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Salpeter equation and probability current in the relativistic Hamiltonian quantum mechanics
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The probability current for a quantum spinless relativistic particle is introduced based on the Hamiltonian
dynamics approach utilizing the Salpeter equation as an alternative for the Klein-Gordon equation. The correctness
of the presented formalism is illustrated by examples of exact solutions to the Salpeter equation including the
new ones introduced in this work.
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I. INTRODUCTION

The problem that arose in the very early days of quantum
mechanics was finding the relativistic counterpart of the
Schrödinger equation. The most popular choices of the
relativistic quantum mechanical equations for spinless massive
particle are the Klein-Gordon equation [1–4] and less familiar
relativistic Schrödinger equation, which is usually referred to
as the spinless Salpeter equation [5–23]. The latter can be
regarded as the “square root” of the Klein-Gordon equation
and is based on the approach that is sometimes referred to as
the relativistic Hamiltonian dynamics [24,25].

The advantage of the Klein-Gordon equation is that it is
manifestly covariant. Its well-known flaw related to the fact
that this equation is of second order in the time derivative
is the problem with the probabilistic interpretation, namely,
the time component of the probability four-current, which in
the nonrelativistic case should coincide with the probability
density, can be negative. As a matter of fact, as the second-order
equation the Klein-Gordon equation can be cast into a system
of first-order equations, which can be represented in matrix-
form equation. An example is the Kemmer equation [26,27]
and the two-dimensional system discussed by Feshbach and
Villars [28]. Nevertheless, the reduction of this kind does not
solve problems with the Klein-Gordon equation and generate
new ones. Furthermore, the appearance of both signs of
energies for the solutions to the Klein-Gordon equation leads
to the occurrence of the “Zitterbewegung” and the Klein
paradox. The Zitterbewegung or trembling motion, i.e., rapidly
oscillatory motion whose amplitude and period are of order
h̄/mc and h̄/mc2, respectively, is the result of the interference
between positive and negative energy states. The Klein
paradox relies on possibility of transmission to states with
negative kinetic energy in the electrostatic steplike potentials.
To circumvent the problem one usually suggests the creation
of the particle-antiparticle pairs; that is, the need is indicated
for second quantization as with the Pauli-Weisskopf approach
[29], where the probability current is reinterpreted as a charge
current. Finally, the scalar product in the space of solutions of
the Klein-Gordon equation, although Lorentz covariant, is not
positive definite, which causes serious problems. Therefore,
severe difficulties arise with the physical interpretation of the
Klein-Gordon equation, and it is widely believed that based
on this equation one cannot construct consistent one-particle
relativistic quantum mechanics.

The disadvantage of the Salpeter equation is that it is
not manifestly covariant. Another problem that is sometimes

indicated is the nonlocality of the relativistic Hamiltonian,
which is the pseudodifferential operator. However, as was
pointed out by Lämmerzahl [22], the nonlocality of the
Salpeter equation does not disturb the light cone structure.
The macrocausality of the second quantized version of this
theory was also reported therein. In addition, it has been
demonstrated by Foldy [6] that the space L2(R3,d3x) of
solutions to the Salpeter equation is invariant under the Lorentz
group transformations, which is a direct consequence of a
unitary relationship between L2(R3,d3x) and the space of
the unitary irreducible representation of the inhomogeneous
Lorentz group [25]. On the other hand, it is clear that nonlocal
pseudodifferential equations such as the Salpeter equation
are much more complicated than the local differential ones
such as the Klein-Gordon equation. In spite of difficulties, the
great advantage of the Salpeter equation is that it possesses
solutions of positive energies only, so we have no problems
with paradoxes mentioned above occurring in the case of the
Klein-Gordon equation. We also point out that agreement of
predictions of the spinless Salpeter equation with the experi-
mental spectrum of mesonic atoms is as good as in the case
of the Klein-Gordon equation [30]. Moreover, the possibility
of probabilistic interpretation in the quantum case as well as
clear classical physical content of the Salpeter equation was
the motivation for its wide usage in the phenomenological
description of the quark-antiquark-gluon system as a hadron
model [31,32].

In this work, after discussion of the relationship of the
Salpeter equation with the corresponding integro-differential
equation, we introduce and examine the probability current
derived from the spinless Salpeter equation. We show that
such current has all good properties of its nonrelativistic coun-
terpart. In particular, our analysis shows that the nonlocality
of the Salpeter equation does not disturb causal propagation
of particles. The theory is illustrated by concrete examples of
exact solutions of the Salpeter equation.

