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Estimation of many-body quantum Hamiltonians via compressive sensing
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We develop an efficient and robust approach for quantum measurement of nearly sparse many-body quantum
Hamiltonians based on the method of compressive sensing. This work demonstrates that with only O(s ln(d))
experimental configurations, consisting of random local preparations and measurements, one can estimate the
Hamiltonian of a d-dimensional system, provided that the Hamiltonian is nearly s sparse in a known basis.
The classical postprocessing is a convex optimization problem on the total Hilbert space which is generally not
scalable. We numerically simulate the performance of this algorithm for three- and four-body interactions in
spin-coupled quantum dots and atoms in optical lattices. Furthermore, we apply the algorithm to characterize
Hamiltonian fine structure and unknown system-bath interactions.
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I. INTRODUCTION

The dynamical behavior of multipartite quantum systems is
governed by the interactions amongst the constituent particles.
Although the physical or engineering considerations may
specify some generic properties about the nature of quantum
dynamics, the specific form and the strength of multiparticle
interactions are typically unknown. Additionally, quantum
systems usually have an unspecified interaction with their
surrounding environment. In principle, one can characterize
quantum dynamical systems via “quantum process tomogra-
phy” (QPT) [1–5]. However, the relationship between relevant
physical properties of a system to the information gathered
via QPT is typically unknown. Alternatively, knowledge
about the nature of inter- and intra-many-body interactions
within the system and/or its environment can be constructed
by identifying a set of (physical or effective) Hamiltonian
parameters generating the dynamics [6–17]. Currently, a
scalable approach for efficient estimation of a full set of
Hamiltonian parameters does not exist.

The dynamics of a quantum system can be estimated
by observing the evolution of some suitable test states.
This can be achieved by a complete set of experimental
configurations consisting of appropriate input states and
observables measured at given time intervals. Knowledge
about the dynamics may then be reconstructed via inversion
of the laboratory data by fitting a set of dynamical variables
to the desired accuracy. Estimating Hamiltonian parameters
from such a procedure faces three major problems: (1) The
number of required physical resources grows exponentially
with the degrees of freedom of the system [1,3–5]. (2) There
are inevitable statistical errors associated with the inversion
of experimental data [1,3–5]. (3) The inversion generally
involves solving a set of nonlinear and nonconvex equations,
since the propagator is a nonlinear function of Hamiltonian
parameters [6–17]. The first two problems are always present
with any form of quantum tomography, but the last problem
is specific to the task of Hamiltonian identification as we
wish to reconstruct the generators of the dynamics. Many
quantum systems involve two-body local interactions, so the

goal is often to estimate sparse Hamiltonians with effectively
a polynomial number of unknown parameters. Unfortunately,
quantum state and process tomography cannot readily exploit
this potentially useful feature.

The highly nonlinear feature in the required inversion of
laboratory data was studied in Ref. [6] in which closed-loop
learning control strategies were used for the Hamiltonian
identification. In that approach one estimates the unknown
Hamiltonian parameters by tailoring shaped laser pulses to
enhance the quality of the inversion. Identification of time-
independent (or piecewise constant) Hamiltonians have been
studied for single-qubit and two-qubit cases [10,11] to verify
the performance of quantum gates. Estimation of these Hamil-
tonians is typically achieved via monitoring the expectation
values of some observable, e.g., concurrence, which are time
periodic functions. Through Fourier transform of this signal
the identification task is reduced to finding the relative location
of the peaks and heights of the Fourier spectrum [10,11].
Bayesian analysis is another method proposed for robust
estimation of a two-qubit Hamiltonian [12]. The difficulty
with these methods is then scalability with the size of the
system. A symmetrization method for efficient estimation of
the magnitude of effective two-body error generators in a
quantum computer was studied in [13] by monitoring quantum
gate average fidelity decay. Recently, it was demonstrated that
direct or selective QPT schemes could be used for efficient
identification of short-time behavior of sparse Hamiltonians
[14] assuming controllable two-body quantum correlations
with auxiliary systems and the exact knowledge of the sparsity
pattern. Alternative schemes for the indirect estimation of
the coupling parameters in spin networks with restricted
controllability have been recently introduced [15–18].

