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Inferring the Gibbs state of a small quantum system
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Gibbs states are familiar from statistical mechanics, yet their use is not limited to that domain. For instance,
they also feature in the maximum entropy reconstruction of quantum states from incomplete measurement data.
Outside the macroscopic realm, however, estimating a Gibbs state is a nontrivial inference task, due to two
complicating factors: the proper set of relevant observables might not be evident a priori; and whenever data are
gathered from a small sample only, the best estimate for the Lagrange parameters is invariably affected by the
experimenter’s prior bias. I show how the two issues can be tackled with the help of Bayesian model selection
and Bayesian interpolation, respectively, and illustrate the use of these Bayesian techniques with a number of
simple examples.
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I. INTRODUCTION

Quantum states are not accessible to direct observation,
and so do not constitute per se a physical reality. Rather, they
provide a convenient mathematical summary of an agent’s
expectations as to the outcomes of future experiments [1]. Such
expectations are formed both on the basis of past measurement
data and on the basis of any prior knowledge (say, about
specific symmetries) that the agent may have. In practice,
the available experimental data are often far from perfect:
measurement devices work with limited accuracy; sample
sizes are finite; and the set of observables measured might
not be informationally complete. Under such circumstances,
a quantum state represents merely a model, and hence a hy-
pothesis, which is subject to testing, debate, and modification.
The more complex the physical system under study, and the
sketchier the available data, the more this model will be
informed by the agent’s prior knowledge.

Prior knowledge may be of two types: (i) the expectation,
often based on symmetry considerations, that the quantum
state has a certain parametric form; and (ii) given a parametric
form (including free-form as a special case), a bias as to its
parameter values. Making proper use of such prior knowledge
can lead to significant gains in the efficiency and accuracy
of quantum-state tomography, i.e., the reconstruction of a
quantum state from imperfect data. One recent example
where prior knowledge about the parametric form has been
exploited to great advantage is the polynomial scheme for
reconstructing near matrix product states [2]. The second type
of prior knowledge, on the other hand, has been used in
recent Bayesian modifications to the conventional maximum
likelihood tomography scheme [3–5].

One parametric form that occupies a special place in physics
is that of a Gibbs state. Such a state maximizes the entropy, or
more generally, minimizes the relative entropy with respect
to some reference state, under given constraints on some
selected set of expectation values. Gibbs states are familiar
from statistical mechanics where, in both the classical [6,7]
and quantum [8] cases, the principle of maximum entropy
has long been recognized as the appropriate prescription for
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constructing the macrostate. The common justification of this
principle rests on a number of assumptions: (i) the system
under consideration may be viewed as one constituent of
a larger ensemble of identically prepared systems, whose
size approaches infinity (the “thermodynamic limit”); (ii)
there are constraints pertaining to the global state of this
fictitious infinite ensemble, in the form of sharp values for
the totals of certain “relevant” observables; and (iii) it is
clear a priori which observables should be deemed “relevant.”
While the first two assumptions are of a purely statistical
nature, the last implicitly invokes the system’s dynamics. In
equilibrium statistical mechanics, the relevant observables are
taken to be the system’s constants of the motion; whereas in
nonequilibrium transport theory, they comprise those degrees
of freedom that vary slowly [9].

Yet Gibbs states play an important role even in realms
where the above assumptions are not justified. For instance,
application of thermodynamics has been extended to nanoscale
quantum systems, and in particular, to the study of work
extraction from such systems [10–13]. In high-energy physics,
hadronization in e+e− collisions is described with thermal
distributions, even though the number of hadrons produced
in one collision is hardly more than a handful [14]. The
equilibrium states of completely integrable many-body quan-
tum systems need not be thermal but can be described
very well with generalized Gibbs distributions [15]. And
finally, in incomplete quantum-state tomography, Gibbs mod-
els feature in reconstruction schemes based on maximum
entropy [16–20], or in case there is an initial bias toward
some nonuniform reference state, on the principle of minimum
relative entropy [21]; such schemes have proven remarkably
successful in practice [22,23]. In all these examples, the
measurement data, and hence any derived constraints, no
longer pertain to fictitious infinite ensembles but to finite
samples, which can be quite small. And often, one can no
longer easily discern slow from fast degrees of freedom. In
such case the choice of relevant observables is no longer
obvious, and in particular, need not necessarily be related to
the set of observables that are being measured.

When prior knowledge suggests that a small physical
system ought to be described by a Gibbs state, yet the proper
set of relevant observables is not evident a priori, the choice of
the latter becomes a matter of statistical inference. Competing
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theories might propose different sets of relevant observables;
and the task is then to decide rationally between them on
the basis of rather sketchy data. Typically, this inference task
involves a trade-off between goodness-of-fit on the one hand,
favoring a large number of relevant observables; and simplicity
on the other (“Occam’s razor”), favoring a number that is as
small as possible. The appropriate framework for deciding
such a trade-off is Bayesian model selection [24]. Adapting
this framework to the task of finding the optimal set of relevant
observables in a Gibbs model, be it classical or quantum, is
one central objective of the present paper.

Once the set of relevant observables is fixed, the next
inference task is the estimation of the associated Lagrange
parameters. Whenever the sample size is small, the estimate
must take into account not only experimental data but also prior
expectations. The fact that the prior bias invariably exerts an
influence on the parameter estimate is readily seen in a trivial
example: If five tosses of a coin yield “heads” five times, one is
not yet ready to abandon one’s prior bias toward a more or less
fair coin; only as evidence to the contrary accumulates, does
this belief gradually erode. The challenge, then, is to find the
relative weights to be attributed to prior bias and data. Again,
the appropriate tools are furnished by Bayesian theory, namely
Bayesian interpolation [25] in combination with the evidence
procedure [5]. Putting these tools to use for the estimation of
Lagrange parameters in a Gibbs model, is the second main
objective of the present paper.