II. THE SALPETER EQUATION

This section is devoted to the discussion of the basic facts
about the Salpeter equation. The Hamiltonian of a relativistic
classical particle subject to the potential V (x) is

H =
√

c2 p2 + m2c4 + V (x), (2.1)

where m is the mass of the particle, c is the speed of light, and
x is the three-position. In relativistic quantum mechanics the

012108-11050-2947/2011/84(1)/012108(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.012108
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system defined by the Hamiltonian (2.1) is described by the
Salpeter equation of the form

ih̄
∂φ(x,t)

∂t
= [

√
m2c4 − h̄2c2� + V (x)]φ(x,t), (2.2)

where � ≡ ∇2. Equation (2.2) is obtained by the quantization
procedure utilizing the Newton-Wigner localization scheme
[6]. In this scheme we have the standard quantization rule x̂ →
x, and p̂ → −ih̄∇. As a consequence, the space of solutions
of the Salpeter equation is the Hilbert space L2(R3,d3x) with
the scalar product

〈φ|ψ〉 =
∫

d3x φ∗(x)ψ(x). (2.3)

Therefore, according to the quantum-mechanical spirit, we
should identify |φ(x,t)|2 with the probability density ρ(x,t)
satisfying the normalization condition:∫

d3x ρ(x,t) = 1. (2.4)

Motivated by usage of limiting procedures in the nonrela-
tivistic and ultrarelativistic case as well as some dimensional
considerations, we keep in this section and the following
one the physical constants h̄ and c. The natural units h̄ = 1
and c = 1 are utilized in Sec. IV. Performing the Fourier
transformation

φ(x,t) = 1

(2π )
3
2 h̄3

∫
d3 p ei p·x

h̄ φ̃( p,t) (2.5)

(in the following, whenever it is clear from the context, we
omit designation of a region of integration) we obtain from
(2.2) the following equation:

ih̄
∂φ̃( p,t)

∂t
= [

√
m2c4 + p2c2 + V (ih̄∇ p)]φ̃( p,t). (2.6)

It is clear that (2.6) is the partial differential equation of finite
order only for V (x) polynomial in x. Note that

√
m2c4 + p2c2

is the so-called symbol of the pseudodifferential operator√
m2c4 − h̄2c2�, that is,√

m2c4 − h̄2c2�φ(x,t)

= 1

(2π )
3
2 h̄3

∫
d3 p

√
m2c4 + p2c2 ei p·x

h̄ φ̃( p,t). (2.7)

On taking the inverse Fourier transformation

φ̃( p,t) = 1

(2π )
3
2

∫
d3 y e−i p· y

h̄ φ( y,t), (2.8)

and making use of the identity [33]∫ ∞

−∞

√
x2 + a2 eipx dx = − 2a

|p|K1(a|p|), (2.9)

where Kν(z) is the modified Bessel function (Macdonald
function), as well as the differentiation formula satisfied by
the Bessel functions such that

K ′
1(z) = 1

z
K1(z) − K2(z), (2.10)

we get from (2.7) the following formula for the action of the

pseudodifferential operator
√

m2c4 − h̄2c2� in the coordinate
representation:
√

m2c4 − h̄2c2� φ(x,t) =
∫

d3 y K(x − y)φ( y,t), (2.11)

where the function K(x − y) is

K(x − y) = − 2m2c3

(2π )2h̄

K2(mc
h̄

|x − y|)
|x − y|2 , (2.12)

and |a| designates the norm of the vector a. Thus, it turns

out that the pseudodifferential operator
√

m2c4 − h̄2c2� can
be defined as the integral operator with the kernel (2.12).
Consequently, the Salpeter equation (2.2) takes the form of
the integro-differential equation

ih̄
∂φ(x,t)

∂t
=

∫
d3 y K(x − y)φ( y,t) + V (x)φ(x,t).

(2.13)

We also remark that the nonlocality of the Salpeter equation
is related only to the kinetic energy term described by the
integral operator from the right-hand side of Eq. (2.13) and
does not depend on the potential. Therefore, the nonlocality
is not connected with potential forces acting on a quantum
particle. Consider now the massless limit m = 0, when the
Salpeter equation is

ih̄
∂φ(x,t)

∂t
= [h̄c

√−� + V (x)]φ(x,t). (2.14)

Of course, the corresponding Fourier transform φ̃( p,t) fulfills
the massless limit of Eq. (2.6), i.e.,

ih̄
∂φ̃( p,t)

∂t
= [c| p| + V (ih̄∇ p)]φ̃( p,t). (2.15)

Taking the limit m → 0 of Eq. (2.12) and using the asymptotic
formula

K2(z) = 2

z2
, z → 0, (2.16)

we find for m = 0

K(x − y) = −2ch̄

π2

1

|x − y|4 (m = 0). (2.17)

Finally, consider the simplest case of a relativistic massless
particle moving in a line, when the Salpeter equation is

ih̄
∂φ(x,t)

∂t
=

[√
m2c4 − h̄2c2

∂2

∂x2
+ V (x)

]
φ(x,t).

(2.18)

On performing the Fourier transform

φ(x,t) = 1√
2πh̄

∫ ∞

−∞
dp e

ipx

h̄ φ̃(p,t), (2.19)

we obtain the counterpart of Eq. (2.6),

ih̄
∂φ̃(p,t)

∂t
=

[√
m2c4 + p2c2 + V

(
ih̄

∂

∂p

)]
φ̃(p,t).

