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Quantum optimal control experiments and simulations have successfully manipulated the dynamics of systems
ranging from atoms to biomolecules. Surprisingly, these collective works indicate that the effort (i.e., the number
of algorithmic iterations) required to find an optimal control field appears to be essentially invariant to the
complexity of the system. The present work explores this matter in a series of systematic optimizations of the
state-to-state transition probability on model quantum systems with the number of states N ranging from 5
through 100. The optimizations occur over a landscape defined by the transition probability as a function of the
control field. Previous theoretical studies on the topology of quantum control landscapes established that they
should be free of suboptimal traps under reasonable physical conditions. The simulations in this work include
nearly 5000 individual optimization test cases, all of which confirm this prediction by fully achieving optimal
population transfer of at least 99.9% on careful attention to numerical procedures to ensure that the controls are
free of constraints. Collectively, the simulation results additionally show invariance of required search effort to
system dimension N . This behavior is rationalized in terms of the structural features of the underlying control
landscape. The very attractive observed scaling with system complexity may be understood by considering the
distance traveled on the control landscape during a search and the magnitude of the control landscape slope.
Exceptions to this favorable scaling behavior can arise when the initial control field fluence is too large or when
the target final state recedes from the initial state as N increases.
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I. INTRODUCTION

The control of quantum phenomena with external fields
using optimal control theory (OCT) [1,2] and optimal control
experiments (OCE) [3] is currently an active area of research
[4,5]. OCT simulations have successfully controlled a variety
of objectives, including state preparation [2,6,7], molecular
isomerization [8–12], dissociation [13–16], and orientation
and alignment [17–19]. OCE using ultrafast tailored laser
pulses have achieved control over many processes, including
state preparation [20,21], selective molecular dissociation
[22–24], generation of high-order optical harmonics [25–27],
and energy transfer and isomerization in large biomolecules
[28–30]. Simulation models consider from 2 to ∼102 or
more states, and the atoms and molecules used in OCE often
have much larger numbers of accessible states. Remarkably,
controlling complex quantum systems appears to be no more
difficult than controlling simple ones, both in simulations and
experiments, where the level of difficulty is expressed in terms
of the number of iterations required to converge on the target
objective.

The success of these and other studies suggests that
quantum control is generally amenable to “easy” solution
by optimal search. Recently, the quantum control landscape
concept was introduced to help rationalize the observed wide
success of quantum control studies [31], where the landscape
is defined as the functional relationship between the physical
objective (e.g., population transfer probability Pi→f ) and the
external control field ε(t). Considering a controllable target
system under reasonable physical assumptions [32], the topol-
ogy of the dynamical quantum control landscape can be shown
to have no suboptimal local maxima or traps [31,33–35].
Exceptions to this favorable topology have been found under
unusual circumstances, e.g., when constant control fields ε(t)
are employed [36–38]. An important objective is to either

affirm the attractive theoretical landscape findings or identify
the likelihood of encountering landscape traps in the course
of typical optimizations under reasonable physical conditions.
The extensive prior optimal control literature is supportive
of the landscape theory with often high reported yields
[1–3,6–19,39–59]. Such studies, however, cannot rigorously
assess the landscape topology due to constraints of various
types (e.g., control field fluence) limiting access to the highest
yields on the landscape. Additionally, great numerical care
is needed when testing the landscape for traps as significant
numerical limitations (e.g., insufficient temporal discretization
of the control field) can introduce artificial traps. Thus, in
the present work we execute a large number of carefully
performed numerical simulations to assess the ability to climb
the landscape without encountering traps.

This work will consider the control objective of max-
imizing the probability Pi→f of population transfer from
an initial pure state |i〉 to some target pure state |f 〉
of a closed quantum system undergoing unitary evolution.
Although in the laboratory the circumstances will typically
include additional factors beyond this idealized situation, the
objective of maximizing the population in the product state is
often the ultimate goal. The control objective is to identify a
suitable field ε(t) that maximizes Pi→f at some target time T ,
which may be finite or asymptotic with T → ∞. Typically,
an optimal field is found using a suitable search algorithm
(see, for example, Refs. [2,60]) to traverse the relevant control
landscape, which is specified by Pi→f as a functional of the
control field, Pi→f ≡ Pi→f [ε(t)]. Both the global topology
and local structure of the control landscape may influence the
character and duration of the search trajectory from an initial
(often random) control field to an optimal solution.

The search effort required to find an optimal control field is
an important issue for determining the feasibility of performing
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both quantum control simulations and experiments, as compu-
tational and experimental resources are inevitably limited. In
particular, if the effort rises with system complexity, searching
for an optimal control field may become too expensive for
complex quantum systems. In this work, the complexity of
the system is measured by the Hilbert space dimension N ,
i.e., the number of accessible energy levels of H0. A large
body of results from the OCT literature [2,3,9,13,15,17,39–59]
performed on systems where N ranges from 2 to ∼102 suggest
that the search effort required for population transfer does
not scale strongly with N . Although the required effort will
depend on the convergence criteria, the number of reported
algorithmic iterations to achieve convergence is observed to
be typically no more than ∼103, and often ∼100 or fewer,
regardless of N or the particular search algorithm employed.
The invariance of required search effort with respect to N has
been numerically demonstrated for the Pi→f objective using
so-called kinematic control variables (i.e., the elements of
the governing unitary transformation or equivalent variables)
[61]. In the present work, the scaling of the effort with N

to find a solution is systematically studied using dynamic

control variables [i.e., the control field ε(t)] for simple model
quantum systems. Here, effort is defined as the number of
algorithmic iterations required to reach a particular threshold
value of Pi→f ; we put aside the effort per iteration to solve
the Schrödinger equation, which is strongly dependent on N .
This condition corresponds to the laboratory situation, where
the effort of performing an experiment is not necessarily
dependent on the complexity of the target molecule. The
dynamical control findings throughout the paper will be
compared to their kinematic analogs [61]. This comparison
is important as similar behavior suggests that the dynamical
control behavior has its origins at the simple kinematic level.

The attractive topology of the quantum control landscape,
which will be affirmed in this work, may be expected to
contribute to the generally observed favorable lack of scaling
of search effort with N [31,33]. The attractive global topology,
however, does not preclude the possibility that complex local
landscape structural features may influence the required search
effort, particularly when using a local search procedure such as
a gradient algorithm. The high dimensionality of the control
landscape [here, the dimensionality is nominally infinite as
ε(t) is a continuous function] renders the direct study of
its local structure difficult, but useful information about the
local landscape features can be obtained by examining the
trajectories taken during a search from an initial to final control.
Ultimately, the goal is to understand how the underlying
control landscape determines the scaling of the required search
effort with N .

The remainder of this work is organized as follows.
Section II formulates the quantum control problem, defines
relevant landscape structure metrics, outlines the optimization
procedure, and defines the model quantum systems. As a
baseline reference to the optimizations, Sec. III presents the
statistical distributions of Pi→f values obtained when random
control fields are applied. Section IV shows the important
result that no traps were encountered on optimization of
Pi→f in ∼5000 test cases. Section V presents optimization
results over varying control targets, Hamiltonians, and control
fields, with the additional general result that the search effort

is invariant to the system complexity characterized by N ,
although the absolute search effort varies widely for different
circumstances. In Sec. VI, the effect of landscape features on
search effort is explored for the optimal searches performed in
Sec. V using the metrics defined in Sec. II. Finally, Sec. VII
presents concluding remarks.