The paper is organized as follows. In Sec. II, I will
start with some preliminaries about the χ2 distribution, the
entropy concentration theorem, and the concept of statistical
significance, which will be needed in subsequent arguments.
Then I shall turn to the two inference problems outlined above,
albeit in reverse order. In Sec. III, I will assume that the
relevant observables of a Gibbs model are given and show
how its Lagrange parameters can be estimated in a way that
accounts for both prior knowledge and measured data. The
estimation procedure will yield not just the optimal values for
the Lagrange parameters but also the associated error bars. In
Sec. IV, I shall consider the issue of the proper set of relevant
observables and show that Bayesian model selection provides
a rational framework for choosing between rival proposals.
I will illustrate this method with two examples, the classical
analysis of Wolf’s die (Sec. V) and the quantum problem of
deciding between an Ising and a Heisenberg description of an
assembly of qubits (Sec. VI). In Sec. VII, I shall conclude with
a brief summary.

There are a number of appendices in which I collect
technical definitions and results that might not be familiar to
readers of this journal, yet whose inclusion in the main body
of the text would render the flow of exposition unnecessarily
cumbersome. Specifically, in Appendix A, I shall introduce
the notion of a level of description; in Appendix B, the notions
of coarse graining, relevant part of a state, and generalized
Gibbs states; and in Appendix C, the definition and basic
geometry of a Gibbs manifold, which includes as a special case
(discussed in Appendix D) the geometry of the Bloch sphere.
In Appendix E, I will introduce the concept of an entropic
distribution on the Gibbs manifold; and in Appendix F,
I will consider the meaning of the Gaussian approximation
and of the thermodynamic limit. Finally, in Appendix G, I

shall connect the general framework of Gibbs models to the
familiar terminology and basic relations of thermodynamics.

II. STATISTICAL SIGNIFICANCE

In a generic experiment, one measures some selected set of
observables, which span the experimental level of description
F , on N identically prepared copies of a physical system,
yielding sample means f . Given a reference state σ , these
experimental data can always be represented as a Gibbs
model µ ∈ πσ

F (S), with Lagrange parameters adjusted such
as to reproduce the observed sample means, f (µ) = f . This
correspondence f ↔ µ is one-to-one. On the same Gibbs
manifold, let ρ denote a theoretical model yielding expectation
values f (ρ); these generally differ from the observed sample
means. As long as the difference is small, the relative entropy
between data and theoretical model is approximately quadratic
in the differentials δf . According to Eq. (C9), it is

2NS(µ‖ρ) ≈ χ2(µ‖ρ), (1)

with

χ2(µ‖ρ) := N
∑
ab

(C−1)abδfaδfb. (2)

For definitions of the mathematical objects used here
(F ,πσ

F (S),C−1), see Appendices A through C.
Since the theoretical model may contain parameters that

have been fitted to the data, the differentials δf might not be
all independent; the number k of independent differentials is
generally smaller than the dimension of the Gibbs manifold.
Given a (possibly fitted) theoretical model, the likelihood that
the k remaining independent degrees of freedom yield a χ2

in the interval [x,x + dx] is determined for large N by the
probability density function

PDF(x|k) = 2−k/2�(k/2)−1xk/2−1 exp(−x/2), (3)

known as the χ2 distribution [26]. In this distribution, the
exponential factor stems from the quantum Stein lemma (B4);
the power factor from the k-dimensional volume element; and
the numerical factors ensure proper normalization. The χ2

distribution is peaked at χ2
max = k − 2 (for k > 2) and has

expectation value and variance

〈χ2〉 = k, var(χ2) = 2k, (4)

respectively. For large arguments (x � k ln k), it has an
exponential tail that is independent of k,

PDF(x|k) ∼ exp(−x/2). (5)

The above distribution of χ2, and hence of relative entropy,
implies the entropy concentration theorem [27]: As the sample
size N increases, the relative entropy between data and theoret-
ical model is predicted to become more and more concentrated
(with a width of order 1/N) around a smaller and smaller
expectation value (also of order 1/N). Relative entropy being
approximately quadratic in the coordinate differentials δf ,
this implies as a corollary that deviations between measured
sample means and theoretical expectation values are expected
to scale as O(1/

√
N ). The entropy concentration theorem can

thus be employed to assess quickly the statistical significance

012101-2



INFERRING THE GIBBS STATE OF A SMALL QUANTUM . . . PHYSICAL REVIEW A 84, 012101 (2011)

of experimental deviations from theoretical predictions: As
long as the relative entropy between data and theoretical model
is of order 1/N , deviations likely fall within the range of
statistical fluctuations; yet as soon as their relative entropy
exceeds this limit, deviations become significant and may
indicate the need to revise the theoretical model.

This simple entropy test is closely related to the χ2 test
in conventional statistics. Theoretical models are typically
rejected whenever at the observed χ2 the cumulative distri-
bution function exceeds a predefined bound, whose value in
turn depends on the confidence level required. The χ2 test
then points to the need to revise the theoretical model and thus
triggers creative thinking about possible alternatives.

III. ESTIMATING LAGRANGE PARAMETERS

I consider the situation where it is assumed from the outset
that a physical system ought to be described by some Gibbs
model ω ∈ πσ

G (S), with given reference state σ and level
of description G, yet unknown parameter values. The initial
uncertainty about the parameter values is reflected in a prior
probability distribution prob(ω|σ,G) over the Gibbs manifold.
Subsequently, on a sample of size N , one measures some
set of sample means f . The associated experimental level of
description F may or may not coincide with the theoretical
level of description G. In light of the observed sample means
and the prior distribution over the Gibbs manifold, one wants
to infer the most plausible estimate for ω.