(2.20)
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Clearly the one-dimensional version of (2.7) is√
m2c4 − h̄2c2

∂2

∂x2
φ(x,t)

= 1√
2πh̄

∫ ∞

−∞
dp

√
m2c4 + p2c2 e

ipx

h̄ φ̃(p,t). (2.21)

Taking the inverse Fourier transformation

φ̃(p,t) = 1√
2π

∫ ∞

−∞
dy e

−ipy

h̄ φ(y,t), (2.22)

and using (2.9) we find√
m2c4 − h̄2c2

∂2

∂x2
φ(x,t) =

∫ ∞

−∞
dy K(x − y)φ(y,t),

(2.23)

where the kernel K(x − y) is given by

K(x − y) = −mc2

π

1

|x − y|K1

(
mc

h̄
|x − y|

)
. (2.24)

It follows immediately from (2.24) and the asymptotic formula

K1(z) = 1

z
, z → 0 (2.25)

that the kernel in the massless case is of the form

K(x − y) = −ch̄

π

1

(x − y)2
(m = 0). (2.26)

The relation (2.26) is also a direct consequence of (2.21) with
m = 0, Eq. (2.22), and the identity [33]∫ ∞

−∞
|x|eipx dx = − 2

p2
. (2.27)

As far as we are aware, the first example of the exact
solution to the Salpeter equation, referring to the massless
free particle moving in a line, was considered by Rosenstein
and Horwitz [11], whereas the solution for the massive free
particle was discussed by Rosenstein and Usher [12]. The
WKB approximation technique to the Salpeter equation was
developed in Refs. [8] and [9]. In a series of papers by Hall,
Lucha, and Schöberl (see, for instance, Ref. [15]), the energy
bounds for the Salpeter equation were analyzed. To our best
knowledge, the first example of the nontrivial exact solution
to the Salpeter equation in the case of a particle in R3 was
our solution to the Salpeter equation for a relativistic massless
harmonic oscillator [23]. More precisely, we derived the exact
stationary wave functions and corresponding exact spectrum of
the energy expressed by means of zeros of the Airy function.
The correctness of the quantization based on the massless
Salpeter equation was confirmed by the good behavior of
the related probability density and expectation values of
observables. Recently, the new exact solution to the Salpeter
equation has been reported referring to the free massive particle
on a line, with the Gaussian initial wave function [34]. This
solution is very complicated, and it has the form of infinite
power series expansion with coefficients expressed by means
of integrals of special functions. In Sec. IV we introduce other
new examples of exact solutions to the Salpeter equation. In
particular, we derive the nontrivial solution of this equation for
a massless particle in a linear potential.

III. PROBABILITY CURRENT

In this section we introduce the probability current for
a quantum spinless relativistic particle and discuss its basic
properties. We first discuss the probability density and the
probability current for the Klein-Gordon equation such that

[
ih̄

∂

∂t
− V (x)

]2

ψ(x,t) = (m2c4 − h̄2c2�)ψ(x,t), (3.1)

where the potential V (x) is introduced in the equation by
means of the vector minimal coupling scheme. We point
out that the denomination “square root” of the Klein-Gordon
equation, mentioned in the introduction, is appropriate for the
Salpeter equation only in the case of a free particle. Indeed, by
squaring (2.2) we obtain

[
ih̄

∂

∂t
− V (x)

]2

φ(x,t)

= {m2c4 − h̄2c2� + [
√

m2c4 − h̄2c2�,V (x)]}φ(x,t).

(3.2)

We recall that in the case of the Klein-Gordon equation the
probability density is given by (compare Ref. [35])

ρKG = ih̄

2mc2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t
+ 2i

h̄
V |ψ |2

)
. (3.3)

Since the Klein-Gordon equation is second order in a time
derivative, therefore the initial values of ψ and ∂ψ

∂t
can

be arbitrary. We conclude that ρKG can be either positive
or negative, and the problem arises with the probabilistic
interpretation of the Klein-Gordon equation. The expression
for ρKG reduces to the nonrelativistic form in the nonrelativistic
limit c → ∞. However, to show this one should first assume
the validity of the Salpeter equation (2.2) or equivalently
restrict to positive energy solutions of the Klein-Gordon
equation only. The formula for the probability current for a
Klein-Gordon particle is identical with the nonrelativistic one;
that is, we have

jKG = − ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗). (3.4)

We stress that neither the probability density (3.3) nor
the probability current (3.4) has the correct limit m → 0.
Furthermore, it can be checked that the continuity equation
implied by the massless Klein-Gordon equation obtained from
(3.1) by setting m = 0 requires the existence of some universal
constant with the dimension of length. This is yet another
disadvantage of the Klein-Gordon equation.

We now return to the Salpeter equation (2.2). Proceeding
analogously as in the case of the nonrelativistic Schrödinger
equation we find

∂|φ|2
∂t

+ i

h̄
(φ∗

√
m2c4 − h̄2c2� φ− φ

√
m2c4 − h̄2c2�φ∗)= 0.

(3.5)
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Now, the probability density ρ(x,t) expressed in terms of the
Fourier transform φ̃( p,t) can be written in the form

ρ(x,t)=|φ(x,t)|2 = 1

(2π )3h̄6

∫
d3 p d3k ei (k− p)·x

h̄ φ̃∗( p,t)φ̃(k,t).