II. METHODS

A. Formulation of the control objective

Consider a quantum system of N levels |1〉, . . . ,|N〉 whose
dynamics are driven by the time-dependent Hamiltonian
H (t) = H0 − με(t), where H0 describes the free dynamics
of the system, μ is the dipole operator, and ε(t) is the
control field. The time evolution of the quantum system is
given by |ψ(t)〉 = U (t,0)|ψ(0)〉, where U (t,0) is the unitary
evolution matrix covering the dynamics from time t = 0 to
time t and |ψ(0)〉 is the state of the quantum system at
t = 0. The dynamics of U are governed by the time-dependent
Schrödinger equation

ih̄
∂U (t,0)

∂t
= H (t)U (t,0), U (0,0) ≡ I. (1)

The control objective is to maximize the transition proba-
bility Pi→f of population transfer from an initial state |i〉 to a
target state |f 〉 of the system at time T ,

Pi→f (T ) ≡ |〈f |U (T ,0)|i〉|2. (2)

The variation of Pi→f (T ) with functional changes in the
Hamiltonian H (t) is obtained by considering small responses
in the propagator U (t,0):

ih̄
∂

∂t
δU (t,0) = H (t)δU (t,0) + δH (t)U (t,0),

δU (0,0) = 0 (3)

δPi→f (T ) = 〈i|δU †(T ,0)|f 〉〈f |U (T ,0)|i〉
+ 〈i|U †(T ,0)|f 〉〈f |δU (T ,0)|i〉. (4)

Equation (3) can be integrated [35] to give

δU (t,0) = − i

h̄

∫ t

0
U (t,t ′)δH (t ′)U (t ′,0)dt ′, (5)

and substitution of Eq. (5) into Eq. (4) yields

δPi→f (T ) = 2

h̄
Im

∫ T

0
〈i|δU †(T ,0)|f 〉〈f |U (T ,0)U †(t,0)

× δH (t)U (t,0)|i〉dt. (6)

Within the dipole formulation, δH (t) = −μδε(t), which gives
the functional derivative δPi→f /δε(t) from Eq. (6) as

δPi→f

δε(t)
= 2

h̄
Im[〈i|U †(t,0)μU (t,0)U †(T ,0)|f 〉〈f |U (T ,0)|i〉].

(7)

We assume that the system is controllable such that any
arbitrary unitary matrix U (T ,0) can be generated by a suitably
chosen field ε(t) at a sufficiently large final time T . This
condition is equivalent to the requirement that the Lie algebra
generated from H0 and μ forms a complete set of operators [32]
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and T is large enough to avoid hindering the dynamics.
In general, we may assume controllability of an arbitrary
quantum system, as uncontrollable quantum systems have been
shown to constitute a null set in the space of Hamiltonians [62].
On satisfaction of the controllability requirement, analysis of
the global control landscape topology of Eq. (2) with kinematic
variables [31] reveals that the landscape has no false extrema;
the only critical points occur at perfect control, Pi→f = 1,
and no control, Pi→f = 0. On satisfaction of the Jacobian
δU (T ,0)/δε(t) being full rank, the dynamical landscape also
has no traps [5,35] and the desired landscape value Pi→f = 1
corresponds to a submanifold of optimal fields, which makes
the control solutions robust to fluctuations in ε(t) [33,34]. The
latter property is particularly important for laboratory quantum
control, as it allows for maintaining good yields despite
laboratory noise. In practice, the rank of δU (T ,0)/δε(t) may
be reduced to some degree with no impact on the controlled
dynamics, as there can still be many readily traversed pathways
from |i〉 to |f 〉. However, traps may arise for so-called singular
control fields where the above Jacobian is significantly rank
deficient. Such situations have been known to occur when
ε(t) = constant is employed [36–38], but this situation is
generally not physically relevant in the laboratory. Thus, one
goal of the simulations in this work is to establish whether traps
may be encountered in optimizations starting from physically
reasonable control fields.

B. Measuring landscape structure

The global landscape topology summarized above provides
important information about the feasibility of achieving
optimal control. The claimed lack of traps means that a control
producing a perfect yield can be found starting from any initial
search point on the landscape (i.e., a point on the landscape
corresponds to a particular field and its associated transition
probability) using a suitable hill-climbing algorithm. The
validity of this topology in OCT simulations will be assessed
in this work.

The presence of a favorable landscape topology does not
preclude the presence of increasingly complex landscape
features as N rises, which could cause an increase in the
search effort to find a control that gives perfect yield. Thus,
an understanding of local landscape features (i.e., noncritical
point structures) is necessary in order to explain and predict the
scaling of search effort with system complexity. In this work,
the local features of the control landscape are codified by
specific metrics recorded along the search trajectory followed
from the initial to optimal control field. On a given search
trajectory, we may parametrize the field ε(t) by an index
s � 0 to track the progress to the top of the landscape. The
field starts out at s = 0 with ε(0,t) and progresses in steps
s → s + ds [i.e., ε(s,t) → ε(s + ds,t)] until the trajectory
ends at an optimal control, εopt = ε(sM,t) at s = sM .

For the purpose of describing the local landscape features,
we define (i) a distance metric between two fields ε(s,t) and
ε(s ′,t) (t ∈ [0,T ]) based on ||ε(s,t) − ε(s ′,t)||, where || · ||
implies an integration over time, and (ii) structure metrics
based on a Taylor expansion of Pi→f around a field ε(s,t) at
points on the landscape. Analogous metrics of local landscape
features were defined in Ref. [61] using kinematic control

variables (i.e., without reference to the dynamics of any
particular Hamiltonian) and were found to correlate with
the observed scaling of the search effort with N . From this
experience, these metrics are used here to provide information
about how the features of the landscape determine the required
search effort using dynamic variables.

The complexity, or gnarled character, of a search trajectory
in control space must take into account both the Euclidian
distance between the initial and final control fields and the
actual path length followed from the initial to final control
over the course of a search. A metric defining this complexity
may be characterized by the ratio of the trajectory path length
||�P ε(t)|| to the Euclidian distance between the initial and
final control fields ||�Eε(t)||,

Rε = ||�P ε(t)||
||�Eε(t)|| =

∫ sM

0 ds
( ∫ T

0 dt
[

dε(s,t)
ds

]2)1/2

( ∫ T

0 dt[ε(sM,t) − ε(0,t)]2
)1/2 � 1.

(8)

The closer Rε is to unity, the more direct the path, i.e., the
closer the path is to a straight line in the space of controls
being searched over. Following a direct path from the initial
to optimal control field should result in efficient searching,
especially by simple local algorithms, because the search
trajectory could avoid taking detours along the way to finding
an optimal control field. This prediction will be assessed in the
simulations.

The local structure metrics of the landscape provide
information about what the search algorithm “sees” at a
particular point on the landscape and may be expressed through
a Taylor expansion of the cost functional Pi→f ,

Pi→f [ε(s,t) + δε(s,t)]

= Pi→f [ε(s,t)] +
∫ T

0
∇Pi→f (s,t)δε(s,t)dt

+ 1

2

∫ T

0

∫ T

0
H(t,t ′)δε(s,t)δε(s,t ′)dtdt ′ + · · · , (9)

where ∇Pi→f (s,t) = δPi→f /δε(s,t) is the gradient vector.
The structure metrics will be extracted from the kernels of
the integrals in Eq. (9). Each metric will be labeled by m to
indicate its evaluation at the point sm on the landscape. The
first-order term in Eq. (9) specifies the slope metric Sm,

Sm = ||∇Pi→f (sm,t)|| =
( ∫ T

0
dt

(
δPi→f

δε(sm,t)

)2
)1/2

. (10)

The slope metric is equivalent to the magnitude of the gradient
on the landscape at the point sm. Intuitively, a greater value of
Sm should result in a locally faster ascent due to a more rapid
improvement of the yield when taking a step in the direction
of the gradient. Thus, it is expected that the slope metric may
be correlated to the observed search effort.