In this work, inspired by recent advances in classical signal
processing known as compressive sensing [19], we use random
local input states and measurement observables for efficient
Hamiltonian identification. We show how the difficulties with
the nonlinearity of the equations can be avoided by either
a short time or a perturbative treatment of the dynamics.
We demonstrate that randomization of the measurement
observables enables compressing the extracted Hamiltonian
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information into an exponentially smaller set of outcomes.
This is accomplished by a generalization of compressive
sensing to utilize random matrices with correlated elements.
This approach is applicable for Hamiltonians that are nearly
sparse in a known basis with an arbitrary unknown sparsity
pattern of parameters. The laboratory data can then be inverted
by solving a convex optimization problem. This algorithm is
tolerant to noise and experimental imperfections. The power of
this procedure is illustrated by simulating three- and four-body
Hamiltonians for neutral atoms in an optical lattice and
spin-coupled quantum dot systems, respectively. Furthermore,
we apply the algorithm to estimate Hamiltonian fine structure
and to characterize unknown system-bath interactions for open
quantum systems.

II. QUANTUM DYNAMICAL EQUATIONS

The time evolution of a quantum system in a pure state is
governed by the Schrödinger equation ρ̇(t) = −i[H,ρ(t)]. The
solution of this equation for a time-independent Hamiltonian
can be simply expressed as ρ(t) = exp(−itH )ρ(0) exp(itH ).
In principle, the Hamiltonian of the system H can be estimated
by preparing an appropriate set of test states {ρk} and
measuring the expectation value of a set of observables {Mj }
after the system has evolved for a certain period of time. The
expectation value of these observables can be expressed as

pjk = 〈Mj 〉ρk
= Tr(eitH Mje

−itH ρk). (1)

Equation (1) implies that the experimental outcomes {pjk}
are nonlinear functions of the Hamiltonian parameters. To
avoid the difficulties of solving a set of coupled nonlinear equa-
tions we consider the short-time behavior of the system. Mon-
itoring the short-time dynamics of the system is valid when the
relevant time scales of the system evolution satisfy t � K−1,
where for positive operator-valued measure (POVM) operators
{Mj }, the constant K equals ||H = −i[H,.]||spec. In this paper,
for an operator O, we represent the superoperator −i[O,.]
by O. The general expression of K is given in Appendix B;
also see Appendix A for definition of the superoperator norm
||.||spec. This yields the linearized form of Eq. (1),

pjk = Tr(Mjρk) + it Tr([H,Mj ]ρk) + O(K2t2). (2)

The linear approximation contains enough information to
fully identify the Hamiltonian and the higher-order terms do
not provide additional information. The short-time approxi-
mation implies prior knowledge about the system dynamical
time scale or the order of magnitude of ||H ||spec. This prior
knowledge can be available from generic physical and engi-
neering considerations. For example, in solid-state quantum
devices the time scale of single-qubit rotations is typically
on the order of 1–10 ns. The switching time for exchange
interactions varies among different solid-state systems from 1
to 100 ps (for more details, see Appendix B).

We expand the Hamiltonian in an orthonormal basis
{�α}, where Tr(�†

α�β) = dδα,β : H = ∑
α hα�α . Here d is

the dimension of the Hilbert space. In this representation the

Hamiltonian parameters are the coefficients hα . The expanded
form of the above affine equation (2) is

p̄jk = it
∑

α

Tr([�α,Mj ]ρk)hα. (3)

Here we introduce the experimental outcomes as p̄jk =
pjk − Tr(Mjρk), since Tr(Mjρk) is a priori known. The
relation (3) corresponds to a single experimental configuration
(Mj ,ρk). For a d-dimensional system, the total number of
Hamiltonian parameters hα is d2. Thus, one requires the same
number of experimental outcomes, pjk that leads to d2 linearly
independent equations. For a system of n qubits, this number
grows exponentially with n as d = 22n.

A Hamiltonian H is considered to be s sparse if it
only contains s nonzero parameters {hα}. More generally, a
Hamiltonian H is termed nearly s sparse, for a threshold η,
if at most s coefficients hα (H = ∑

hα�α) have magnitudes
greater than ηhmax, where hmax = max(hα). By definition, the
sparsity is basis dependent. However, for local interactions, the
basis in which the Hamiltonian is sparse is typically known
from physical or engineering considerations.

III. COMPRESSIVE HAMILTONIAN ESTIMATION

Our algorithm is based on general methods of so-called
compressive sensing that recently have been developed in
signal processing theory [19]. Compressive sensing allows
for condensing signals and images into a significantly smaller
amount of data, and recovery of the signal becomes possible
from far fewer measurements than required by traditional
methods.

Compressive sensing has two main steps: encoding and
decoding. The information contained in the signal is mapped
into a set of laboratory data with an exponentially smaller
representation. This compression can be achieved by random-
ization of data acquisition. The actual signal can be recovered
via an efficient algorithm based on convex optimization
methods. Compressive sensing has been applied to certain
quantum tomography tasks. Standard compressive sensing has
been used for efficient pseudothermal ghost imaging [20,21]
and quantum state tomography [22]. Recently a compressive
sensing theory for quantum process tomography has been
developed and experimentally tested in tomography of a
photonic two-qubit controlled-phase gate [23].