(3.6)

On using (3.5), (3.6), and the continuity equation

∂ρ

∂t
+ ∇· j = 0, (3.7)

where ρ(x,t) is the probability density and j (x,t) is the
probability current, we arrive at the following formula for
the probability current:

j (x,t) = c

(2π )3h̄6

∫
d3 p d3k

p + k√
m2c2 + p2 +

√
m2c2 + k2

× ei (k− p)·x
h̄ φ̃∗( p,t)φ̃(k,t). (3.8)

It should be noted that the probability current (3.8) has the
correct nonrelativistic limit c → ∞. Namely, making use of
(2.5), we easily find

lim
c→∞ j = − ih̄

2m
(φ∗∇φ − φ∇φ∗). (3.9)

Furthermore, it follows immediately from (3.8) that∫
j (x,t) d3x = 〈φ|v̂φ〉, (3.10)

where v̂ is the operator of the relativistic velocity

v̂ = c p̂
p̂0

, (3.11)

where p̂ = −ih̄∇ and p̂0 = E/c =
√

m2c2 + p̂2 =√
m2c2 − h̄2�. The formula (3.10) is the relativistic

counterpart of the well-known nonrelativistic expression
describing the connection of the integral of the probability
current and average velocity in the given state. We stress that
the relation (3.10) is not valid in the case of the Klein-Gordon
equation. Bearing in mind the critique of the Salpeter equation
based on its nonlocality, it is also worthwhile to point out
that the length of the average velocity (3.11) related to the
discussed probability current via Eq. (3.10), does not exceed
the speed of light. Indeed, we have

〈φ|v̂φ〉2 � 〈φ|v̂2φ〉 = c2〈φ| p̂2

p̂2 + m2c2
φ〉 � c2, (3.12)

where the inequality is saturated at m = 0. Yet another good
property of the probability current (3.8) is the existence of the
massless limit. In fact, putting m = 0 in (3.8) we immediately
get

j (x,t) = c

(2π )3h̄6

∫
d3 p d3k

p + k
| p| + |k|

× ei (k− p)·x
h̄ φ̃∗( p,t)φ̃(k,t) (m = 0). (3.13)

The probability current can be expressed in terms of the
solution φ(x,t) to the Salpeter equation. Indeed, substituting

in (3.8) the Fourier transform (2.8) and using (2.9), (2.10), and
the identity [33]∫ ∞

−∞

eipx

a2 − x2
dx = π

a
sin a|p|, (3.14)

we find

j (x,t) =
∫

d3 y d3 z K (x; y,z)φ∗( y,t)φ(z,t), (3.15)

where

K (x; y,z) = − im2c3

(2π )3h̄2 (∇ y − ∇z)

×
{

1

| y − x||x − z|
1

| y − x| + |x − z|
×K2

[
mc

h̄
(| y − x| + |x − z|)

]}
. (3.16)

Hence, making use of the theorem on the gradient [36]∫
V

d3x ∇ϕ(x) =
∫

S

dS ϕ(x), (3.17)

where S is the oriented boundary of the volume V , and taking
into account that the Bessel functions Kν(z) approach zero as
|z| → ∞, we arrive at the relation

j (x,t) =
∫

d3 y d3 z K(| y − x|,|x − z|)
× [φ∗( y,t)∇zφ(z,t) − φ(z,t)∇ yφ

∗( y,t)], (3.18)

where

K(|u|,|w|) = − im2c3

(2π )3h̄2

1

|u||w|
1

|u| + |w|
×K2

[
mc

h̄
(|u| + |w|)

]
. (3.19)

The formula (3.18) is remarkable. In fact, it means that the
relativistic probability current has the form resembling the
“smeared” nonrelativistic one.

We now discuss the case m = 0. On taking the massless
limit m → 0 and making use of (2.16) we easily get from
(3.16) the following formula:

K (x; y,z) = − 2ic

(2π )3
(∇ y − ∇z)

×
[

1

| y − x||x − z|
1

(| y − x| + |x − z|)3

]

(m = 0). (3.20)

The relation (3.20) can be also easily derived from (3.13),
(2.8), (3.14), and the identity [33]∫ ∞

−∞
ε(x) sin ax eipx dx = 2a

a2 − p2
, (3.21)

where ε(x) is the sign function. Proceeding analogously as
with (3.15) we get

K(|u|,|w|) = − 2ic

(2π )3

1

|u||w|
1

(|u| + |w|)3
(m = 0).

(3.22)
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On the other hand, the formula (3.22) is an immediate
consequence of (3.19) and the asymptotic formula (2.16).

Now, whenever the initial wave function is real, then the
solutions to the Salpeter equation (2.2) satisfy φ∗(x,t) =
φ(x, − t). Of course, it is a well-known property of the
Schrödinger equation. An immediate consequence of this
relation and (3.15) is j (x, − t) = − j (x,t), that is, j (x,t)
is an odd function of time. Furthermore, it follows easily
from (3.16) that if the wave packet fulfils φ(−x,t) = φ(x,t)
or φ(−x,t) = −φ(x,t), then j (−x,t) = − j (x,t).