Additional information about local landscape features can
be gained by examining the second-order term of the Taylor
expansion in Eq. (9), or the Hessian matrix, whose elements
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labeled by t and t ′ are [33]

H(t,t ′) = δ2Pi→f

δε(t)δε(t ′)
= 2Re[〈i|U (0,T )|f 〉〈f |U (T ,t)μU (t,t ′)μU (t ′,0)|i〉

− 〈i|U (0,t)μU (t,T )|f 〉〈f |U (T ,t ′)μU (t ′,0)|i〉],
t � t ′. (11)

The Hessian matrix is symmetric, i.e., H(t,t ′) ≡ H(t ′,t). Two
simple metrics based on the Hessian matrix can provide insight
into the landscape structure, particularly at the bottom and top
of the landscape. The first metric is the Hessian trace,

TrH =
∫ T

0
H(t,t)dt, (12)

and the second metric is the curvature of the landscape at a
point m,

Cm =
(

1

||∇Pi→f (sm,t)||
)2

×
∫ T

0
dt

∫ T

0
dt ′∇Pi→f (sm,t)†H(t,t ′)∇Pi→f (sm,t ′),

(13)

which may be calculated anywhere including near, but not at,
the bottom or top of the landscape where ∇Pi→f (sm,t) = 0.
The curvature defined by Eq. (13) is the Hessian projected
along the normalized local gradient direction. Intuitively, a
larger (positive) value of the Hessian trace and curvature near
the bottom of the landscape should induce fast climbing [63].
Similarly, a large (negative) value of the curvature Cm and
Hessian trace TrH near the top should also accelerate the
approach to the optimum.

C. Optimization procedure

Many different search algorithms may be used to find
an optimal field ε(sM,t) maximizing Pi→f . One important
goal of this work is to assess whether traps are encountered
on climbing the landscape; the existence of traps could
preclude identification of an optimal control field producing
Pi→f ∼ 1.0. This landscape assessment objective specifically
calls for a local (i.e., myopic) search method, which will stop
climbing at a suboptimal value of Pi→f if a trap is encountered.
Global search algorithms (e.g., genetic algorithms) may step
over traps, making them inappropriate for assessing topology.
Additionally, the particular choice of search algorithm may
significantly influence the absolute effort required to find an
optimal field; this was found to be the case for optimizing
Pi→f using kinematic controls [61], where gradient, genetic,
simplex, and coordinate search algorithms were compared.
Despite the wide variation in absolute search effort with the
choice of algorithm, the scaling of the search effort with
respect to system complexity exhibited the same qualitative
trends for all algorithms examined. Similarly, in OCT stud-
ies from the literature, gradient-based algorithms typically
converge in ∼100 iterations [2,9,17,39,41–46,49,51,53–59],
while nongradient simplex and evolutionary searches typically
require several hundred iterations [3,13,40]. Importantly, these
numbers do not appear strongly dependent on N . Considering

all of the factors above, a gradient algorithm is employed
exclusively in this work in order to (a) test the likelihood
of encountering traps and (b) seek consistency in exploring
optimization effort.

As the control field ε(s,t) depends on the variable s labeling
the progression of the optimization, the landscape value
Pi→f (s) ≡ Pi→f [ε(s,t)] depends on s through its functional
dependence on ε(s,t),0 � t � T . Thus, the change in the
landscape value Pi→f corresponding to a differential change
ds is given by dPi→f ≡ ( ∂Pi→f

∂s
)ds, where

dPi→f

ds
≡

∫ T

0
dt

δPi→f

δε(s,t)

∂ε(s,t)

∂s
. (14)

As the objective is to maximize Pi→f , we have the demand
that dPi→f

ds
> 0, so ε(s,t) satisfies the differential equation

∂ε(s,t)

∂s
= δPi→f

δε(s,t)
, (15)

where the gradient on the right-hand side is given by Eq. (7).
Carefully solving Eq. (15) coupled to the Schrödinger Equa-
tion (1) is essential for obtaining reliable landscape climbing
results, especially for assessing the presence of traps. The
present search algorithm, incorporated into MATLAB [64],
solves Eq. (15) using a fourth-order Runge-Kutta integrator
with a variable step size to determine the control field at
the next iteration. Of additional special interest here is the
required search effort, or the number of algorithmic iterations
M required to reach the desired Pi→f value, when starting
from an initial random control field.

D. Design of quantum systems for simulations

The goals of the simulations are to (a) assess whether
traps are encountered in carefully performed optimizations
and (b) explore general trends in the scaling of search effort
to find optimal controls in relation to system complexity. For
a proper assessment of goal (a), as well as in the simulations
for (b), no fluence or other direct constraints are placed on
the controls, aside from a fine time discretization of the
field. Since an infinite variety of structures for H0 and μ

can arise, a thorough sampling of all physically relevant
structures is infeasible. Nevertheless, a modest number of
variations in H0, μ, and choice of |i〉 and |f 〉 can capture broad
classes of physical phenomena. Increasing N while holding the
|i〉 → |f 〉 target transition fixed corresponds to exciting the
same transition in homologous molecules of increasing size.
The circumstance of fixing N and the target transition while
varying the dipole matrix structure corresponds to controlling
homologous molecules of similar size with different transition
couplings. Choosing the target transition as |1〉 → |N〉 and
increasing N corresponds to exciting larger molecules to an
ever receding highest quantum level. In practice, the target
|i〉 → |f 〉 transition, dipole matrix structure, and N will
likely vary simultaneously in the laboratory. The results here
should both provide diverse test scenarios for the presence of
landscape traps as well as capture the qualitative search effort
scaling trends. Comparisons to the corresponding laboratory
situations will be made at relevant points throughout the work.
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For all of the simulations in this work, we consider an
N -level quantum system whose Hamiltonian is expressed
in arbitrary dimensionless units. Two general choices of
nondegenerate, diagonal H0 are employed, corresponding
qualitatively to a rigid rotor or an anharmonic oscillator. The
energy levels of the rigid rotor are given by

H0 =
N−1∑
j=0

γ j (j + 1) |j 〉〈j |, (16)

where γ is a constant. In the results presented here, γ = 0.25,
but varying γ was found to have no significant effect on the
scaling of search effort with N or on the local landscape
structure. The energy levels of the anharmonic oscillator are

H0 =
N−1∑
j=0

[
ω

(
j + 1

2

)
− ω2

D

(
j + 1

2

)2]
|j 〉〈j |, (17)

where ω = 5 and D = 1200 for all results presented here.
Variation of ω and D were found not to affect the search
effort scaling, provided that they were chosen to allow for
significantly more bound states than the value of N employed
in the simulations. The above choices of ω and D provide 120
bound states. The H0 structures given in Eqs. (16) and (17)
will be referred to respectively as the rotor and oscillator H0

structures later.
Two physically relevant dipole real matrix structures will be

considered. For many physical systems the coupling between
states generally decreases as the difference between the
quantum numbers of the states increases, and the present
choices of μ take this property into account. We first choose
μ to have the simple structure

μ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 D D2 . . . DN−2

1 0 1 D . . . DN−3

D 1 0 1 . . . DN−4

D2 D 1 0 . . . DN−5

...
...

...
...

. . .
...

DN−2 DN−3 DN−4 DN−5 . . . 0

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

where D ∈ [0,1] is the drop-off rate and all elements of
μ have a random phase of ±1 with the restriction that μ

remains symmetric. We further specify that μif = 0, thereby
eliminating a direct transition from the initial state |i〉 to desired
target state |f 〉.

In order to generalize the structure of μ from that shown in
Eq. (18), we alternatively chose μ to have the form

μ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1 α2 α3 . . . αN−1

α1 0 α1 α2 α3
...

α2 α1 0 α1 α2
...

α3 α2 α1 0 α1
...

...
...

...
...

. . .
...

αN−1 . . . α3 α2 α1 0

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

The successive superdiagonal elements αi , i = 1 . . . N − 1,
are each chosen from particular uniform random distribu-
tions such that α1 ∈ [0.8,1], α2 ∈ [0.7,0.9], α3 ∈ [0.6,0.8],
. . . αi�10 ∈ [0,0.1]. While preserving symmetry, all nonzero
elements have a random phase of ±1 and μif = 0. The choice
of the dipole matrices in Eqs. (18) and (19), respectively,
will be referred to the D and α structures later. The freedom
inherent in randomly drawing the coupling matrices provides
a broad family of systems to assess the landscape topology,
structural features, and search effort scaling behavior.