Here, we first describe how the Hamiltonian information is
compressed into the experimental data. The output of a single
measurement is related to the unknown signal (Hamiltonian
parameters) through the relation (3). Suppose we try m

different experimental configurations [i.e., m different pairs
of (Mj,ρk)]. This yields a set of linear equations

−→
p′ = �

−→
h , (4)

where � is a m × d2 matrix with elements �jk,α =
(it/

√
m)Tr([�α,Mj ]ρk) (a factor 1/

√
m is included for

simplifying the proofs, Appendix C) and
−→
p′ = −→̄

p /
√

m. In
general, m has to be greater than or equal to d2 in order to
solve Eq. (4). A Hamiltonian estimation attempt with m < d2

seems impossible as we face an underdetermined system
of linear equations with an infinite number of solutions.
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However, any two s-sparse Hamiltonians h1 and h2 still can
be distinguished via a properly designed experimental setting,
if the measurement matrix � preserves the distance between
h1 and h2 to a good approximation:

(1 − δs)||h2 − h1||2l2 � ||�(h2 − h1)||2l2
� (1 + δs)||h2 − h1||2l2 (5)

for a constant δs ∈ (0,1). A smaller δs ensures higher distin-
guishability of s-sparse Hamiltonians. The inequality relation
(5) is termed a restricted isometry property (RIP) of the matrix
� [24]. We now discuss how to construct a map � satisfying
this inequality, and how small the value of m can be made.

The RIP (5) for a matrix � can be established by employing
the measure concentration properties of random matrices. In
each experiment the test state and the measurement observable
can be drawn randomly from a set of configurations {Mj,ρk}
realizable in the laboratory. The independent selection of
ρk and Mj leads to a matrix � with independent rows but
correlated elements �jk,α in each row. Thus the standard
results from compressive sensing theory are not applicable
here (Appendix C).

In contrast, here we derive a concentration inequality
for a matrix with independent rows and correlated columns
as the backbone for the RIP of our quantum problem in
Appendix C. Using Hoeffding’s inequality, we show that for
any Hamiltonian h and a random matrix �, with column-only
correlations, the random variable ||�h||2 is concentrated
around ||h||2 with a high probability, i.e., ∀ 0 < δ < 1,

Prob
{∣
∣||�h||2l2 − ||h||2l2

∣
∣ � δ||h||2l2

}
� 2e−mc0(δ+c1)2

(6)

for some constants c0 and c1.
Using the above inequality, now we can show how an

exponential reduction in the minimum number of the required
configurations can be achieved for Hamiltonian estimation.
The inequality (6) is defined for any h, while the inequality
in the definition of RIP, Eq. (5), is for any s-sparse h.
As shown in Ref. [25], there is an inherent connection
between these two inequalities. It is proved that any matrix
� satisfying Eq. (6) has RIP with probability greater than 1 −
2 exp{−mc0(δs/2 + c1)2 + s[ln(d4/s) + ln(12e/δs/2)]}. In ad-
dition, whenever m � c2s ln(d4/s), for a sufficiently large
constant c2 one can find a constant c3 � 0 such that the
likelihood of the RIP to be satisfied converges exponentially
fast to unity as 1 − 2 exp(−c3m).

The set of experimental configurations defined by Eq. (4)
and the concentration properties given by Eqs. (5) and (6)
can be understood as encoding the information of a sparse
Hamiltonian into a space with a lower dimension. Next we
need to provide an efficient method for decoding in order to
recover the original Hamiltonian. The decoder is simply the
minimizer of the l1 norm of the signal h. Implementing this
decoder is a special convex optimization problem, which can
be solved via fast classical algorithms, yet not strictly scalable.
Furthermore, the encoding/decoding scheme is robust to noisy
data as ||p′ − �h||l2 � ε, where ε is the noise threshold. Note
that ε includes the error of linearization [see Eq. (2)] that is in
the order of K2t2. Denote h0 as the true representation of the
Hamiltonian. For a threshold η, h0(s) is an approximation to
h0 obtained by selecting the s elements of h0 as those that are

larger than ηhmax and setting the remaining elements to zero.
Now we state our main result.

