtain access to the
preparation of the initial single photon and recover the fraction
1 − η of the light from this state that was thought to be lost in
the inefficient preparation so that she receives a total fraction
1 − ηχ . In this case (and again assuming perfect detectors),
Alice can simultaneously obtain results for all of her possible
measurements, with the right efficiencies, by a complicated
measurement on her boosted fraction of the light, provided
that

(1 − χ )ηηp + (1 − χ )η2ηh � 1 − χη. (6.2)

This is demonstrated in Fig. 6, for the case where the inequality
is saturated and Alice must use every bit of light available.
Thus, in order for it to be possible for Bob to be convinced
that Alice is not simply performing a complicated single
measurement on her fraction of the light, the inequality (6.2)
must be violated.
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FIG. 5. If Eq. (6.1) is satisfied then it is possible that Alice
could use the measurement scheme depicted here, which would not
constitute EPR steering. That is, providing she had arbitrarily good
detectors, she could partition her fraction (1 − χ )η of the light and
use ηp of it for performing photodetection, and two portions of ηh to
perform homodyne measurements of orthogonal quadratures. This is
essentially a single, though complicated, measurement scheme which
cannot demonstrate EPR steering.

Rearranging Eq. (6.2), we arrive at a necessary condition
for it to be possible to demonstrate EPR steering using the
split-photon states Wχ

η and homodyne detection and photon
counting:

η[χ + (1 − χ )(ηp + 2ηh)] > 1. (6.3)

Note the similarity in form to the sufficient condition (5.7),
and note that the necessary condition is strictly weaker than
the sufficient condition.

VII. COMPARISON WITH EXPERIMENT

A. Necessary conditions

Finally, we are in a position to reconsider the experi-
ments [9,10]. In the latter, Lvovsky and coworkers obtained
experimental parameters of η = 0.64 and ηh = 0.86, and in
the former they used χ = 0.5 and χ = 0.92. First let us test
these parameters in Eq. (6.3) to determine if EPR steering was
possible in this experiment. Evaluating the left-hand side of
the inequality we obtain 0.87 and 0.68 for χ = 0.5 and 0.92,

respectively. Clearly the necessary condition for steerability
is not satisfied under either of these circumstances. Even if
we add photodetection, with an efficiency ηp = 0.3 (which
is experimentally feasible [29]), we only raise these figures
to 0.97 and 0.69 respectively, still short of the required value
of 1.

The easiest parameter to alter to try to improve the
performance of the experiment is the splitting ratio χ . As

1

1 -

Bob

Alice

1 -( ) p

h1 -( )

h1 -( )

LO
+ /2

LO

FIG. 6. The setup is the same as in Fig. 5, however, now Bob does
not trust the initial preparation of the shared state. He knows that on
average he receives ηχ of the single photon, but he now assumes
that Alice has access to the remaining 1 − ηχ of the initial state, as
well as having arbitrarily good detectors. In this case, she could again
use a complicated measurement scheme to partition her fraction of
the initial state to simultaneously perform both photodetection and
homodyne measurements of orthogonal phases with efficiencies ηp

and ηh, respectively, provided that Eq. (6.2) is satisfied.

stated, the experiment of [9] made use of a symmetric as well
as a decidedly asymmetric arrangement (with Bob obtaining
a much larger fraction of the light). In order to facilitate the
demonstration of EPR steering, we thus determine the optimal
χ . In the example above, the symmetric arrangement came
much closer to satisfying the necessary condition than the
asymmetric one. This might tempt one to conclude that the
symmetric situation is most useful for a demonstration of EPR
steering. In fact, this is true neither for the necessary nor the
sufficient criteria for EPR steering.

Considering both Eq. (5.7) and Eq. (6.3) it is straightforward
to see that χ = 0 is the optimal value for satisfying these condi-
tions. However, physically this corresponds to the asymmetric
case of Alice obtaining all of the light, in which case Alice and
Bob do not share an entangled state at all and EPR steering
cannot occur. Thus, in practice the optimal arrangement would
be to choose χ � 1. (Experimental imperfections not modeled
in our theory would presumably imply an optimal, small value
for χ .) That is, in the Babichev et al.experiment [9], the
asymmetry was weighted in the wrong direction—they had
χ = 0.92, which sends almost all of the light to Bob.

We can understand this result intuitively, as it is Alice’s
detection efficiencies that matter in the experiment, not Bob’s.
Providing Alice with less of the initial state makes it more
difficult for her to influence (steer) Bob’s part of the state. If
the setup used in [9] were to be reversed so that χ = 0.08, then
with η = 0.64, ηh = 0.86, and no photodetection (ηp = 0), the

012110-9



S. J. JONES AND H. M. WISEMAN PHYSICAL REVIEW A 84, 012110 (2011)

left-hand side of Eq. (6.3) evaluates to 1.06, suggesting that
EPR steering might be possible in an experiment similar to
that in Ref. [9]. Including photodection with ηp = 0.3, gives
a left-hand side of 1.24, suggesting that EPR steering should
be possible using such an enhanced experiment.