In many OCT studies, the initial control field is chosen
based on knowledge of the physical system. For example, the
component spectral frequencies are often picked to be resonant
with certain transitions in H0, or a spectral bandwidth is chosen
that encompasses the desired transitions. In this work, the
initial electric field ε(0,t) is discretized on a time interval
t ∈ [0,28] into 2048 time points. The choice of T = 28 and
2048 discretized time points was found to be sufficient to
resolve the fastest modulation in the field ε(s,t) and the fastest
modulation in the wave function |ψ(t)〉 for all systems of
N < 30. For simulations involving the |1〉 → |N〉 transition
for N � 30, 4096 time points were used to ensure sufficient
resolution.

The initial field at s = 0 is chosen as

ε(0,t) = F exp

[
− β

(
t − T

2

)2] K∑
k=1

sin(ωkt + φk),

(20)
t ∈ [0, T ],

where β is an envelope parameter (in all simulations, β =
0.05), K is the number of frequency components, φk is a
random phase on [0,2π ], and F is the square root of the field
fluence. Prior to multiplication by F , the field is normalized to
have unit fluence. The frequencies {ωk} are chosen randomly
on a predefined bandwidth with maximal frequency . In most
simulations,  corresponds to the frequency of the |1〉 → |f 〉
transition in H0, but in Sec. V B, other choices of  are
employed. Following selection of the initial frequencies {ωk}
and the field fluence F , the electric field is allowed to vary
freely over the optimization in terms of each of its time points
ε(s,tj ),j = 1,2, . . . ,2048 [or ε(s,tj ),j = 1,2, . . . ,4096 for
some cases where N � 30] as control variables starting at
s = 0 and iteratively moving ahead as s → s + �s.

III. STATISTICAL DISTRIBUTION OF Pi→ f YIELDS

It is instructive to examine the statistical distribution of
Pi→f values on making random choices for the initial control
field ε(0,t) because many OCE searches for effective controls
start with a random trial choice. Of particular interest is
whether the optimization searches, on average, start at more
or less favorable landscape values as N increases.

A detailed mathematical analysis of the Pi→f objective
with kinematic controls shows that the statistics satisfy a β

distribution [65]. As N increases, this distribution becomes
skewed toward smaller Pi→f values. This qualitative behavior
has also been observed for initial choices of random control
fields ε(0,t) [34] for the target transition |1〉 → |N〉. Therefore,
simply considering the statistical distribution for random trials
suggests that increasing search difficulty may be encountered
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as N grows. In order to systematically test the validity of
this conjecture under different initial conditions, we chose
(a) target transitions |1〉 → |5〉, |1〉 → |10〉, and |1〉 → |N〉,
(b) control field fluence F = 10, 1, 0.1 and (c) dipole
matrices of structure D in Eq. (18) with D = 0.5, 0.2, for
N ranging from 5 to 40. The statistics were obtained for
104 different randomly generated control fields for each set
of parameters |1〉 → |f 〉, D, and F . All control fields had
K = 20 frequencies randomly distributed on the bandwidth
with maximal frequency  = ωf , where ωf denotes the
frequency corresponding to the |1〉 → |f 〉 transition. Results
using the rotor Hamiltonian given in Eq. (16) are shown here;
choice of the oscillator Hamiltonian in Eq. (17) produced
qualitatively similar results.

Figure 1 presents the distribution functions for the |1〉 →
|N〉 transition with fields of F = 10 for N = 10, 15, and
20, revealing a shift toward reduced values of Pi→f as N

rises. The inset of Fig. 1 shows the mean of the statistical
distribution versus N for the cases of different targets, field
strengths, and dipole matrix drop-off rates as labeled in the
legend, where D and F are denoted for each Pi→f target. For
any fixed target transition (e.g., |1〉 → |5〉), the mean of each
distribution is independent of N , and the distributions for these
cases are indistinguishable as N is varied (not shown). For the
|1〉 → |N〉 transition, the mean Pi→f value decreases rapidly
with rising N (note the log scale), in accordance with Ref. [66],
indicating that it becomes increasingly difficult to find a decent
initial yield as N rises for the receding target |N〉. The average
initial yield for systems with a fixed target transition, however,
should not change dramatically as system dimension rises.
Instead, the fluence of the initial control field and dipole
coupling strength appear to determine the initial yield, with
the trends following intuitive insights. As expected, stronger
fields result in a greater yield than weaker fields; however, at
very strong fields (not shown), this trend can reverse due to
amplitude spreading over all the states. Similarly, lower yields
are obtained for systems with weaker coupling indicated by
smaller D values.

IV. TESTING FOR THE PRESENCE OF TRAPS
ON THE LANDSCAPE

Of primary importance for the utility of quantum OCT and
OCE is the question of whether all searches starting from a ran-
dom initial field ε(0,t) can even find an optimal field achieving
Pi→f ∼ 1 without getting trapped at a suboptimal Pi→f value.
Under reasonable assumptions, the topology of the control
landscape has been theoretically shown to contain no subop-
timal extrema when the system is controllable, no constraints
are placed on the controls, and the Jacobian δU (T ,0)/δε(t)
is full rank [5,31,33,35]. Affirming this attractive topological
prediction is very important, as special instances of traps can
be found [36–38] under unusual conditions. For the Pi→f

objective, the OCT literature regularly reports excellent results
[1–3,6–19,39–59], with maximum yields of Pi→f � 0.9 or
greater. These results are not definitive for fully testing
the landscape theory, as fluence or other field constraints
are typically present, and special computational care may
be required to eliminate artificial traps due to numerical
aberrations. The present calculations paid due attention to
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FIG. 1. Statistical distributions of Pi→f values for N = 10, 15,
and 20, with D = 0.5 and F = 10 for the |1〉 → |N〉 target. The
inset depicts the mean value of distributions of initial Pi→f values for
different dipoles, targets, and field parameters. The target transition,
dipole drop-off rate D, and field fluence F are denoted as Pi→f , D,
F in the legend. The mean initial value decreases for the |1〉 → |N〉
target but is constant for fixed target transitions. Statistical error bars
are shown for the |1〉 → |N〉 transition, and representative error bars
for the other cases are shown as well. Some points are shifted on the
x axis for graphical clarity.

all such details to provide a large-scale test of the landscape
topology predictions for Pi→f . As pointed out in Sec. II C,
a gradient-based algorithm was used because a local search
will stop if a trap is encountered. It is important to execute the
gradient algorithm in a stable fashion for this purpose, so a
fourth-order Runge-Kutta procedure was employed.

This work provides broad systematic evidence that opti-
mization searches can achieve a high yield of Pi→f � 0.999
without encountering suboptimal extrema. A total of ∼5000
individual optimal searches were performed with a wide
variety of control parameters chosen (cf. Sec. II D) for N

ranging from 5 to 100. In order to ensure that no false traps
resulted from choices of simulation parameters, the control
field was allowed to have as much fluence as necessary and
the final time T was chosen to be sufficiently large so as
not to impose a constraint. The importance of paying proper
attention to all numerical details was evident for some of
the difficult cases with the target transition of |1〉 → |N〉
(see Sec V C for further details) when N = 30 and 40 with
the D = 0.5 dipole, the rotor H0, and employing 2048 time
points to discretize the control field. Of the ∼5000 tests, 12
of the latter category were “trapped” at yields of 0.997–0.998.
However, on interpolation of the trapped control fields on 4096
time points and continued ascent with the gradient algorithm,
the demanded criterion of Pi→f � 0.999 was achieved in these
cases. Similar results were observed for optimization of the
control objective of generating a target unitary transformation
U (T ,0) with a control field ε(t) to match some target unitary
matrix W . This objective may be measured by considering
the fidelity function J = ||W − U (T ,0)||2. In the latter study,
20 000 tests were performed on quantum systems with 2–16
energy levels; on the choice of a sufficiently fine time mesh
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and large T , each optimization converged to a fidelity value of
J � 10−6 [67].