IV. ALGORITHM EFFICIENCY

If the measurement matrix � ∈ Cm×d4
is drawn randomly

from a probability distribution that satisfies the concentration
inequality in Eq. (5) with δs <

√
2 − 1, then there exist

constants c2,c3,d1,d2 > 0 such that the solution h
 to the
convex optimization problem,

minimize ||h||l1,
subject to ||p′ − �h||l2 � ε, (7)

satisfies

||h
 − h0||l2 � d1√
s
||h0(s) − h0||l1 + d2ε, (8)

with probability � 1 − 2e−mc3 provided that

m � c2s ln(d4/s), (9)

where the performance of a l1 minimizer, Eq. (8), and the
necessary bound δs <

√
2 − 1 are derived by Candés in

Ref. [26].
As an example, for a system consisting of n interacting

qubits, the exponential number of parameters describing the
dynamics, 22n, can be estimated with a linearly growing
number of experiments m � c2s[8 ln(2)n − ln(s)]. The sec-
ond term, d2ε, indicates that the algorithm performance is
bounded by the experimental uncertainties. Consequently, for
fully sparse Hamiltonians and ε = 0 the exact identification of
an unknown Hamiltonian is achievable. The properties of the
ensemble from which the states and measurement observables
are chosen would determine the parameter δs , and conse-
quently, the performance of the algorithm. The exponentially
small required number of experimental configurations gives
an important feature to the presented method for Hamiltonian
identification: the initial states can be selected from product
states only and the measurements can be limited to single-body
observables. Such restriction on the configuration set becomes
possible since this set has c4n2n number of independent
elements, for some constant c4, which is large enough for
random selection of required c2s[8 ln(2)n − ln(s)] configura-
tions. In this way we can avoid measuring many-body (k-body)
observables whose expectation values are exponentially small
in k and require exponential accuracy in the measurements.
The linear independency of the � matrix rows for a random set
of local state preparations and observables can be guaranteed
by a polynomial level of computational overhead before
conducting the experiments.

A certification for the near-sparsity assumption can be
obtained from Eqs. (8) and (9) as follows: Suppose h


m is the
algorithm’s outcome for m configurations. The near-sparsity
assumption is certified on the fly during the experiment, if the
estimation improvement ||h


m+1 − h

m|| converges to zero for

a polynomially large total number of configurations.

V. PHYSICALLY NEARLY SPARSE HAMILTONIAN

Although physical systems at the fundamental level involve
local two-body interactions, many-body Hamiltonians often
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describe quantum dynamics in a particular representation or in
well-defined approximate limits. The strength of the nonlocal
k-body terms typically is much smaller than the two-body
terms with strength J and decreases with the number k. For a
fixed sparsity threshold η, kη is defined as the largest number
k for which k-body terms have strength larger than ηJ . Then
the number of elements of an s-sparse approximation of an
n-body Hamiltonian grows linearly, approximately as ng(kη),
where the g(kη) is determined by the geometry of the system.
Consequently, for the case of an n-qubit system, the minimum
number of measurements m grows quadratically with the
number of qubits that is m � c2g(kη){8 ln(2)n2 − ln[g(kη)]n}.

Note that the norm of a sparse Hamiltonian ||H||spec

increases with s and therefore with the size of the system.
Considering the experimental limitation of fine tuning the
measurement time t limits the size of the system for which
the linearization assumption holds. Therefore the experimental
time resolution and the local interaction strength determines
the largest size of the system that our algorithm can handle.

A general class of many-body interactions arises when we
change the basis for a bosonic or fermionic system expressed
by a (typically local) second-quantized Hamiltonian to a
Pauli basis, e.g., via a Jordan-Wigner transformation. For
fermionic systems the interactions are imposed physically
from Coulomb’s force and Pauli exclusion principle. The
second-quantized Hamiltonian for these systems can be
generally written as

Ĥ =
∑
p,q

bpq â
†
pâq +

∑
p,q,r,s

bpqrs â
†
pâ†

q âr âs , (10)

where the annihilation and creation operators (âj and â
†
j ,

respectively) satisfy the fermionic anticommutation relations:
{âi ,â

†
j } = δij and {âi ,âj } = 0 [27]. For example, in chemical

systems the coefficients hpq and hpqrs can be evaluated
using the Hartree-Fock procedure for N single-electron basis
functions. The Jordan-Wigner transformation can then be
used to map the fermionic creation and annihilation operators
into a representation in terms of Pauli matrices σ̂ x,σ̂ y,σ̂ z.
This allows for a convenient implementation on a quantum
computer, as was demonstrated recently for the efficient
simulation of chemical energy of molecular systems [28].
An important example of a Coulomb-based Hamiltonian is
the spin-coupled interaction in quantum dots which has the
following Pauli representation:

H =
∑

i,j,k,...