We now return to the Salpeter equation (2.2). Using
the continuity equation (3.7) and the formal power series
expansion of the square root from the right-hand side of (2.2)
we get the following formula for the probability current:

j = − imc2

h̄

∞∑
n=1

(2n − 3)!!

(2n)!!

(
h̄

mc

)2n

×
2n−1∑
k=0

(−1)k∇kφ∗∇2n−k−1φ. (3.23)

We point out that (3.8) can be formally obtained from (3.23)
and (2.5). Nevertheless, the formula for the probability current
(3.23) is mathematically less sound and technically less
convenient than the integral representation (3.8). Furthermore,
in opposition to (3.8), the current given by (3.23) has no correct
limit for m → 0.

Finally, let us restrict to the simplest case of a relativistic
massless particle on a line. Equations (3.6), (3.8), and (3.13)
take then the following form:

ρ(x,t) = |φ(x,t)|2 = 1

2πh̄2

∫
dp dk ei (k−p)x

h̄ φ̃∗(p,t)φ̃(k,t),

(3.24)

j (x,t) = c

2πh̄2

∫
dp dk

p + k√
m2c2 + p2 + √

m2c2 + k2

× ei (k−p)x
h̄ φ̃∗(p,t)φ̃(k,t), (3.25)

j (x,t) = c

2πh̄2

∫
dp dk

p + k

|p| + |k|e
i (k−p)x

h̄ φ̃∗(p,t)φ̃(k,t)

(m = 0), (3.26)

respectively; here we have used the Fourier transformation
(2.19). Let us focus our attention on Eq. (3.25) . Taking into
account (2.22), (2.9), and the identity [33]∫ ∞

−∞

eipx

x + a
dx = iπε(p)e−iap, (3.27)

we get from (3.25)

j (x,t) =
∫

dy dz K(x; y,z)φ∗(y,t)φ(z,t), (3.28)

where

K(x; y,z) = − imc2

2πh̄

ε(x − y) − ε(x − z)

|y − z| K1

(
mc

h̄
|y − z|

)
.

(3.29)

Hence, taking the limit m → 0 and using (2.25), we find
the following formula for the function K(x; y,z) for the
probability current in the massless case (3.26)

K(x; y,z) = − ic

2π

ε(x − y) − ε(x − z)

(y − z)2
(m = 0).

(3.30)

We now discuss the case of the massless particle on a line in
a more detail. Let φ±(x,t) be solution of the Salpeter equation

i
∂φ(x,t)

∂t
= c

√
− ∂2

∂x2
φ(x,t) (3.31)

for a free massless particle with positive (negative) momentum
moving in the line to the right (left). Then we can identify

φ̃±(p,t) = θ (±p)φ̃(p,t), (3.32)

where θ (p) is the Heaviside step function. By means of the
Fourier transformation (2.19) for m = 0, we conclude that φ+
and φ− depends on x − ct and x + ct , respectively, that is,

φ+(x,t) = ϕ(x − ct) (3.33)

and

φ−(x,t) = ψ(x + ct). (3.34)

Let furthermore ρ±(x,t) = |φ±(x,t)|2 and j±(x,t) designate
the probability density and probability current, respectively,
corresponding to φ±(x,t). An immediate consequence of
(3.24) and (3.26) is

j± = ±cρ±. (3.35)

We point out that the relation (3.35) is a natural massless rela-
tivistic counterpart of the well-known nonrelativistic formula
for the probability current [see (4.29)] expressed by means
of the velocity and the probability density. The continuity
equation in the one-dimensional case such that

∂ρ

∂t
+ ∂j

∂x
= 0 (3.36)

is satisfied identically. Of course, the general solution φ(x,t)
to the Salpeter equation (3.31) is

φ(x,t) = 1√
2

[φ+(x,t) + φ−(x,t)]

= 1√
2

[ϕ(x − ct) + ψ(x + ct)]. (3.37)

On the other hand, (3.37) is the well-known general solution
of the one-dimensional Klein-Gordon equation for a massless
free particle of the form(

∂2

∂t2
− c2 ∂2

∂x2

)
φ(x,t) = 0. (3.38)

Notice, finally, that for massless particle moving to the right
or left, the expectation value 〈x̂(t)〉 of the position operator
coincides with the classical trajectory of a massless particle on
a line. Indeed, we have

〈x̂(t)〉 = 〈φ±|x̂φ±〉 =
∫ ∞

−∞
dx xρ(x ∓ ct) = ±ct + 〈x̂(0)〉.

(3.39)
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IV. EXACT SOLUTIONS

In this section we introduce the exact solutions to the
Salpeter equation and discuss the corresponding probability
density and probability current. We begin with the one-
dimensional cases.