After collecting the experimental data, the probability dis-
tribution over the Gibbs manifold must be updated according
to the Bayes rule [28]:

prob(ω|f,N,F ; σ,G) ∝ prob(f |N,ω,F) prob(ω|σ,G). (6)

The first factor on the right-hand side is the likelihood of
observing the sample means f , given ω; it is

prob(f |N,ω,F) ∝
∫
S|f

dρ prob(ρ|N,ω), (7)

with the integration ranging over the submanifold S|f of all
states that satisfy the constraints f (ρ) = f , and normalized
according to Eq. (C10):∫ ∏

b

dfb

√
det C−1prob(f |N,ω,F) = 1. (8)

For large N , by virtue of the quantum Stein lemma (B4) and
the law of Pythagoras (F6), the likelihood can be written as

prob(f |N,ω,F) ∝ exp[−NS(µ‖ω)], (9)

where µ ∈ πω
F (S) is the unique Gibbs model associated with

the measured f and reference state ω. In other words, on
the Gibbs manifold πω

F (S), the Gibbs model µ representing
experimental data is distributed entropically around ω, µ ∼
E(N,ω,F) (see Appendix E).

The second factor on the right hand side of the Bayes rule
[Eq. (6)] is the prior. In principle, it can take any form; there is
no constraint as to the prior knowledge that an agent may have.
But there are both conceptual and practical reasons to assume
it to be entropic, too, ω ∼ E(α,σ,G), with its peak at some
initial bias σ , and the parameter α characterizing the agent’s

degree of confidence as to this initial bias. Conceptually, if
σ is the only prior knowledge available, it is reasonable to
demand of a prior that it be peaked at and symmetric around
this bias; that it be form-invariant under coarse graining; and
that upon composition of systems, it be noncommittal as to
any correlations between the systems. As I discuss in more
detail in Appendix E, these requirements are indeed satisfied
by entropic distributions. Moreover, an entropic prior is
particularly convenient because it is (approximately) conjugate
to the likelihood (9). Thanks to this property, any measurement
that is informationally complete with respect to the unknown
model parameters, F ⊃ G, yields a Bayesian update which
(in the Gaussian approximation) is again entropic and which
differs from the prior only by a change of parameters: (α,σ ) →
(α′,σ ′).

Assuming an entropic prior and making the Gaussian
approximation, the Bayes rule yields for F ⊃ G the posterior
(F8), and hence

prob(ω|f,N,F ; σ,G) ∝ prob(ω|α + N,ρ,G); (10)

whereas for F ⊂ G, it yields the posterior (F9), and hence

prob(ω|f,N,F ; σ,G)

∝ prob
(
πσ
F (ω)|α + N,ρ,F

)
prob

(
π

ρ

¬G,ρF (ω)|α,ρ,¬G,ρF
)
.

(11)

Both posteriors are peaked at the model

ρ ∝ exp

[
α

α + N
ln σ + N

α + N
ln πσ

F∩G(µ)

]
, (12)

which constitutes thus the most plausible posterior estimate
for ω.

The posterior estimate for ω interpolates between initial
bias and data, and depending on the relative sizes of α and
N , may attribute more weight to one or the other; this is an
example of Bayesian interpolation [25]. In the extreme case
where the prior is sharply peaked while sample sizes are small,
N � α, parameter estimation will be dominated by the prior,
and one is therefore advised to stick to the initial bias, ρ ≈
σ ; while in the opposite case where the prior is broad and
sample sizes are big, N � α, parameter estimation will be
dominated by the likelihood function, and the best estimate for
the model is close to the maximum likelihood estimate ρ ≈
πσ
F∩G(µ). Attached to the estimate are error bars of the order

O(1/
√

α + N ) as to those model parameters that have been
measured, and in case F ⊂ G, O(1/

√
α) as to those that have

not.
The above estimation procedure preserves the Gibbs form,

in the following sense. Whenever the prior bias σ is a
generalized Gibbs state, with some level of description that
encloses F ∩ G, then for arbitrary values of α and N , the
posterior estimate retains this parametric form:

σ ∈ πτ
H(S) , H ⊃ F ∩ G ⇒ ρ ∈ πτ

H(S); (13)

in particular, it is ρ ∈ πσ
F∩G(S). If on the Gibbs manifold πτ

H(S)
the prior bias has Lagrange parameters λ(σ ), and the maximum
likelihood estimate has Lagrange parameters λ(πσ

F∩G(µ)), then
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the Lagrange parameters of the posterior estimate [Eq. (12)]
are given by linear interpolation:

λ(ρ) = α

α + N
λ(σ ) + N

α + N
λ
(
πσ
F∩G(µ)

)
. (14)

The posterior estimate depends critically on the parameter
α, which so far has been left unspecified. Provided the exper-
imental and theoretical levels of description are sufficiently
detailed and the experiment reveals a significant deviation
from the initial bias (only then does the need arise to update
this bias),

χ2
(
πσ
F∩G(µ)‖σ )

> dim πσ
F∩G(S) � 1, (15)

the optimal value for α can be estimated to a good approxima-
tion with the help of the evidence procedure [5]. The procedure
yields the interpolation parameter

α/(α + N ) ≈ dim πσ
F∩G(S)/χ2(πσ

F∩G(µ)‖σ )
. (16)

As long as F ⊂ G, this estimate depends on the experimental
level of description F only, and not on the larger theoretical
level G employed for the Gibbs model ω.