bi,j,k,...σ
i
A ⊗ σ

j

B ⊗ σ k
C . . . , (11)

where A,B,C, . . . indicate the location of the quantum dots,
σ i’s are Pauli operators, and bi,j,k,... generally represents a
many-body spin interacting term. In practice, these Hamil-
tonians are highly sparse or almost sparse due to symmetry
considerations associated with total angular momentum [29].
For example, the Hamiltonian for the case of four quantum
dots (A,B,C,D) takes the general form [29]

Hexchange = J
∑

A�i<j�D

σiσj + J ′[(σAσB)(σCσD)

+ (σAσC)(σBσD) + (σAσD)(σBσC)]. (12)

Another class of effective many-body interactions often
emerge in a perturbative and/or short-time expansion of
dynamics, such as effective three-body interactions between
atoms in optical lattices [30] that we study in this work.

Next, we simulate the performance of our algorithm for
estimation of such sparse many-body Hamiltonians in optical
lattices [30] and quantum dots [29].

A. Three-body interactions in optical lattices

An optical lattice is a periodic potential formed from
interference of counterpropagating laser beams where neutral
atoms are typically cooled and trapped one per site. Consider
four sites in two adjacent building blocks of a triangular optical
lattice filled by two species of atoms [30]. The interaction
between atoms is facilitated by the tunneling rate J between
neighboring sites and collisional couplings U when two or
more atoms occupy the same site. For each site an effective
spin is defined by the presence of one type of atom as the
up state ↑ and the presence of the other type as the down
state ↓. Three-body interactions between atoms in a triangular
optical lattice can be significant. The effective Hamiltonian
for this system is studied in Ref. [30]. The on-site collisional
interaction U and the tunneling rates J = J ↑ = 2J ↓ are taken
to be the same in all sites; also U = U↑↑ = U↓↓ = 2.12U↑↓ =
10 kHz. The effective Hamiltonian of the four-spin system is

Hopt−latt =
∑

j,α=x,y,z

bα
1 σα

j σ α
j+1 + bα

2 σα
j σ α

j+1σ
α
j+2, (13)

where {bα
1 ,bα

2 } are functions of {J,U} and their explicit forms
are given in Appendix D. The ratio |J/U | quantifies the
sparsity level. For a fixed value of U , a smaller J leads
to weaker three-body interactions and therefore a higher
level of sparsity. As expected, this enhances the algorithm
performance. A four-qubit Hamiltonian has 255 parameters,
while the above Hamiltonian (13) has only 15 nonzero
parameters for J � 1, or 21 otherwise. More precisely, for a
threshold η the sparsity level is 15 + 6 � (|J/U | − η), where
�(·) is the Heaviside step function.

We assume that the system can be initialized in a random
pure product state ρk = |ψk〉〈ψk|, where |ψk〉 = |ψ1

k 〉 ⊗ · · · ⊗
|ψ4

k 〉 and |ψi
k〉’s are drawn from the Fubini-Study metric-

induced distribution. The required observables for the algo-
rithm are uniformly selected from single-qubit Pauli operators
{σx

i ,σ
y

i ,σ z
i }. This choice of states and observables allows for

δ ≈ 0.37 <
√

2 − 1. Let us denote the extracted Hamiltonian
and the true Hamiltonian by H ∗ and Htrue, respectively. Here,
the performance of the algorithm is defined by the relative error
1 − ||H ∗ − Htrue||Fro/||Htrue||Fro. Notice that a smaller error
can be assigned as the true Hamiltonian Htrue can be shifted
by egId×d for the ground-state energy free parameter eg . The
results for different numbers of configurations are depicted
in Fig. 1, for various values of J . As is evident in Fig. 1,
performance accuracy of above 94% can be obtained with
only 80 settings significantly smaller than the approximately
6 × 104 configurations required in QPT. The robustness of
this scheme was also investigated for 10% random error in
simulated experimental data leading to about a 5% reduction
in the overall performance.
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FIG. 1. (Color online) The Hamiltonian estimation average per-
formance is illustrated for a system of four adjacent sites in an
optical lattice for different tunneling rates J and collisional coupling
U = 10 kHz. The error bars demonstrate the standard deviation of
the performance due to the random and independent selection of m

configurations (shown only for J = 5 kHz). Performance accuracy of
above 90% with only 60 settings is achievable for J = 1 kHz, which
is significantly smaller than the approximately 6 × 104 required
experimental configurations in QPT.