Collectively, these results indicate that the likelihood of
finding traps on quantum control landscapes is vanishingly
small when starting with reasonable control fields, allowing
access to sufficiently flexible controls and paying attention
to numerical details. This result suggests that the traps in
Refs. [36–38] are at most an extremely rare occurrence on
the landscape and possibly a null set. Another consideration is
that many practical OCT and OCE studies may be considered
as quite successful on even reaching moderate yields when
operating with various constraints. Importantly, the landscape
principles affirmed by the tests here imply that under such
conditions the enhancement of control resources can open up
even higher yields.

V. SEARCH EFFORT AND SYSTEM COMPLEXITY

The scaling of the required search effort with system
complexity can determine the feasibility of performing quan-
tum control on polyatomic molecules or similarly complex
systems. Intuitively, the expectation is that finding a suitable
control field would become more difficult as the size of the
system increases, because additional control pathways involv-
ing a larger number of quantum states become accessible. The
collective OCT literature, however, suggests that the required
search effort to find an optimal control is generally on the
order of ∼102 iterations, [2,3,9,13,15,17,39–59], and system-
atic optimization of Pi→f using kinematic control variables
indicates that the search effort scales at most very slowly
with N [61]. Successful OCE studies ranging from control
of atoms [20,25] to complex protein molecules [28,30] further
suggest a practical level of invariance of search effort to system
complexity. Based on these collective findings, we performed
optimization of Pi→f on a broad sampling of systems ranging
from N = 5 to N = 100 in order to determine whether scaling
invariance to N can be demonstrated systematically using
dynamical control variables. The effects of changing the
dipole coupling strength, the control field parameters, and the
|i〉 → |f 〉 target transition on the search effort and its scaling
with N are examined here.

A. Varying dipole coupling strength

Optimizations were performed for systems with N ranging
from 5 to 40 as well as N = 100 for the target transitions
|1〉 → |5〉 and |1〉 → |10〉. Dipole structures of D = 1.0, 0.5,
and 0.2 as well as the α structure were examined, with H0 given
by Eq. (16) or Eq. (17). For all simulations, the initial control
fields of F = 1 had K = 20 frequencies randomly chosen on
a bandwidth with maximal frequency  corresponding to the
|1〉 → |f 〉 transition in H0. Optimal searches beginning from
20 such initial fields were performed for each choice of N

and dipole structure, with the exception of N = 100, where
10 optimal searches were performed. In order to normalize
the reported search effort with respect to the initial Pi→f

yields obtained, the counting of iterations was begun at
Pi→f �0.001, regardless of the initial yield, and random fields
producing Pi→f � 0.01 were discarded.

5 10 15 20 25 30 35 40 100
15

20

25

30

35

40

45

50

80
120
160
200

se
ar

ch
 e

ffo
rt 

(it
er

at
io

ns
)

N

 D=1.0
 D=0.5
 D=0.2
α

5 10 15 20 25 30 35 40
20

40

60

80

100

120

140
400
600
800

1000

se
ar

ch
 e

ffo
rt 

(it
er

at
io

ns
)

N

(a) (b)

FIG. 2. Required mean search effort versus N for the target
transitions |1〉 → |5〉 (solid shapes) and |1〉 → |10〉 (open shapes)
for Hamiltonians with dipole structures of D = 1.0 (squares), D =
0.5 (circles), D = 0.2 (down triangles), and α (side triangles), with
H0 given by Eq. (16) (a) and by Eq. (17). (b) Search effort is invariant
to N in all cases (excepting some cases where the effort for the
smallest N recorded is significantly lower than for remaining N ), but
the absolute effort is greater for weak coupled dipoles, the |1〉 → |10〉
transition, and oscillator H0 structure. Some points are shifted on the
abscissa for graphical clarity.

Figure 2 shows the mean search effort versus N for rotor H0

[Eq. (16), (a)] and oscillator H0 [Eq. (17), (b)] with D = 1.0,
0.5, 0.2, and α dipoles and the transitions |1〉 → |5〉 (solid
symbols) and |1〉 → |10〉 (open symbols). Representative
statistical error bars are presented for one value of N for
each choice of D and Pi→f . Error bars for other N (with
the exception of the smallest N for the oscillator H0 structure)
were of similar magnitude. Examination of Fig. 2 shows two
striking trends. First, the search effort for any choice of dipole
structure is invariant to N , at least for N >∼ 10 for the |1〉 → |5〉
transition and N >∼ 15 for the |1〉 → |10〉 transition. This result
agrees with earlier work using kinematic control variables [61].
Second, for the same dipole structure and target transition,
the oscillator H0 structure requires a greater effort than for the
corresponding conditions with the rotor H0 when the dipole
coupling is weak (D � 0.5). This result shows how the choice
of H0 produces landscapes with different local structures, as
will be reported in Sec. VI.

A more detailed examination of Fig. 2 reveals two further
trends. Stronger coupling (i.e., D = 1 and α dipoles) results in
more efficient searches. This intuitive result can be explained in
terms of the accessible mechanistic pathways connecting |i〉
and |f 〉. With strong coupling, both “ladder climbing” (i.e.,
transitions between adjacent states) and quasidirect transitions
are accessible, making it easier to find an optimal field that
exploits one of many pathways from |i〉 to |f 〉. With weak
coupling, accessibility of only adjacent transitions limits the
number of pathways, thus making it more difficult to find a
field that utilizes one of them. This phenomenon is illustrated
in Fig. 3, which shows the population of each state |1〉 through
|10〉 of a 10-level system plotted versus time, with the goal
to transfer all population to |10〉 at T = 28. In Fig. 3(a)
(D = 0.2), each intermediate state |2〉 through |9〉 is accessed
sequentially in going from |1〉 → |10〉. All such plots for
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FIG. 3. Population of states versus time for a 10-level system
with target |1〉 → |10〉. (a) D = 0.2, and all intermediate states |2〉
through |9〉 are accessed sequentially on the way from |1〉 to |10〉,
consistent with a ladder-climbing mechanism. (b) D = 1.0, and only
states |2〉 and |8〉 play a significant role (all other intermediate states
are never populated more than 10% and are not shown).

D = 0.2 showed involvement of each intermediate state. In
Fig. 3(b) (D = 1.0), only states |2〉 and |8〉 are involved;
the remaining intermediate states were never populated more
than 10%. Other plots for D = 1.0 showed between one and
eight intermediate states involved, indicating more accessible
pathways between |1〉 and |10〉. Finally, for both H0 structures,
the more distant |1〉 → |10〉 transition generally requires more
effort than the closer |1〉 → |5〉 transition, except when D =
1.0, where the effort is similar. This result can be understood
in terms of the dipole coupling as well. When D = 1.0, all
transitions are equally allowed, so changing the final target
state does not affect the number of accessible mechanistic
pathways, resulting in no increase of search effort. Weaker
coupling, however, closes off pathways between nonadjacent
states, further reducing the number of accessible pathways as
the distance between the initial and final states is increased.
Plots of state population versus time similar to Fig. 3 confirm
this behavior (not shown).

B. Varying the initial control field

In order to isolate the effects of varying the initial control
field on the required search effort, the rotor H0 [Eq. (16)],
α dipole structure and the |1〉 → |5〉 transition were fixed.
Sets of 20 simulations were performed for initial field strength
F = 0.1, 10, and 100 with a bandwidth bounded by  = ω5

in order to determine the effect of initial fluence (i.e., F 2) on
search effort; the fluence was allowed to vary freely during
the landscape ascent. Fields of initial strength F = 1 with a
fixed maximal frequency  = ω20 as well as an N -dependent
maximal frequency  = ωN/2 were also chosen in order
to determine the effects of providing more bandwidth than
necessary.