A. Free massless particle on a line

We first study a relativistic free massless particle moving
in a line. The corresponding Salpeter equation can be written
in the form

i
∂φ(x,t)

∂t
=

√
− ∂2

∂x2
φ(x,t), (4.1)

where we set c = 1. Consider the evolution of the (normalized)
wave packet

φ(x,0) =
√

2

π

a
3
2

x2 + a2
, a > 0. (4.2)

This package is referred to in Ref. [11] as to the “Lorentzian”
one. On performing the Fourier transformation

φ(x,t) = 1√
2π

∫
dp eipxφ̃(p,t), (4.3)

where we set h̄ = 1, we get from (4.1) the following equation:

i
∂φ̃(p,t)

∂t
= |p|φ̃(p,t), (4.4)

subject to the initial condition

φ̃(p,0) = √
ae−a|p|, (4.5)

where use was made of the identity∫ ∞

−∞

1

x2 + a2
eipx dx = π

a
e−a|p|. (4.6)

The solution to the elementary equation (4.4) with the initial
condition (4.5) is

φ̃(p,t) = √
ae−(a+it)|p|. (4.7)

Hence, using (4.3) we obtain the normalized wave function at
any time

φ(x,t) =
√

2a

π

a + it

x2 + (a + it)2
. (4.8)

The solution (4.8) was originally derived in Ref. [11]; however,
the definition of the probability current suggested therein is
different from ours. An immediate consequence of (4.8) is the
following formula for the probability density

ρ(x,t) = |φ(x,t)|2 = 2a

π

a2 + t2

(x2 − t2 + a2)2 + 4a2t2
. (4.9)

The time development of the probability density (4.9) is
presented in Fig. 1. Furthermore, taking into account (3.26)
and (3.36), we find after some calculation

j (x,t) = a

4πt2
ln

(x + t)2 + a2

(x − t)2 + a2
− ax

πt

x2 − 3t2 + a2

(x2 − t2 + a2)2 + 4a2t2
.

(4.10)

20 10 0 10 20
x

0

5

10

t

0.0

0.2

0.4

0.6

ρ x, t

FIG. 1. The time evolution of the probability density (4.9) related
to the solution of the Salpeter equation for a free massless particle
in one dimension. Because of choice of the natural units (c = 1 and
h̄ = 1), the units of ρ, j , x, and t used in the figures referring to
the one-dimensional case are m−1, m−1, m, and m, respectively. The
parameter a = 1 m.

The time evolution of the probability current (4.10) is shown
in Fig. 2. We point out that there is no singularity in (4.10) for
t = 0. Namely, we have limt→0 j (x,t) = 0.

We now return to (4.7). In view of (3.32) we have

φ̃±(p,t) =
√

2aθ (±p)e−(a+it)|p|. (4.11)

Hence, taking into account (4.3) it follows that the wave
packet referring to the particle moving to the right and left,
respectively, is given by

φ±(x,t) =
√

a

π

±i

x ∓ t ± ia
. (4.12)

Therefore, the corresponding probability density and proba-
bility current are

ρ±(x,t) = |φ±(x,t)|2 = ± j±(x,t) = a

π

1

(x ∓ t)2 + a2
.

(4.13)

20 10 0 10 20
x

0

5

10

t

0.2

0.1

0.0

0.1

0.2

j x, t

FIG. 2. The time development of the probability current (4.10)
for a free massless particle moving in a line. The parameter a = 1 m.
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20 0 20 40
x

0

10

20

30

40

t

0.0

0.1

0.2

0.3

ρ x, t

FIG. 3. The behavior of the probability density ρ+(x,t) given by
(4.13), referring to the case of the free massless particle moving to the
right. The stable maximum of the probability density is going with
the speed of light c = 1.

The time development of the probability density ρ+(x,t) is
shown in Fig. 3.

B. Free massive particle on a line

We now discuss a relativistic free massive particle moving
in a line. The corresponding Salpeter equation is

i
∂φ(x,t)

∂t
=

√
m2 − ∂2

∂x2
φ(x,t). (4.14)

Performing the Fourier transformation we find

i
∂φ̃(p,t)

∂t
=

√
m2 + p2 φ̃(p,t). (4.15)

Consider now the particular solution to (4.15) of the form

φ̃(p,t) = 1√
2mK1(2ma)

e−(a+it)
√

p2+m2
. (4.16)

Using the identity [37]∫ ∞

0
dx exp(−α

√
x2 + β2) cos γ x

= αβ√
α2 + γ 2

K1(β
√

α2 + γ 2), Reα > 0, Reβ > 0,

(4.17)

one can easily derive from (4.16) the following (normalized)
solution to the Salpeter equation (4.14):

φ(x,t) =
√

m

πK1(2ma)

a + it√
x2 + (a + it)2

×K1[m
√

x2 + (a + it)2]. (4.18)

Taking into account the asymptotic formula (2.25) we find
that the solution (4.18) is a generalization of the solution (4.8)
obtained for the massless particle to the case m > 0. More
precisely, we have

lim
m→0

φ(x,t) =
√

2a

π

a + it

x2 + (a + it)2
. (4.19)

10 5 0 5 10
x

0

5

10

t

0.0

0.5

1.0

ρ x, t

FIG. 4. The time development of the probability density ρ(x,t) =
|φ(x,t)|2 corresponding to the case of the free massive particle, where
φ(x,t) is given by (4.18). The mass m = 0.5 and a = 1 m.