B. Four-body interactions in quantum dots

Another important class of effective many-body Hamilto-
nians can be obtained for electrons in quantum dots coupled
through an isotropic (Heisenberg) or anisotropic exchange
interaction. For example, the Hamiltonian for the case of four
quantum dots (A,B,C,D) takes the general form of Eq. (12).
The first term in the summation is a two-body Heisenberg
exchange interaction and the last three terms are four-body
spin interactions. In certain regimes, the ratio |J ′/J | can
reach up to 16%. The amplitude of |J ′/J | determines the
sparsity level of the Hamiltonian. A four-qubit Hamiltonian
has 255 parameters, while the above Hamiltonian (12) has
only 18 nonzero parameters for J ′ � J , or 39 otherwise.
More precisely, for a threshold η the sparsity level is 18 +
21 � (|J ′/J | − η).

Here we use an efficient modification of signal recovery
referred to as “reweighted l1 minimization,” which is described
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FIG. 2. (Color online) Estimation of the exchange interaction
Hamiltonian for four electrons in quantum dots. The average
performance of the procedure is illustrated for different values
of |J ′/J | with 50 iterations of the l1-reweighted minimization.
The standard deviations are shown only for |J ′/J | = 0.1 It is
demonstrated that only 60 different configurations are sufficient for
estimating the unknown Hamiltonian with an accuracy above 95% for
|J ′/J | = 0.05, instead of the approximately 6 × 104 required settings
via QPT.

in Appendix E. The performance of this algorithm is demon-
strated in Fig. 2, which shows a significant reduction of the
required number of settings in contrast to the standard QPT.

VI. CHARACTERIZATION OF HAMILTONIAN FINE
STRUCTURES AND SYSTEM-BATH INTERACTIONS

A. Hamiltonian fine estimation

In many systems a primary model of the interactions is often
known through physical and/or engineering considerations.
Starting with such an initial model we seek to improve our
knowledge about the Hamiltonian by random measurements.
Let’s assume the initial guess about the Hamiltonian H0

is close to the true form Htrue that is for � = Htrue − H0,
||�||spec � ||Htrue||spec. Therefore for a perturbative treatment
we demand t ||�||spec � 1, which is a much weaker require-
ment compared to t ||Htrue||spec � 1. We can approximate
Eq. (1) in the paper by using the matrix identity e(A+A′)t =
eAt + ∫ t

0 eA(t−s)A′e(A+A′)sds for any matrices A and A′. If
matrix A′ has a norm much smaller than the norm of A, we
can approximately write

e(A+A′)t ≈ eAt +
∫ t

0
eA(t−s)A′eAsds. (14)

By taking A = H0 and A′ = �, we find

pjk ≈ Tr
(
M0

j ρk

) + Tr

([
i

∫ t

0
eisH0�e−isH0ds,M0

j

]
ρk

)
,

(15)

where M0
j = eitH0Mje

−itH0 . This equation is linear in �,
consequently, in a similar fashion as above, the compressive
sensing analysis can be applied for efficient estimation of the
fine structure of Hamiltonians.

B. Characterizing system-bath interactions

The identification of a decoherence process is a vital task
for quantum engineering. In contrast to the usual approach of
describing the dynamics of an open quantum system by a Kraus
map or a reduced master equation, here we use a microscopic
Hamiltonian picture to efficiently measure the system-bath
coupling terms generating the overall decoherence process.
However, since we consider a full dynamics of the system and
bath, this method can be applied to a finite-size environment
such as a spin bath, or a surrogate Hamiltonian modeling of an
infinite bath. In the latter case a harmonic bath of oscillators
is approximated by a finite spin bath [31].

Consider an open quantum system with a total Hamiltonian:

H = HS ⊗ IB + IS ⊗ HB + HSB (16)

and

HSB =
∑
p,q

λp,qSp ⊗ Bq, (17)

where HS (HB) denotes the system (bath) free Hamiltonian,
HSB is the system-bath interaction with coupling strengths
{λp,q}, and complete operator bases of the system and bath are
{Sp} and {Bq}, respectively.

012107-5



SHABANI, MOHSENI, LLOYD, KOSUT, AND RABITZ PHYSICAL REVIEW A 84, 012107 (2011)

We develop a formalism to estimate λp,q parameters in
the weak system-bath coupling regime and with the sparsity
assumption that a few numbers of λp,q have a significant value.