To illustrate the above framework, I consider the following
simple example. A source emits a physical system (say, a
molecule) that can be in its ground state or in one of 24 excited
states; this spectrum may or may not be degenerate. Prior
theoretical considerations suggest that the source is thermal,
and hence, that the occupation probabilities {pi}, i = 0 . . . 24,
of the energy levels follow a canonical distribution. There
is uncertainty about the temperature, but according to initial
estimates, it is expected to be around 100 K. As regards the
system’s state, therefore, the initial bias is a canonical state σ ∝
exp(−βH ), with level of descriptionH = span{1,H }, uniform
reference state, and Lagrange parameter β(σ ) ≈ (100 K)−1.
Then one performs N = 12,000 runs of the experiment, and
in each run, measures the actual occupation of the energy
levels. One finds that the measured distribution of relative
frequencies {fi} differs from the expected {pi}. The observed
mean energy,

∑
i fiEi , corresponds to a temperature 110 K

rather than 100 K; and in addition, the shape of the observed
distribution may or may not deviate from the canonical form.
Altogether, one finds that the data differ from prior expectation
by a distance, say,

χ2
(
πσ
F (µ)‖σ ) ≈ 2N

24∑
i=0

fi ln(fi/pi) ≈ 96. (17)

If one uses the full experimental level of description to recon-
struct the state,G = F , this deviation is significant enough, and
the number of independent sample means (dim πσ

F (S) = 24) is
sufficiently large, to satisfy both conditions in Eq. (15). To high
accuracy, then, the evidence procedure yields the interpolation
parameter α/(α + N ) ≈ 1/4. On the other hand, if one insists
that the system be modeled by a canonical distribution,G = H,
it is dim πσ

F∩G(S) = 1 and the evidence procedure must be
taken with a pinch of salt. Assuming that it yields again
the interpolation parameter 1/4, the posterior estimate for
the system’s inverse temperature is then neither the initial
(100 K)−1 nor the observed (110 K)−1, but approximately
the interpolation (14), which in this example gives β(ρ) ≈
(107.3 K)−1.

IV. COMPARING LEVELS OF DESCRIPTION

Up to this point, the level of description of the theoretical
model, and hence the Gibbs manifold πσ

G (S) from which a
model was to be selected, have been assumed to be given
a priori. Now they will become themselves subject to statistical
inference.

If a model is to have explanatory value, its number of
parameters must be strictly smaller than the number of data
points; and so its level of description must be a proper subspace
of the space spanned by the measured observables, G ⊂ F . In
fact, in the spirit of Occam’s razor, one would always prefer
simpler models over more complicated ones; yet when this is
taken too far, the fit with the data might deteriorate. Striking
the right balance between simplicity and goodness-of-fit, and
determining thus the optimal level of description, constitutes a
nontrivial inference task. In this section, I shall discuss how the
Bayesian framework for model selection can guide the proper
choice of the level of description. If presented with two rival
proposals for the level of description, this framework allows
one to evaluate their relative degree of plausibility in the light
of experimental data and prior expectations.

If a χ2 analysis has revealed that observed deviations
from model predictions are statistically significant, one might
consider moving to a more accurate model by expanding the
level of description, G → H, with G ⊂ H ⊂ F . Provided the
priors on the respective Gibbs manifolds πσ

G (S) and πσ
H(S)

are both entropic around the same initial bias σ , the relative
plausibility of the two levels of description is given by the
Bayes rule:

prob(G|µ,N,F ; α,σ )

prob(H|µ,N,F ; α,σ )
= prob(G)

prob(H)

prob(µ|N,F ; α,σ,G)

prob(µ|N,F ; α,σ,H)
.

(18)

Here, F denotes the experimental level of description, N the
sample size, and µ ∈ πσ

F (S) the Gibbs model associated with
the measured data. For simplicity, the parameter α, which
characterizes the degree of confidence as to the initial bias, is
assumed to be identical for both entropic priors.

The first factor on the right-hand side is the ratio of prior
preferences, which, to be fair, is often taken to be of order 1.
The second factor can be calculated via marginalization,

prob(µ|N,F ; α,σ,G)

=
∫

πσ
G (S)

dω prob(µ|N,ω,F) prob(ω|α,σ,G), (19)

and likewise for H. In the Gaussian approximation, the
integrand is given by Eq. (F8), which in the regime N � α,
with ρ ≈ πσ

G (µ), yields

prob(µ|N,F ; α,σ,G)

≈ prob
(
µ|N,πσ

G (µ),¬F,πσ
G (µ)G

)
prob

(
πσ
G (µ)|α,σ,G

)
.

(20)

The ratio is then

prob(µ|N,F ; α,σ,G)

prob(µ|N,F ; α,σ,H)
≈ Ns/2

αs/2

exp
[ − NS

(
πσ
H(µ)‖πσ

G (µ)
)]

exp
[ − αS

(
πσ
H(µ)‖πσ

G (µ)
)] ,

(21)
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where s := (dimH − dimG) denotes the number of additional
model parameters introduced in the expansion G → H. The
power factors Ns/2 and αs/2 stem from the normalization
factors of likelihood and prior, respectively, which do depend
on the dimension of the theoretical level of description.

Bayesian model selection is thus effectively driven by two
factors [24,25]: (i) a ratio of exponentials (of which, in the
regime N � α, the denominator can often be approximated
by 1) favoring the finer-grained model with better fit; and
(ii) the “Occam factor” (N/α)s/2, which favors the simpler
model. It is the trade-off between the exponentials on the
one hand, and the Occam factor on the other, which typically
determines whether or not the level of description should be
expanded. If their product is much larger than 1, one better stay
with the original, coarser-grained description. In contrast, if it
is much less than 1, one is advised to switch to the finer-grained
description. And if it is of the order 1, the analysis remains
inconclusive, and more data must be collected.

It is important to note that the trade-off decision is not
based on experimental data alone. Rather, it depends also on
the initial bias σ and on the parameter α. The initial bias
constitutes one’s starting hypothesis for the model, prior to
performing any measurements, and is usually based entirely
on symmetry and other theoretical considerations; whereas α

quantifies the associated degree of confidence. Both σ and
α reflect prior expectations of the agent who conducts the
experiment, and so in principle, carry aspects which remain
irreducibly subjective. In practice, however, rational agents
typically agree on the symmetries of the system under study,
and hence on a unique initial bias to mirror these symmetries.
In fact, in many cases the initial bias is just equidistribution,
σ = 1/d, being maximally noncommittal in the absence of
any empirical data. The parameter α, on the other hand, can
often be estimated a posteriori with the help of the evidence
procedure.