The solution (4.18) was independently derived in Ref. [12].
The probability density ρ(x,t) = |φ(x,t)|2 corresponding
to the the wave function (4.18) is presented in Fig. 4. It turns out
that, opposite to the massless case, the wave function φ(x,t)
spreads out as time passes. Finally, taking into account (3.34),
(2.10), the identity

1

z
K1(z) = −1

2
[K0(z) − K2(z)], (4.20)

and the fact that φ(x,t) is an even function of x [see the
discussion below Eq. (3.22)] we find the following formula
for the probability current:

j (x,t) = m2

πK1(2ma)

∫ x

0
dx Im

({
x2 − (a + it)2

x2 + (a + it)2

×K2[m
√

x2 + (a + it)2] − K0[m
√

x2 + (a + it)2]

}

× a − it√
x2 + (a − it)2

K1[m
√

x2 + (a − it)2]

)
.

(4.21)

The time development of the probability current (4.21) is
shown in Fig. 5. As expected in view of the behavior of wave
functions, the probability current spreads out.

C. Massless particle in a linear potential

Our purpose now is to analyze the case of a relativistic
massless particle moving in a line in a linear potential.
Classically, this system is defined by the Hamiltonian

H = c|p| + μx, (4.22)

where μ > 0 is a parameter. The corresponding Hamilton
equations lead to a solution of the form

x(t) = − c

μ
[| − μt + p(0)| − p(0)] + x(0). (4.23)

In the following we put c = 1. Under the simplest ini-
tial conditions x(0) = 0, p(0) = 0 we have x(t) = −|t |
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j x, t

FIG. 5. The plot of the probability current (4.21) versus time,
where m = 0.5 and a = 1 m.

(a �-shaped trajectory). On the quantum level this system
is described by the Salpeter equation of the form

i
∂φ(x,t)

∂t
=

√
− ∂2

∂x2
φ(x,t) + μxφ(x,t), (4.24)

where we set c = 1 and h̄ = 1. The Fourier transform of φ(x,t)
satisfies

i
∂φ̃(p,t)

∂t
= |p|φ̃(p,t) + iμ

∂φ̃(p,t)

∂p
. (4.25)

The following solution of Eq. (4.25) can be derived easily:

φ̃(p,t) = e
i ε(p)p2

2μ χ (p + μt), (4.26)

where χ (p) is an arbitrary function. Now, we choose the initial
wave packet so that

χ (p) = Ce
− λp2

2μ , (4.27)

30 20 10 0 10
x

20

10

0

10

20

t

0.0

0.2

0.4

0.6

ρ x, t

FIG. 6. The plot of the probability density ρ(x,t) = |φ(x,t)|2,
referring to the wave function (4.29) of the massless particle in a
linear potential. The parameter μ = 1 m−2 and λ = 1. The classical
�-shaped dynamics of the maxima of the probability density is easily
observed.

where λ > 0 is a parameter and C is a normalization constant.
Hence, the normalized wave function in the momentum
representation is

φ̃(p,t) =
(

λ

μπ

) 1
4

e
i ε(p)p2

2μ e
− λ(p+μt)2

2μ . (4.28)

Equations (4.28) and (4.3) taken together yield the normalized
wave function such that

φ(x,t) = 1

2

(
λμ

π

) 1
4

e− λμ

2 t2

{
1√

λ + i
e

μ(−λt+ix)2

2(1+i)

×erfc

[√
μ

2(1 + i)
(−λt + ix)

]

+ 1√
λ − i

e
μ(λt−ix)2

2(1−i) erfc

[√
μ

2(1 − i)
(λt − ix)

]}
,

(4.29)

where erfc(z) = 1 − 2√
π

∫ z

0 e−t2
dt is the complementary er-

ror function. A remarkable property of the corresponding
probability density ρ(x,t) = |φ(x,t)|2 presented in Fig. 6 is
the behavior of its maxima following the classical �-shaped
trajectory. Moreover, the expectation value of the position
operator, calculated easily in the momentum representation,
is of the form

〈x̂(t)〉 = − e−λμt2

√
λμπ

− terf(
√

λμt), (4.30)

where erf(t) = 2√
π

∫ t

0 e−τ 2
dτ is the error function. Hence, we

find the asymptotic formula

〈x̂(t)〉 = −|t |, |t | � 1; (4.31)

i.e., for |t | � 1 the average value of the position operator
behaves classically (see Fig. 7). We also point out that the
expectation value of the particle velocity 〈v(t)〉 = −erf(

√
λμt)

lies between −1 and 1, that is, it does not exceed the light
speed; for |t | � 1, |〈v(t)〉| → 1, i.e., it reaches asymptotically
the speed of light. This is yet more evidence of the correctness
of our approach based on the Salpeter equation. The probability

2 1 1 2
t

2.0

1.5

1.0

0.5

x t

FIG. 7. The plot of the expectation value of the position operator
in the state (4.29), given by Eq. (4.30) with μ = 1 m−2 and λ =
1 versus time (solid line). The dotted line refers to the classical
trajectory x(t) = −|t |.
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FIG. 8. The plot of the probability current referring to the wave
function (4.29) with λ = 1 versus time.

current that can be derived with the help of (3.36) is too
complex to be reproduced herein. The time development of
the probability current obtained from computer simulations is
shown in Fig. 8.