The Liouvillian dynamical equation is

d

dt
ρSB(t) =

(
H0 +

∑
pq

λpqHpq

)
ρSB (t), (18)

where H0 = −i[HS ⊗ IB + IS ⊗ HB,.] and Hpq = −i[Sp ⊗
Bq,.]. In the regime of weak coupling to a finite bath,
||HSB || � min{||HS ||,||HB ||}, the Liouvillian equation (18)
can be solved perturbatively if time t satisfies t ||HSB || � 1.
For an initial system density state ρk , using the matrix
identity (14) with A = HS + HB and A′ = HSB , we find the
measurement outcomes as

pjk ≈ Tr(ρkMj )

+
∑
pq

λpq Tr

([ ∫ t

0
dse(t−s)H0 Hpqe

sH0ρSB
k ,Mj

])
.

(19)

where Mj is a system-only observable and ρSB
0 is the initial

system-bath state. Here we assume that the system and
bath are initially in an equilibrium state ρSB

0 before the
action on the system only that transforms ρ0 = TrB(ρSB

0 ) into
ρk = TrB(ρSB

k ). This above affine function (19) between the
outcomes pjk and coupling parameters {λpq} is similar to
Eq. (2) in the paper for Hamiltonian estimation. Consequently,
the compressive sensing algorithm can be employed for
computing {λpq}’s.

VII. OUTLOOK

We have introduced an efficient and robust experimental
procedure for the identification of nearly sparse Hamiltonians
using only separable (local) random state preparations and
single-body measurements. There are a number of future
directions and open problems associated with this work. It
is not known how the performance of the algorithm depends
on the distribution of the ensemble from which the states
and measurement observables are drawn. Also, a general
closed-loop learning approach for updating knowledge of the
sparsity basis of an arbitrary Hamiltonian is an interesting open
problem that will be of importance for generic compressive
system identification. The presented method for Hamiltonian
estimation is promising for drastic reduction in the number
of experimental configurations. However, the classical re-
sources for postprocessing are not scalable. A fully scalable
Hamiltonian estimation method might also be achievable via
a hybrid of compressive sensing and DMRG (density-matrix
renormalization group) methods as recently it has been applied
in quantum state tomography [32].
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APPENDIX A: VECTORS AND OPERATOR NORM

In this paper we use the following different norms. For a
vector x, l1 and l2 norms are defined as

||x||l1 =
∑

i

|xi |, ||x||l2 =
√

x†x. (A1)

For a matrix A, the Frobenius norm is

||A||Fro =
√

Tr(A†A), (A2)

and in the next appendix we use the spectral norm ,

||A||spec =
√

max
|ψ〉

〈ψ | A†A |ψ〉 / 〈ψ |ψ〉. (A3)

APPENDIX B: ANALYSIS OF THE SHORT-TIME
APPROXIMATION

The short-time monitoring of the system’s dynamics re-
quires a prior knowledge of the dynamical time scales. In
the solid-state quantum devices, in particular, in the context
of quantum control and quantum information processing, the
time scale of single-qubit rotations is typically on the order of
1–10 ns. The switching time for exchange interactions varies
among different solid-state systems. For superconducting
phase qubit the duration of a swap gate is about 10 ns [33].
For electron-spin qubits in quantum dots and in donor atoms
(Heisenberg models) [34–36], and also for quantum dots in
cavities (anisotropic exchange interactions) [37] the coupling
time is between 10 and 100 ps, while for exciton-coupled
quantum dots (XY model) and Forster energy transfer in
multichromophoric complexes the relevant time scale is on
the order of 1 ps. Next we rigorously derive bound on the
evolution time t that guarantees the validity of the short-time
approximation.

For an input state ρk , the expectation value of an observable
Mj is

pjk = Tr[Mjρk(t)] = Tr(eiHtMje
−iH tρk). (B1)

Considering the Dyson expansion of the propagator
e−iH t = I − itH − 1

2 t2H 2 + · · · , we find

pjk = Tr(Mjρk) + it Tr([H,Mj ]ρk)

− t2

2
Tr([H,[H,Mj ]]ρk) + · · · . (B2)

Therefore, for the linearization assumption, it is sufficient
to have for the lth term,

t l × max
j

|Tr(

l times︷ ︸︸ ︷
[H,[H,[... ,Mj ]]]ρk)| � 1, ∀ l. (B3)

A tighter bound can be found for operators {Mj } from a
POVM by employing the following norm for the superoperator
H = −i[H,.] [38]:

||H||spec = sup
X

||H(X)||spec

||X||spec
= sup

X

|| − i[H,X]||spec

||X||spec
, (B4)

Tr[Hl(Mj )ρk] � ||Hl(Mj )||spec

� ||Hl||spec · ||Mj ||spec � ||Hl||spec. (B5)
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The last inequality is deduced from the fact that Mj is a POVM
observable. It is easy to prove by induction that ||Hl||spec �
||H||lspec. Applying this result to the desired inequality (B3),
we can find a single bound sufficient for linearization: t �
||H||−1

spec.