For large N , the estimate (16) for α becomes independent
of N (at fixed relative entropy), and hence the asymptotic
behavior of the ratio (21) is governed entirely by its numerator.
Models can then be selected according to the simple rule of
thumb

χ2
(
πσ
H(µ)‖πσ

G (µ)
)
/s

⎧⎪⎨
⎪⎩

� ln N : keepG
∼ ln N : inconclusive

� ln N : expand G → H
. (22)

Loosely speaking, whenever the gain in accuracy per addi-
tional parameter stays below the threshold ln N , one better
stick to the simpler model. Only when this threshold is
exceeded, is one advised to move to the finer-grained model
with better fit. The threshold is higher than the threshold
for mere statistical significance; if 1 < χ2/s < ln N then the
potential accuracy gain is significant, yet a refinement of the
model is still not recommended.

The selection rule can be readily applied to the example
introduced at the end of the previous Section. In case the
shape of the observed distribution deviates from the canonical
form, one may wonder whether it might be better to use
the full experimental level of description F to reconstruct
the state, rather than insisting on the canonical level H.
This would add s = 23 parameters to the model. However,

such a massive increase in the number of parameters is not
warranted by the corresponding gain in accuracy. Indeed,
it is χ2(πσ

F (µ)‖πσ
H(µ))/s � χ2(πσ

F (µ)‖σ )/s ≈ 4.2, which,
while possibly significant, remains well below the threshold
ln N ≈ 9.4.

While Bayesian model selection is a useful quantitative
tool to guide the search for the proper level of description,
it does not amount to an algorithm leading uniquely to the
optimal level of description. The number of possible levels of
description is infinite; and while the above framework may
help choose between any two of them, it cannot replace the
creative act of coming up with suitable candidates [25]. This
creative part is beyond the realm of pure probability and must
involve additional physical considerations, such as the study
of symmetries, conservation laws, and time scales.

V. WOLF’S DIE

To warm up for the interesting quantum case, I shall
illustrate the use of the above mathematical tools in a famous
classical example, Jaynes’s analysis of Wolf’s die data [27].
Rudolph Wolf (1816–1893), a Swiss astronomer, had per-
formed a number of random experiments, presumably to check
the validity of statistical theory. In one of these experiments,
a die was tossed N = 20,000 times in a way that precluded
any systematic favoring of any face over any other. The prior
expectation was a perfect die, σ = 1/6. However, the observed
relative frequencies {fi} deviated from this expectation; their
measured values are shown in Table I. A quick analysis reveals
that 1/

√
N ∼ 0.007, so several deviations �i are outside the

typical range. More precisely, the observed χ2(µ‖σ ) ≈ 271
lies in the exponential tail far beyond its expected value. The
probability density for such a large χ2 is extremely small,
PDF(271|5) ∼ 10−56, pointing to the presence of systematic
defects of the die.

To reflect the presumed nature of the die’s imperfections,
one may consider a multitude of different levels of description.
Three specific examples are (i) the simplest level of descrip-
tion, O = span{1}, corresponding to a Gibbs manifold πσ

O(S)
that consists of the single state σ only, where one stubbornly
sticks to the initial bias; (ii) at the opposite extreme, the most
accurate level of descriptionF , where one denies the existence
of any simple explanation for the observed deviations and
just introduces as many model parameters as data points; and
(iii) an intermediate level of description G, with two observ-
ables characterizing the two most likely imperfections. These
are, according to Jaynes:

TABLE I. Wolf’s die data: frequency distribution f and its
deviation � from the uniform distribution.

i fi �i

1 0.16230 −0.00437
2 0.17245 +0.00578
3 0.14485 −0.02182
4 0.14205 −0.02462
5 0.18175 +0.01508
6 0.19660 +0.02993
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(i) a shift of the center of gravity due to the mass of ivory
excavated from the spots, which being proportional to the
number of spots on any side, should make the “observable”

Gi
1 := i − 3.5 (23)

have a nonzero average. Indeed, the measured sample mean is
g1(µ) = 0.0983 �= 0; and

(ii) errors in trying to machine a perfect cube, which will
tend to make one dimension (the last side cut) slightly different
from the other two. It is clear from the data that Wolf’s die
gave a lower frequency for the faces (3,4); and therefore that
the (3–4) dimension was greater than the (1–6) or (2–5) ones.
The effect of this is that the “observable”

Gi
2 :=

{
1, i = 1,2,5,6

−2, i = 3,4
(24)

has a nonzero average. Indeed, g2(µ) = 0.1393 �= 0.
If this intermediate level of description turned out to be the
most plausible, it would provide a genuine explanation, rather
than merely a description, of the observed data.

The sample size is large enough to warrant the use of the
rule of thumb (22). Successive refinements O → G → F of
the level of description entail additional model parameters
and accuracy gains as summarized in Table II. Only the first
refinement, O → G, delivers an accuracy gain per additional
model parameter that exceeds the threshold ln N ≈ 10. In
contrast, the second refinement G → F , albeit delivering a
further accuracy gain that is statistically significant, does not
pass this threshold. In case the intermediate level of description
G was not available, and hence there was a choice only between
the “trivial” level of description O and the “perfect fit” level
of description F , the latter would be more plausible. Sticking
stubbornly to the initial bias is the least plausible of the three
options.

If presented with the choice between the three levels
of description outlined above, therefore, statistical analysis
reveals the intermediate, “explanatory” level of description
to be the most plausible. This is not to say, however, that
this is indeed the best level of description; one might come
up with many more alternative proposals, which would all
have to be compared with one another. Moreover, even if the
above intermediate level of description were confirmed as the
winner, statistical analysis would only yield its relative degree
of plausibility and would never provide certainty about its
being the “true” level of description. Statistical analysis cannot
replace the creative act of designing levels of description
which, as in the example above, are not only supported by
the data but also well motivated physically.