Figure 4 presents the mean search effort versus N with
representative statistical variation bars. The effort is similar
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FIG. 4. Required mean search effort versus N for the target
transition |1〉 → |5〉 and α dipole structure with varying initial field
strength and bandwidth. The strength (solid shapes) or bandwidth
(open shapes) is labeled in the legend. For low strength and reasonable
bandwidth, effort is invariant to N . For high fluence (F = 100), effort
scales exponentially with N , as shown by the least-squares fit on the
semilog plot. For a large bandwidth range , effort increases through
N = 20 and then levels off. Some points are shifted on the abscissa
for graphical clarity.

for F = 0.1 and F = 1 (included as a reference) and F = 10;
these searches are the most efficient. Further increasing the
field strength leads to greater search effort: at F = 100, the
effort scales exponentially for N � 10 (note the least-squares
line and the log scale of the ordinate). This result appears
to arise because a strong field can easily spread an initial
amplitude out among many states, making it difficult to then
gather all of the amplitude into the target state |f 〉. This
conclusion can be verified by examining the matrix with
elements {|Uif (T ,0)|2} produced by the initial and optimal
electric fields. When F = 1, the initial matrix {|Uif (T ,0)|2} is
nearly diagonal, since the far off-diagonal elements [including
the desired (5,1) element] are close to zero, as shown in
Fig. 5(a). In contrast, when F = 100 in Fig. 5(b), the initial
matrix {|Uif (T ,0)|2} contains many significant off-diagonal
elements, indicating that the amplitude is spread out through
many states. The {|Uif (T ,0)|2} matrices produced by the
optimal fields retain the predominantly diagonal structure for
F = 1 and the significant off-diagonal elements for F = 100
(Fig. 5, bottom row). When the bandwidth provided is more
than necessary to make the |1〉 → |5〉 transition, the effort
grows very slowly with N . The slight increase in effort
compared to using the maximal frequency  = ω5 suggests
that additional access to un-needed ancillary states makes it
more difficult to gather all of the amplitude in the target final
state; examination of the {|Uif (T ,0)|2} matrices for these cases
verified this behavior (not shown).

C. The |1〉 → |N〉 transition

The simulations above employed a fixed choice of |i〉
and |f 〉 as N was increased. Specifying |1〉 → |N〉 as the
target transition causes the final state to recede from the
initial state as N is increased. To accommodate the increasing
demands of transferring amplitude between successively more
distant states, the strength of the initial fields was chosen as
F = 10 and the frequencies were chosen on an N -dependent
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FIG. 5. Plots of the absolute value of the matrix elements of the
propagator {|Uif (T ,0)|2} at initial random control fields (top) and
optimal fields (bottom) for N = 10 and the target |1〉 → |5〉 transition
under the conditions F = 1 (a) and F = 100 (b). The (5,1) element
is circled in each plot and has a value of 1.0 at the optimal fields
and a value of close to zero at the initial fields. Both the initial and
final {|Uif (T ,0)|2} matrices are nearly diagonal for F = 1, while at
F = 100, many off-diagonal elements are nonzero, indicating that
the population is spread out among many states. Such a {|Uif (T ,0)|2}
matrix structure at F = 100 results in a greater search effort because
it becomes more difficult to gather all of the amplitude in a single
final target state.

bandwidth with maximal frequency  = ωN/2. Because the
initial population in |N〉 drastically decreases with rising N (cf.
Fig. 1), iterations were counted starting when the yield reached
Pi→f = 0.001 to normalize the effort against this discrepancy.

The results of simulations using D = 1.0, 0.5 and α dipole
structures with both rotor and oscillator H0 structures are
shown in Fig. 6. The scaling behavior with N changes sig-
nificantly depending on the dipole structure. When D = 1.0,
the effort is invariant to N . Although the distance between the
initial and final states is rising with N , when all transitions are
equally allowed, the number of possible pathways between |1〉
and |N〉 is large enough to permit efficient optimization even at
large N . In contrast, for the α and D = 0.5 dipoles, the effort
scales exponentially with N , as shown with the least-squares fit
lines on the semilog plot in Fig. 6. The 12 falsely trapped cases
mentioned in Sec. IV were for these simulations employing
2048 time points with D = 0.5 and N = 30 and 40. The
additional resolution gained on interpolation of the control
field on 4096 time points eliminated these false traps with
further climbing iterations. These iterations were added for
computation of the mean search effort in Fig. 6. Receding
target objectives with increasing system complexity (i.e.,
illustrated here with |1〉 → |N〉) are generally not the case for
laboratory OCE, thereby evidently avoiding the exponential
scaling of effort.

The observed systematic invariance of search effort with
respect to N over a wide range of Hamiltonian and initial
control field structures verifies that the search effort for
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FIG. 6. Mean search effortversus N for the |1〉 → |N〉 transition.
When all transitions are allowed [D = 1.0 (squares)], the effort is in-
variant to N . When the coupling strength decreases with distance be-
tween the states [α (triangles) and D = 0.5 (circles)], the effort scales
exponentially with N , as shown by the least-squares fit lines on the
semilog plot. Results are qualitatively the same for the rotor Hamil-
tonian (solid symbols) and oscillator Hamiltonian (open symbols).

population transfer does not depend on the system complexity,
as was the case for kinematic controls [61]. This result is
valid on making a rational choice of the control objective
and initial field (i.e., for fixed target transition and reasonable
initial field strength). The results suggest that under such
circumstances, controlling complex quantum systems with
many degrees of freedom should be no more difficult than
controlling simple systems. Evidently the same conclusion
applies to performing OCE for various objectives, where the
search effort appears to be essentially the same regardless
of the system complexity when operating with physically
appropriate controls [20,25,28,30]. The next section will
address the relationship between the observed trends in search
effort and the underlying control landscape structure.

VI. SEARCH EFFORT AND LANDSCAPE STRUCTURE

Examination of the relationship between the structure of
the control landscape and the required search effort makes
it possible to obtain further insight into the scaling results
obtained in Sec. V. In this section, we determine the local
landscape structure in terms of the metrics defined in Sec. II B.
Here, the notion of structure refers to landscape features other
than topological critical points; the landscape theory predicts
critical points only at Pi→f = 0 and 1, which was verified by
the observed lack of traps in Sec. IV.

A. Search trajectories on the control landscape

We first consider the relationship between the search effort
and the complexity of the trajectories over the landscape taken
during the optimal searches using the ratio metric Rε defined
in Eq. (8). The mean values of Rε were calculated for all the
searches performed in Sec. V. Select examples with the rotor
H0 structure [Eq. (16)] are plotted in Fig. 7. When the search
effort is invariant to N (i.e., the |1〉 → |5〉 transition with
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of Rε are generally close to 1, indicating that the searches follow
direct trajectories in the space of controls.

F = 1 for α and D = 0.2 dipoles in Fig. 7), the ratio Rε is
also invariant to N , in agreement with kinematic results [61].
In contrast, when effort increases with N (e.g., the |1〉 → |N〉
transition or large strength F ), the path length correspondingly
rises with N . For all conditions where search effort is invariant
to N , the ratio Rε is correlated to the search effort, as shown
in Table I for simulations using the rotor H0 [Eq. (16)] and
oscillator H0 [Eq. (17)]; ratios are significantly higher for the
oscillator H0, although these do not scale with N . The values
of the distances ||�Eε|| and ||�P ε|| used to define Rε follow
the same correlations with effort. The differences in values
of Rε between optimizations using the rotor and oscillator
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H0 structures for weakly coupled dipoles can be explained by
examination of the landscape slope, as discussed below.

B. Landscape slopes and search effort

The magnitude of the gradient Sm provides valuable
information about how fast a search algorithm may improve the
yield. Intuitively, a steep slope would be conducive to efficient
optimization because the yield may improve rapidly on taking
an algorithmic step, while a very shallow slope should slow
the optimization.