APPENDIX C: RIP FROM A CONCENTRATION
INEQUALITY

In this work, we generalize the standard compressive
sensing algorithm such that the necessity for independent
randomness in all elements of the measurement matrix, φ, can
be avoided. A common approach to establish RIP ( [25]) for a
matrix � is by introducing randomness in the elements of this
matrix. This approach benefits from measure concentration
properties of random matrices. In classical signal processing
each element �jk,α can be independently selected from a
random distribution such as Gaussian or Bernoulli. Whereas in
the Hamiltonian estimation formulation [Eq. (4) in the paper]
there is no freedom for independent selection of the � matrix
elements.

Here we prove the concentration inequality that we
employed for establishing the restricted isometry property.
Though � is a random matrix, because it is constructed
from quantum states and observables of a finite dimensional
system, it is bounded. Thus we are able to apply Hoeffding’s
concentration inequality: If v1,...,vm are independent bounded
random variables such that Prob{vi ∈ [ai,bi]} = 1, then for
S = ∑

i vi ,

Prob{S − E(S) � t} � exp

[
− 2t2

/∑
i

(bi − ai)
2

]
,

(C1)

Prob{S − E(S) � −t} � exp

[
− 2t2

/ ∑
i

(bi − ai)
2

]

for any t > 0. (Here E denotes the expectation value.) Set
vi = |φ†

i x|2 for a row φi . Then with S = ∑
i vi = ||�x||2l2 , we

get ∀x,

vi = x†(φiφ
†
i )x ∈ (1/m)[wl,wu]||x||2l2, (C2)

E(S) = E||�x||2l2 ∈ [f,g]||x||2l2
for constants wl,wu,f,g. Note that f and g are the min and max
singular values of E(�†�). From (C2) we find that ∀t+,t− > 0
and ∀x,

Prob
{
S − g||x||2l2 � t+

}
� Prob{S − E(S) � t+},

Prob
{
S − f ||x||2l2 � −t−

}
� Prob{S − E(S) � −t−}.

These together with Eqs. (C1) and (C2), and the choice of
t+ = (δ + 1 − g)||x||2l2 and t− = (f − 1 + δ)||x||2l2 , yields

Prob
{||�x||2l2 − ||x||2l2

∣∣ � δ||x||2l2
}

� 2e[−2m(δ+ε)2]/[(wu−wl )2],

(C3)

with ε = min{1 − g,f − 1}. To ensure that t+,t− > 0, we
need 1 − δ < f � g < 1 + δ. Since the observable M can
be scaled by any real number, a sufficient condition is g/f <

(1 + δ)/(1 − δ). For the simulations in this paper, this ratio
becomes 2.176.

APPENDIX D: FOUR-SITES OPTICAL LATTICE
HAMILTONIAN

Let us consider four sites in two adjacent building blocks
of a triangular optical lattice filled by two species of atoms, ↑
and ↓. Atoms interact by tunneling between neighboring sites,
J ↑ and J ↓, and through collisional couplings in the same site,
U . The Hamiltonian for such a system can be written as [30]

Hopt−latt =
∑

j

(
0.03

J ↑2 + J ↓2

U
− 0.27

J ↑3 + J ↓3

U 2

)
σ z

j σ z
j+1

−
(

2.1(J ↑ + J ↓)J ↑J ↓

U 2
+ J ↑J ↓

U

)(
σx

j σ x
j+1

+ σ
y

j σ
y

j+1

) +
∑

j

0.14
J ↑3 − J ↓3

U 2
σ z

j σ z
j+1σ

z
j+2

− 0.6
J ↑J ↓(J ↑ − J ↓)

U 2

(
σx

j σ z
j+1σ

x
j+2+σ

y

j σ z
j+1σ

y

j+2

)
,

(D1)

where σ
x,y,z

j are Pauli operators.

APPENDIX E: REWEIGHTED l1-MINIMIZATION

In order to simulate our algorithm performance for esti-
mating the above Hamiltonian we use an iterative algorithm
that outperforms the standard l1 norm minimization [39]. This
procedure entails initializing a weight matrix W = Id2 and a
weight factor σ > 0, and repeating the following steps until
convergence is reached: (1) Solve for h, minimize ||Wh||l1 ,
subject to ||p′ − �h||l2 � ε. (2) Update weights,

W = diag[1/(|h1| + σ ), . . . ,1/(|hd2 | + σ )]. (E1)

where h = vec(hi) is the Hamiltonian vectorized form. � is
the measurement matrix and p′ is the experimental data with
a noise threshold ε.
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