D. Plane wave solutions

An easy inspection (compare Ref. [22]) shows that the
Salpeter equation (2.2) with V = 0, i.e., in the case of a free
particle, possesses plane-wave solutions such that

φ(x,t) = Ce− i
h̄

(E t−k·x), (4.32)

where E =
√

m2c4 + k2
c2 and C is a normalization constant.

Taking into account (2.8) and (3.8) or inserting (4.32) into
(3.23) we obtain the following formula for the corresponding
probability current:

j = ρv, (4.33)

where ρ = |φ|2 = |C|2, and v is the relativistic three-velocity
given by

v = c2k
E . (4.34)

The relation (4.33) is a natural generalization of the analogous
formula on the probability current, which is well known in
the nonrelativistic quantum mechanics. We also recall that the
nonrelativistic counterpart of (4.33) is a point of departure for
the hydrodynamical formulation of quantum mechanics.

We point out that in the case of the Klein-Gordon equation
the probability current for plane waves has the same form as
(4.33), that is,

jKG = ρKGv. (4.35)

However, the probability density ρKG such that

ρKG = |φ|2E
mc2

(4.36)

can be either positive or negative depending on the sign of the
energy.

0.0 0.5 1.0 1.5 2.0
r

0.0

0.5

1.0

t

0.0

0.5

1.0

ρ r, t

FIG. 9. The time evolution of the probability density (4.40),
where [ρ] = m−3, [r] = m, and a = 1 m, showing the spreading
of the wave function (4.39).

E. Massless particle in three dimensions

In this section we investigate a free massless quantum
particle in three dimensions described by the Salpeter equation

i
∂φ(x,t)

∂t
= √−� φ(x,t), (4.37)

where we set c = 1. Taking into account the form of the Fourier
transformation (4.7) of the solution to (4.1) corresponding to
the case of a free massless particle in one dimension, one can
easily guess the following solution to (4.37):

φ(x,t) = C

(2π )
3
2

∫
d3 p ei p·xe−it | p|e−a| p|, (4.38)

where C is a normalization constant and a > 0 is a parameter.
Hence, we get the normalized solution to (4.37), which is
a plausible three-dimensional generalization of the solution
(4.8), such that

φ(x,t) = (2a)
3
2

π

a + it

[r2 + (a + it)2]2
, (4.39)

0 5 10 15 20
r

5

10

15

t

0.000

0.002

0.004

j r, t

FIG. 10. The time development of the norm of the probability
current (4.41), where [j ] = m−3 and a = 1 m.
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where r = |x|. From (4.39) it follows immediately that the
probability density is

ρ(x,t) = |φ(x,t)|2 = (2a)3

π2

a2 + t2

[(r2 − t2 + a2)2 + 4a2t2]2
.

(4.40)

The time evolution of the probability density (4.40) is
presented in Fig. 9. It appears that, unlike the case of a free
particle in one dimension (see Fig. 1 ), the wave function (4.39)
spreads out.

Furthermore, using the definition (3.8) one can derive the
following formula for the probability current:

j (x,t) =
{
− a3

2π2r2t3

32r2t4 + (r2 + t2 + a2)[3(r2 − t2 + a2)2 + 12a2t2 − 8r2t2]

[(r2 − t2 + a2)2 + 4a2t2]2
+ 3a3

8π2r3t4
ln

(r + t)2 + a2

(r − t)2 + a2

}
x. (4.41)

The plot of the norm of the probability current (4.41) is shown
in Fig. 10. As expected the norm approaches zero as time
passes.

V. CONCLUSION

In this work we study the probability current for a quantum
spinless relativistic particle based on the Salpeter equation as
the fundamental equation of the relativistic quantum mechan-
ics. The introduced probability current and related probability
density show a very good behavior free of pathologies
occurring in the case of the Klein-Gordon equation such as the
negative probability density or the lack of the massless limit
of the probability current. Referring to the nonlocality, which

is often indicated as a grave flaw of the Salpeter equation, we
have not observed any ill behavior of the discussed general
as well as particular exact solutions. Quite the opposite, the
introduced probability current satisfying Eq. (3.10) excludes in
view of (3.12) the particle velocities greater than the speed of
light. We realize that the point remains concerning the lack of
the manifest covariance of the theory, which is usually pointed
out as the second main disadvantage of the Salpeter equation.
However, it is our belief that this flaw can be circumvented by
using the preferred frame approach, which has been already
successfully applied for the Lorentz covariant localization in
quantum mechanics [38], relativistic EPR correlations [39],
and Lorentz covariant formulation of classical and quantum
statistical mechanics [40,41].
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(2002).
[18] R. L. Hall, W. Lucha, and F. F. Schöberl, Int. J. Mod. Phys. A
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