TABLE II. Wolf’s die data: number of additional model param-
eters and accuracy gain associated with expansions of the level of
description.

Refinement s χ 2 χ 2/s

O → G 2 262 131
G → F 3 9 3
O → F 5 271 54

VI. ISING VS. HEISENBERG

Conceptually, Bayesian model selection for quantum sys-
tems proceeds in the same way as in the classical case.
The quantumness of the problem enters through the different
geometry of the Gibbs manifold. As the simplest example,
I shall study an exchangeable assembly of qubits; there, the
geometry to consider is that of the Bloch sphere.

Initially, nothing is known about the qubits, so the prior bias
σ is uniform. Then measurements on a sample of N qubits
reveal an average Bloch vector of length r , with an orientation
n̂ that is tilted by a small angle δθ against the z axis. The
Bloch-vector-length r is considerably larger than zero, so a
new model, which is different from the uniform initial bias,
is called for. There might be good physical reasons to expect
that the system under consideration is strongly anisotropic
in the z direction, suggesting a level of description I (for
“Ising”) comprising the z component of Pauli spin only, I =
span{1,σz}. In view of the observed tilting angle, however,
there might be controversy about this, and a rival proposal
(“Heisenberg”) might claim that the level of description should
rather include the full Pauli vector, H = span{1,σx,σy,σz}.

To weigh these alternatives in light of the data, one must
evaluate

χ2
(
πσ
H(µ)‖πσ

I (µ)
)
/s = NC−1

θθ δθ2/2, (25)

where C−1
θθ denotes the polar component of the entropy-

induced metric tensor (D9) on the Bloch sphere. For instance,
for N = 20,000, r = 0.73 and a tilting angle of 1 degree,
δθ = 2π/360, it is C−1

θθ ≈ 0.678 and χ2/s ≈ 2.1. Despite a
significant gain in accuracy, this does not exceed the threshold
ln N ≈ 10, and hence Bayesian model selection favors the
simpler anisotropic model. At an angle of 2 degrees, χ2/s

grows to approximately 8.3; and this being close to the
threshold, the analysis remains largely inconclusive. Finally,
for a tilting angle of 3 degrees, the accuracy gain per additional
model parameter attains a value well beyond the threshold,
χ2/s ≈ 18.6, tipping the balance in favor of the more detailed
level of description.

Had one measured a Bloch-vector-length r = 0.995 instead
of 0.73, the balance would have tipped in favor of the expanded
level of description already at a critical angle of 1 degree,
rather than 2 degrees. In general, the more the measured state
approaches purity, the more sensitive the choice of level of
description becomes to minor directional aberrations from the
preferred axis.

VII. CONCLUSIONS

Outside the macroscopic domain, estimating a Gibbs state
is a nontrivial inference task, due to two complicating factors.
First, for lack of a clear hierarchy of time scales, the proper
set of relevant observables might not be evident a priori but
subject to statistical inference. Second, whenever experimental
data are gathered from a small sample only, the best estimate
for the Lagrange parameters is invariably affected by the
experimenter’s prior bias. Both issues can be tackled with the
help of Bayesian techniques, suitably adapted to the problem
at hand: Bayesian model selection, Bayesian interpolation, and
the evidence procedure.
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The results presented in this paper may have ramifications
in a variety of areas. For the study of thermal properties of
a microscopic system (e.g., a tiny probe taken from a larger
system that is presumed to be thermal or the debris from a
single collision experiment), the framework presented here
allows one to decide rationally between rival theories about
the proper set of relevant observables and, subsequently, to
find the best estimate for the associated Lagrange parameters.
For incomplete quantum-state tomography, the results imply
Bayesian corrections to the conventional maximum entropy
scheme; these corrections become important whenever sample
sizes are small. Moreover, the approach presented here yields
not just estimates for the Lagrange parameters but also the at-
tached error bars. Finally, on a conceptual level, the framework
allows for a careful consideration of the thermodynamic limit
and so may shed new light on the long-standing debate about
the generality of, or possible limitations of, the maximum
entropy paradigm in statistical mechanics [29–33].

I see three avenues for further research. First, it will be
interesting to see how the Bayesian corrections to conventional
state reconstruction schemes play out in practice. A simple
example has been discussed (in the context of the evidence
procedure) in Ref. [5]; more examples and application to
real-world experimental data will be the subject of further
work. Second, while the model selection framework used here
allows one to assess different proposals for the set of relevant
observables, it does not provide a direct route to the optimal
such set. Doing so requires an extension of Bayesian reasoning
from the space of states to the space of levels of description,
which will be tackled in future work. Finally, I consider it
worthwhile to study in more detail the asymptotic behavior of
the schemes presented here, in an effort to understand better
the emergence of orthodox theory in the macroscopic limit.
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APPENDIX A: LEVEL OF DESCRIPTION

Any real linear combination of observables is again an ob-
servable. The observables of a physical system thus constitute
a real vector space. This vector space can be endowed with
a positive definite scalar product, the canonical correlation
function

〈X; Y 〉σ :=
∫ 1

0
dν tr(σ νXσ 1−νY ), (A1)

with respect to a reference state σ ; so it is in fact a Hilbert space.
Within this real Hilbert space of observables, the (typically
small) set of observables {Ga}, which are deemed relevant for
the problem at hand, together with the unit operator, span a
proper subspace:

G := span{1,Ga}. (A2)

This subspace is termed the level of description [9].
Levels of description might be related by coarse graining

or complementation. A level of description G is “coarser”
than another level of description F , G ⊂ F , if the former is a

subspace of the latter. The coarse graining relation ⊂ induces
a partial ordering of the levels of description, with unique
minimal element O := span{1} and maximal element A, the
total Hilbert space of observables. The level of description G
is “complementary” to F , G = ¬A,σF , if observables from
both levels of description together span the entire space of
observables, and if in the reference state σ the two levels are
uncorrelated,

G = ¬A,σF :⇔ span{1,Ga,Fb} = A,
(A3)

〈δX; δY 〉σ = 0 ∀X ∈ G,Y ∈ F ,

with δX := X − 〈X〉σ . Complementation reverses the direc-
tion of coarse graining,

G ⊂ F ⇒ ¬A,σF ⊂ ¬A,σG; (A4)

and when applied twice, it returns the original level of
description,

¬A,σ¬A,σG = G. (A5)

The properties of coarse graining and complementation are
reminiscient of those of logical implication and negation. In
this sense, one may say that the space of observables gives rise
to a minimal logical structure.