For the optimizations in Sec. V, the slope metric S0 at
the initial random control field (or at the first iteration where
Pi→f � 0.001) and the point of maximal slope Smax were

TABLE I. Mean search effort, ratio Rε , initial slope metric S0, and maximal slope metric Smax for all simulations that showed invariant
scaling effort to N . Recorded values are taken from simulations at N = 20, but for other N the values were similar. Data are given for the
rotor H0 [Eq. (16)] and the oscillator H0 [Eq. (17)]. A comparison of the landscape metrics with the effort shows that the two are correlated.
The “easiest” optimizations (D = 1.0) have the lowest ratio Rε and the highest initial S0 and maximal Smax slope metrics, while the “hardest”
optimizations (D = 0.2) have the highest ratios Rε and lowest initial and maximal slope metrics. The effort using the oscillator H0 is always
greater than for the rotor H0, and the metrics show corresponding increases.

|i〉 → |f 〉 μ F  Effort (16) Rε S0 Smax Effort (17) Rε S0 Smax

|1〉 → |5〉 D = 1.0 1 ω5 17 1.07 0.49 3.17 21 1.10 0.27 2.99
α 18 1.07 0.35 2.23 39 1.23 0.10 1.12

D = 0.5 27 1.15 0.15 1.48 102 1.49 0.12 1.24
D = 0.2 39 1.21 0.09 1.50 331 1.54 0.05 1.29

|1〉 → |10〉 D = 1.0 1 ω10 17 1.05 0.41 2.94 19 1.07 0.34 2.84
α 21 1.07 0.13 1.44 52 1.13 0.05 0.59

D = 0.5 38 1.21 0.02 0.83 113 1.37 0.01 0.71
D = 0.2 118 1.38 0.02 0.82 891 1.69 0.01 0.60

|1〉 → |5〉 α 0.1 ω5 18 1.06 0.10 2.22
10 24 1.13 0.38 2.15
1 ω20 26 1.1 0.11 1.92

ωN

2 27 1.11 0.12 1.97
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recorded; at Pi→f ∼ 0.001, the slope metric S0 is typically
small. Both the initial S0 and maximal Smax slope metrics
along an optimization may be expected to correlate with the
required search effort. Figure 8 shows the mean value of the
initial slope metric S0 (solid symbols) and maximal slope
metric Smax (open symbols) for selected optimizations from
Sec. V. The initial and final slope metrics are independent of
N under conditions where the search effort is also invariant,
while both metrics for the |1〉 → |N〉 transition decrease as
N rises, in accordance with the increase in search effort. All
conditions where the effort was dependent on N exhibited the
behavior of decreasing slope metrics as N rises. For the cases
invariant to N , more difficult optimizations (e.g., optimization
with a weak dipole) have smaller initial and maximal slope
metrics than easier optimizations, as shown in Table I. Thus,
the search effort follows the intuitive conjecture that a steeper
slope results in more efficient optimization, as was found using
kinematic control variables [61]. In general, the linkage of
search effort to the gradient depends on the choice of search
algorithm. Most OCT studies use gradient algorithms, so in
such cases the search effort may be expected to depend on the
initial and/or maximal slope metric. However, other “smart”
algorithms (e.g., with stochastic logic) can also exploit the
favorable slopes and direct pathways to the optimum with Rε

being small.
An exception to the simple search effort correlation with

the initial and maximal slope metrics arises for searches using
weakly coupled dipoles when comparing the two H0 structures
with otherwise identical search conditions. The effort for the
oscillator H0 is drastically higher than for the rotor H0, but the
initial and maximal slope metrics are of similar magnitude,
as shown in Fig. 8 and Table I. This discrepancy can be
explained by examining the trajectory of the slope metric and
the ratio Rε over the course of an optimization. As an example,
these trajectories for searches with N = 20, D = 0.2, and
|1〉 → |5〉 transition are compared for the two different H0

structures. Figure 9 shows the trajectory of the slope metric
[Fig. 9(a)] and the trajectory of Rε [Fig. 9(b)] for two searches
with each H0 structure. The trajectories of the slope metric
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FIG. 9. Trajectory of the slope metric (a) and ratio Rε (b) for two
searches using the oscillator H0 (solid lines) and rotor H0 (dashed
lines). D = 0.2, F = 1 and the target transition is |1〉 → |5〉. The
trajectories for searches using the rotor H0 are less complex than
those for searches using the oscillator H0.
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FIG. 10. Hessian eigenvalues at the top of the landscape plotted
versus their index. All optimizations used rotor H0 structure and
F = 1 for the |1〉 → |5〉 transition. (a) Optimizations with D = 1.0;
(b) optimizations with D = 0.5; note the logarithmic scale. The
vertical dotted lines show the value of 2N − 2 for each N , and the
2N − 2 rule is obeyed. In each case a few of the zero eigenvalues are
shown for graphical clarity.

S for the rotor H0 share the simple structure of starting
near zero at the initial field with Pi→f ∼ 0.001, rising to
a maximum around Pi→f ∼ 0.5 and decreasing toward the
optimum. Similarly, the trajectories of Rε for these searches
show a simple monotonic rise with Pi→f . In contrast, the
trajectories of searches using the oscillator H0 structure show
a more complex behavior over the landscape. Instead of
reaching a high at Pi→f ∼ 0.5, the maximal slope metric
for the oscillator searches occurs below Pi→f ∼ 0.3, and the
slope decreases rapidly thereafter. Examination of Rε at Pi→f

values (b) corresponding to the rapidly decreasing slope metric
in Fig. 9(a) shows a fast jump in Rε with Pi→f , indicating a
relatively “gnarled” landscape region. Finally, the slope metric
for the oscillator searches drops quickly for Pi→f � 0.8, and
the ratio Rε rises accordingly. Other trajectories for searches
using the oscillator H0 with a weakly coupled dipole show
similar features, suggesting that an oscillator H0 structure with
a weakly coupled dipole inherently creates a more gnarled
landscape than a rotor H0 with the same dipole.

C. Second-order landscape structure

Examination of the second-order landscape structure met-
rics can provide further insight into contributions to the relative
search effort required under different optimization conditions.
Calculations of the Hessian matrix and associated structure
metrics at the bottom and top of the landscape were performed
on the rotor H0 structure for (i) the |1〉 → |5〉 transition with the
α and D = 0.5 dipole structures for F = 1, (ii) the α dipole
structure for F = 100, and (iii) D = 0.5 for the |1〉 → |N〉
transition with F = 10. With the oscillator H0 structure, the
calculations were performed for the D = 0.5 dipole and F = 1
with |1〉 → |5〉 transition. In order to obtain Hessian matrices
reliably representing the bottom and top of the landscape, all
optimizations began at Pi→f � 1 × 10−5 and the convergence
criterion was Pi→f � 0.99999.
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It has been shown theoretically that the Hessian spectrum at
the bottom of the landscape has at most two nonzero positive
eigenvalues and the spectrum at the top contains at most
2N − 2 nonzero negative eigenvalues [33]. This analysis is
verified by our numerical results. Figure 10 shows the Hessian
spectra at the top of the landscape for individual optimizations
of the |1〉 → |5〉 transition with rotor H0 structure, F = 1,
and D = 1.0 [Fig. 10(a), for N ranging from 5 to 30] and
D = 0.5 [Fig. 10(b), for N ranging from 5 to 15]. The vertical
dotted lines denote the eigenvalue index of 2N − 2 for each
N reported. In the case of D = 1.0, there is always a clear
distinction between the (2N − 2)th eigenvalue (∼−10) and
the (2N − 3)th eigenvalue (>∼−0.01). The magnitude of the
largest and smallest nonzero eigenvalues does not change with
N . For D = 0.5, the drop in eigenvalue magnitude at the
index 2N − 2 is apparent at N = 5 and 10 [note log scale
on the ordinate in Fig. 10(b)]. By N = 15, the distinction
between the final nonzero and first zero eigenvalue is expected
to occur between the 28th and 29th eigenvalues; however the
eigenvalues are already of very small magnitude by the 23rd
eigenvalue. Recording the eigenvalues for larger values of N