B. Sufficient conditions

In order to determine if these hypothetical experiments
could demonstrate EPR steering using the inequalities we have
derived, we need to test the sufficient condition in Eq. (5.7).
We use the parameters of [10] as above, with χ = 0.08 and we
assume eight homodyne measurement settings. Using eight
settings is few enough to seem experimentally feasible, but
a large enough number so that f (8) � 0.641 is not far from
f (∞) = 2/π � 0.637.

With no photodetection, the left-hand side of the sufficient
condition (5.7) evaluates to 0.84, that is, unfortunately, the EPR
steering inequality we derived would be a long way from being
violated. But including photodection with ηp = 0.3, gives a
left-hand side of 1.01, implying that it would just be possible
to violate Eq. (4.17), and so demonstrate EPR steering in this
enhanced experiment.

In practice of course it would be extremely difficult for
experimentalists to satisfactorily observe a violation which
equates to 1.01 > 1.00. Thus, in order to conclusively demon-
strate EPR steering of a single photon it would be desirable to
have a larger violation of the steering criterion. The appeal of
our approach is that we have provided a number of experimen-
tal parameters that may be adjusted to facilitate EPR steering.

Consider first the case where there is no photodetection, as
in the original experiments. Then if one chose χ = 0.05, and
if one were able to improve the parameters to η = 0.78 and
ηh = 0.92, the sufficient condition (5.7) would be satisfied as
follows: 1.10 > 1. Alternatively, with photodetection included
with efficiency ηp = 0.30, and with η = 0.66 and ηh = 0.90,
one would also find the same degree of violation. If one
had access to a more efficient single-photon detector, the
requirements on η and ηh set by Eq. (5.7) become even
less stringent. Thus demonstrating a substantial violation of
an EPR-steering inequality with a single photon could be
achieved with only moderate improvements to experimental
techniques.

VIII. SUMMARY

In this work we have considered in detail the experimental
prospects for demonstrating quantum nonlocality with a single
photon, using homodyne detection. This question is of con-
siderable interest experimentally, with both Bell nonlocality
(violation of a CHSH inequality, with postselection) [10], and
remote state preparation (i.e., the EPR-steering phenomenon)
[9] of a single photon being addressed. Our analysis here shows
that while the impure state produced in these experiments
could not possibly be used to demonstrate violation of a
CHSH inequality without postselection, it could be used
to demonstrate EPR steering, according to the definition
established in Refs. [17,25], without postselection. Also,
we showed that even given the efficiency of the homodyne
detection used in these experiments, it might still be possible to

do a rigorous demonstration of EPR steering, if the asymmetry
of the photon splitting were reversed from that used in Ref. [9].

To actually demonstrate EPR steering would require violat-
ing an EPR-steering inequality, as defined in Ref. [18]. Here
we have introduced a family of such inequalities for homodyne
detection on a single photon in a beam splitter, with an arbitrary
number of different phase settings. Unfortunately with the
experimental efficiency of homodyne detection achieved in
Ref. [10], it would not be possible to violate any of these
inequalities. However, we also generalized our inequality by
supplementing homodyne detection with a photon detector.
We showed that with a realistic photon detector efficiency,
with relatively few different homodyne phases, and with only
modest improvements to the efficiency of photon preparation
and homodyne detection, it should be possible to achieve a
substantial violation of our inequality. Thus, for rigorously
demonstrating nonlocality (in the EPR-steering sense) of a
single photon in an experiment in the near future, the prospects
are good.
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APPENDIX: CONVEXITY PROOF

We consider the function:

f ({〈σ̂θ 〉},〈σ̂z〉) = 1

π

∫ π/2

−π/2
dθaθ 〈σ̂θ 〉 − 2

π

√
1 − 〈σ̂z〉2, (A1)

with the aim of showing that
(i) f is a convex function of its arguments, and

(ii) that f � 0 ∀ aθ ∈ {−1,1},∀ρ.
In order to prove point (i), we must show that both terms

in Eq. (A1) are convex functions, as the sum of two convex
functions is also a convex function [30]. The first term is
trivially convex, as the integral is just the continuous limit of
adding the arguments, which are linear, and hence convex.
For the second term, we need simply to examine a plot of
−√

1 − z2 for z ∈ {−1,1} to verify that it has a convex (i.e.,
concave up) shape.

Now to prove point (ii), we must show that f � 0, ∀ aθ ∈
{−1,1},∀ρ. This amounts to showing that

1

π

∫ π/2

−π/2
dθaθ 〈σ̂θ 〉 � 2

π

√
1 − 〈σ̂z〉2. (A2)

It was shown in Sec. IV A, that the maximum of the left-
hand side occurs when aθ ≡ 1. Making this substitution and
evaluating the integral means that we are required to prove the
condition

2

π
〈σ̂x〉 � 2

π

√
1 − 〈σ̂z〉2. (A3)

That this holds for all ρ follows immediately from the
condition that 〈σ̂x〉2 + 〈σ̂z〉2 � 1.
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