The intersection and closed hull of two levels of description
are denoted by G ∩ F and G ∪ F , respectively. In line with
the logical structure mentioned above, the operations ∩,∪
share some properties with the Boolean “and” and “or”
operations such as commutativity, associativity, and reversal
under complementation; but the analogy is not perfect, since in
contrast to classical Boolean logic, they violate distributivity.
If the levels of description pertain to two different physical
systems A and B, then it is GA ∩ FB = OAB , and

GA ∪ FB = span
{
1A ⊗ 1B,GA

a ⊗ 1B,1A ⊗ FB
b

}
. (A6)

Another way to concatenate the two constituent levels of
description is by means of the tensor product:

GA ⊗ FB := span
{
1A ⊗ 1B,GA

a ⊗ 1B,1A ⊗ FB
b ,GA

a ⊗ FB
b

}
.

(A7)

APPENDIX B: RELEVANT PART OF A STATE

For an arbitrary state ρ, its relevant part with respect to a
level of description G and reference state σ is the unique state
πσ
G (ρ) which for all observables in the level of description

yields the same expectation values as ρ, yet within this
constraint is as close as possible to the reference state. The
distance to the reference state is measured in terms of the
relative entropy [34–37]:

S(ρ‖σ ) := tr(ρ ln ρ − ρ ln σ ). (B1)

The relevant part is thus determined by the minimization

S
(
πσ
G (ρ)‖σ ) = min

g(ρ ′)=g(ρ)
S(ρ ′‖σ ), (B2)

where I employed g(ρ ′) as a shorthand notation for the set
{〈Ga〉ρ ′ }.

That the relative entropy is the appropriate measure for the
distance between two states, follows from the quantum Stein

012101-7



JOCHEN RAU PHYSICAL REVIEW A 84, 012101 (2011)

lemma [38–40]. According to this lemma, given a finite sample
of size N taken from an i.i.d. source of states σ , the probability
that tomography on this sample will erroneously reveal some
different state ρ,

prob1−ε(ρ|N,σ )

:= inf
�

{prob(�|σ⊗N )
∣∣ prob(�|ρ⊗N ) �1 − ε}, (B3)

decreases asymptotically as

prob1−ε(ρ|N,σ ) ∼ exp[−NS(ρ‖σ )], (B4)

regardless of the specific value of the error parameter ε (0 <

ε < 1). The � featuring in the above definition are propositions
(projection operators) about the sample, which asymptotically,
i.e., to within an error probability ε that does not depend on
sample size, are compatible with the sample being in the state
ρ⊗N . Taking the infimum over � picks the proposition that is
most confined, and hence discriminates best between σ and ρ.
The coefficient in the exponent is the relative entropy between
the two states, which is thus recognized as the proper measure
of their distinguishability [37].

The relevant part of a state has the generalized Gibbs
form [41]

πσ
G (ρ) = Z(λ)−1 exp

[
(ln σ − 〈ln σ 〉σ ) −

∑
a

λaGa

]
, (B5)

with the partition function

Z(λ) := tr

{
exp

[
(ln σ − 〈ln σ 〉σ ) −

∑
a

λaGa

]}
(B6)

ensuring state normalization and the Lagrange parameters
{λa} adjusted such that g[πσ

G (ρ)] = g(ρ). Among all states
of the above generalized Gibbs form, the relevant part of ρ is
that which comes closest to ρ in terms of relative entropy,

S
(
ρ‖πσ

G (ρ)
) = min

ρ ′
S
(
ρ‖πσ

G (ρ ′)
)
. (B7)

The reference state is often, but not always, the uniform
distribution; if so, the Gibbs state acquires the more familiar
form

πG(ρ) = Z(λ)−1 exp

[
−

∑
a

λaGa

]
(B8)

(with superscript σ omitted), which maximizes the von Neu-
mann entropy S[ρ] := −tr(ρ ln ρ) under the given constraints.

Since the relevant part of a state retains information solely
about selected degrees of freedom (the observables contained
in the level of description), while discarding information about
the rest, the map πσ

G : ρ → πσ
G (ρ) may be regarded as a

coarse graining operation. Indeed, this operation bears some
resemblance to a projection operator: it is idempotent,

πτ
G ◦ πσ

G = πτ
G (B9)

(even for τ �= σ ); successive coarse grainings with smaller and
smaller levels of description are equivalent to a one-step coarse
graining with the smallest level of description,

G ⊂ F ⇔ πσ
G ◦ πσ

F = πσ
G ; (B10)

and it is covariant under unitary transformations,

πUσU †

UGU † (UρU †) = Uπσ
G (ρ)U †. (B11)

In contrast to a true projection operator, however, the coarse
graining map is in general not linear. In case of a uniform
reference state, the coarse graining map is the (possibly
nonlinear) dual of the Kawasaki-Gunton projector, a projection
superoperator acting on the space of observables [42].