with D = 0.5 revealed similar patterns of eigenvalue behavior.
This result shows that for large N with weak dipole couplings,
fewer than 2N − 2 negative eigenvalues can be expected at
the top of the landscape, and there is no clear boundary
between the zero and nonzero eigenvalues. Fewer than 2N − 2
nonzero eigenvalues were also observed for N � 15 using
the oscillator H0 structure with D = 0.5 (not shown). With
strong dipolar couplings (i.e., D = 1.0), there are always
exactly 2N − 2 nonzero eigenvalues; for the α dipole structure,
exactly 2N − 2 eigenvalues persist through N = 30, and by
N = 40 there are fewer than 2N − 2 eigenvalues (not shown).
At the bottom of the landscape, there is a clear distinction
between the two positive eigenvalues and the remaining zero
eigenvalues, which occurred under all search conditions (not
shown). These observations about the Hessian eigenvalues at
the bottom and top of the landscape validate the theoretically
predicted spectra [33]. Additionally, the number of nonzero
Hessian eigenvalues at the top of the landscape influences the
robustness of the control outcome to field noise; the presence
of fewer such eigenvalues enhances the robustness [63].

Examination of the Hessian trace and curvature metrics [cf.
Eqs. (12) and (13)] at the bottom and top of the landscape
yielded intuitive correlations between these metrics and the
required search effort, as was the case with the slope metric.
As graphs of these metrics versus N are similar to Fig. 8, the
data are not plotted again. Near the bottom of the landscape,
both the Hessian trace and curvature metrics are invariant
to N when the search effort is also invariant, and smaller
values of these metrics are recorded for more difficult search
conditions (e.g., oscillator H0, small dipole coupling). Where
exponential scaling of search effort with N was found, both
metrics decrease exponentially with N near the bottom of
the landscape. At the top of the landscape (Pi→f � 0.99999),
the Hessian trace is proportional to N , regardless of search
parameters, due to its dependence on the dipole norm ||μ||2
[33]. The curvature exhibits intuitive correlation with the
search effort, remaining constant with N for cases that lack
search effort scaling and decreasing in magnitude with N

where scaling is observed. Thus, all of the landscape structure

metrics examined in this section correlate in an intuitive way
with the required optimization search effort. These results
show that the landscape structure metrics provide a good
method to predict the relative required search effort under
a variety of conditions.

VII. CONCLUSION

This work addressed two major issues surrounding optimal
control of population transfer in quantum systems. The first
objective explored the fundamental topic of whether subopti-
mal trapping extrema are encountered while searching for an
optimal control field. The second objective examined how the
required effort to find an optimal control field scales with the
complexity of the quantum system as measured by its size N .

The possible existence of traps on the control landscape
is of both basic and practical importance. Quantum control
landscapes can rigorously be shown to contain no traps
under simple physical assumptions [31,33–35]. The vast
OCT literature supports the ability to reach excellent yields
[1–3,6–19,39–59], although these works are not definitive
with regard to the landscape due to control field constraints
typically being present. The recent identification of trapping
conditions [36–38] under unusual circumstances necessitates
a more explicit investigation of whether traps can be expected
when performing normal optimizations.

The simulations in this work found no evidence of trapping
behavior on the control landscape for Pi→f . Of the ∼5000
searches performed, a total of 12 were initially found to
be putative traps warranting further investigation. Enhancing
the time resolution established that the latter traps were
in fact false, with all optimization searches then reaching
Pi→f > 0.999. The identification of false trapping behavior
due to numerical constraints illustrates the need for special
care in performing simulations and the general need for due
attention to all physical constraints on the field dynamics when
a high yield is desired. The lack of observed traps on the
Pi→f landscape is consistent with results reported for the
landscape corresponding to the generation of arbitrary unitary
transformations U (T ,0), where ∼20 000 optimizations were
performed, all of which reached an optimal fidelity value [67].

The second issue studied here of search effort scaling with
N is primarily of practical importance, indicating whether the
control of large, complex quantum systems in the laboratory
is feasible. The OCT literature collectively suggests that the
required search effort to find an optimal control may be
independent of the complexity (i.e., here captured by N ) of
the target quantum system [2,3,9,13,15,17,39–59]. The results
from this work systematically verify this behavior and identify
the control conditions sufficient for the search effort scaling
to be independent of N . Specifically, choosing a fixed target
transition |i〉 → |f 〉 results in the scaling of effort being
invariant to N across a wide range of dipole matrix structures
and reasonable initial control field parameters, although the
absolute search effort can vary widely. This attractive behavior
breaks down, however, on choosing targets that themselves
increase in complexity with the system (e.g., |1〉 → |N〉) or
starting with a large initial control field strength for a fixed
target transition, where the wave function amplitude spreads
widely before finally being drawn into the target state.
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The observed search effort was found to correlate with the
landscape features, as measured by the distance and structure
metrics. The scaling of the ratio of path length to Euclidian
distance Rε with N follows that of the search effort; Rε only
increases with N for the difficult cases such as the |1〉 → |N〉
target or with a large initial field fluence. For cases with scaling
invariant to N , the relative search effort can be predicted by
the value of Rε, with greater values of this metric correlating
with a greater search effort. Analysis of the local structure of
the landscape shows that the search effort correlates with the
slope metric (gradient norm) in an intuitive manner. A steeper
landscape slope both at the initial control field and at the point
of maximal slope results in a lower search effort than a shallow
slope. The landscape slopes at these points are invariant to N ,
except for the cases where the search effort scales with N , for
which both initial and maximal slopes decrease as N rises. A
similar correlation of search effort with the curvature metric
near the bottom and top of the landscape with N was observed.
Finally, the collective dynamic findings on search effort show
a strong relation to analogous behavior found using kinematic

variables [61]. Although clearly additional dynamical features
occur (e.g., through the amplitude and structure of the dipole
couplings), much of the basic invariant scaling findings with N

appear to have their origins in the underlying simpler kinematic
control formulation.

This work addressed many classes of control Hamiltonians
in order to demonstrate the broad applicability of the two
main results in this work. However, some classes of quantum
systems, such as those containing degenerate energy levels or
additional symmetry in the dipole matrix, were not addressed
here. Provided that such systems are controllable [32] (e.g.,
where dipole couplings break the symmetry produced by
degenerate states), the favorable topological and scaling results
are expected to hold. For other special classes of systems that
are uncontrollable or nearly so (e.g., a harmonic oscillator),
special care in the choice of controls may be needed to
avoid traps on the landscape arising from the lack of system

controllability. Most classes of quantum systems, however,
are expected to satisfy the controllability requirement and thus
exhibit qualitatively similar behavior in terms of landscape
topology and search effort seen here.

The favorable scaling of Pi→f with N suggests that
optimization of state preparation with a suitable set of controls
should be relatively easy to attain using OCE, even with
complex systems. Although the quantum systems employed
here do not model any particular real system, the results using
the rigid rotor and anharmonic oscillator H0 structures indicate
that some quantum systems may generate a landscape with
a more gnarled local structure than others, leading to wide
variations in the absolute search effort required to find an
optimal control. Nevertheless, a family of quantum systems
that are difficult to optimize may still show invariant scaling
with N . These results are consistent with successful OCE
studies on complex molecules such as proteins [28,30], even
though the laboratory conditions are more involved than the
ideal circumstances presented here.

Overall, this work demonstrated that both the topology and
the local structure of the control landscape for population
transfer are conducive to efficient optimal control. Extensive
simulations did not encounter traps on the landscape on
reasonable choices of Hamiltonians, initial control fields, and
careful numerical optimization. The invariance of scaling of
the search effort with system complexity was shown to be
due to favorable local landscape structure that does not grow
more complex with system size N . Besides state preparation,
recent studies generalize these landscape topology, features,
and optimization scaling results to the preparation of unitary
transformations [67] and broader classes of observables [68].
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