APPENDIX C: GIBBS MANIFOLD

Let S denote the set of all normalized mixed states of a
given physical system. This set constitutes a differentiable
manifold of dimension (d2 − 1), where d is the Hilbert space
dimension. In this manifold, states of the generalized Gibbs
form (B5) constitute a submanifold πσ

G (S); I call it the Gibbs
manifold associated with level of description G and reference
state σ . A point on this Gibbs manifold, and hence a specific
state of generalized Gibbs form, is a Gibbs model. The Gibbs
manifold has dimension

dim πσ
G (S) = dimG − 1, (C1)

which equals the number of relevant observables {Ga} as long
as these are linearly independent. Coordinates on the manifold
may be the Lagrange parameters {λa} or the expectation values
{ga}, or any set of (dimG − 1) independent functions thereof.
Lagrange parameter coordinates are related to expectation
value coordinates via

ga = −∂(ln Z)/∂λa. (C2)

Upon infinitesimal variation of the Lagrange parameters,
the expectation value of an arbitrary observable A changes by

d〈A〉 = −
∑

a

〈δGa; A〉dλa, (C3)

with δGa := Ga − ga , and the expectation values and the
canonical correlation function evaluated in the model with
coordinates {λa}. A special case is the variation of the relevant
expecation values,

dgb = −
∑

a

dλaCab, (C4)

where the coefficients

Cab := 〈δGa; δGb〉 = ∂2

∂λa∂λb
ln Z, (C5)

form the correlation matrix. As the canonical correlation
function has all properties of a positive definite scalar product
in the space of observables, the correlation matrix is symmetric
and positive.

The Gibbs manifold is endowed with a natural Rieman-
nian metric and volume element, induced by the relative
entropy [43,44]. As one would expect from a proper distance
measure, the relative entropy between two states is always
positive,

S(ρ‖ρ ′) � 0, (C6)
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with equality if and only if ρ = ρ ′; and even though it is in
general not symmetric, S(ρ‖ρ ′) �= S(ρ ′‖ρ), it is approximately
so for nearby states:

S(ρ‖ρ + δρ) ∼ O((δρ)2). (C7)

The relative entropy between two points (ω,ω′) on the same
Gibbs manifold is

S(ω‖ω′) =
∑

a

(λ′a − λa)ga + (ln Z′ − ln Z), (C8)

which for nearby states is approximately quadratic in the
coordinate differentials,

S(ω‖ω + δω) ≈ (1/2)
∑
ab

Cabδλ
aδλb

≈ (1/2)
∑
ab

(C−1)abδgaδgb. (C9)

The correlation matrix C or its inverse C−1, respectively, may
thus be regarded as a metric tensor on the Gibbs manifold.
Associated with this metric is the volume element∫

πσ
G (S)

dω =
∫ ∏

a

dλa
√

det C =
∫ ∏

a

dga

√
det C−1.

(C10)

Given some coarser level of description H, H ⊂ G, the
Gibbs manifold πσ

G (S) can be viewed as a fiber bundle, with
the reduced Gibbs manifold πσ

H(S) as its base and the coarse
graining map πσ

H as the bundle projection:

πσ
H : πσ

G (S) � ω → ζ ∈ πσ
H(S). (C11)

The fiber over ζ is the submanifold of Gibbs models satisfying
the constraint h(ω) = h(ζ ),

πσ
G ◦ (πσ

H)−1(ζ ) = πσ
G (S)|h(ζ ). (C12)

It is then possible to factorize volume elements of the original
Gibbs manifold into those of its fiber and base,∫

πσ
G (S)

dω =
∫

πσ
H(S)

dζ

∫
πσ
G (S)|h(ζ )

dω. (C13)

APPENDIX D: GEOMETRY OF THE BLOCH SPHERE

Any normalized mixed state of a single qubit can be written
as

ρ = (1/2)(1 + 〈�σ 〉ρ · �σ ), (D1)

with �σ defined as the vector of Pauli matrices, �σ := (σx,σy,σz).
The expectation value of the latter is the Bloch vector; it has
the spatial direction n̂ and length r:

〈�σ 〉ρ = rn̂. (D2)

The Pauli matrices being informationally complete, the above
state can always be brought into the Gibbs form

ρ = Z(�λ)−1 exp(−�λ · �σ ), (D3)

with Lagrange parameters

�λ = −(tanh−1 r)n̂ (D4)

and partition function

Z(�λ) = 2 cosh |�λ| = 2/
√

1 − r2. (D5)

The relative entropy between two arbitrary qubit states is

S(ρ‖ρ ′) = r tanh−1 r − r tanh−1 r ′(n̂ · n̂′)
+ (1/2) ln[(1 − r2)/(1 − r ′2)], (D6)

which for nearby states becomes approximately

S(ρ‖ρ ′) ≈ (1/2)
[
C−1

rr δr2 + C−1
θθ δθ2 + C−1

φφ δφ2
]
. (D7)

Here (r,θ,φ) are the spherical coordinates of the Bloch vector
as defined by

〈σx〉 = r sin θ cos φ, 〈σy〉 = r sin θ sin φ, 〈σz〉 = r cos θ,

(D8)

with r ∈ [0,1], θ ∈ [0,π ], and φ ∈ [0,2π ); and C−1 denotes
the entropy-induced metric tensor (inverse of the correlation
matrix) on the Bloch sphere. In spherical coordinates this
metric tensor is diagonal,

C−1 = diag(1/(1 − r2), r tanh−1 r, r tanh−1 r sin2 θ ), (D9)

but differs from the ordinary metric diag(1,r2,r2 sin2 θ ).
Consequently, the associated volume element

√
det C−1 = r tanh−1 r sin θ/

√
1 − r2, (D10)

too, differs from its ordinary counterpart, especially near the
surface of the Bloch sphere:

√
det C−1

r2 sin θ
= tanh−1 r

r
√

1 − r2

{≈ 1 : r � 1
→ ∞ : r → 1 . (D11)

Distinguishable quantum states are thus not spread uniformly
throughout the Bloch sphere, as one might expect classically,
but are concentrated on or near its surface.

APPENDIX E: ENTROPIC DISTRIBUTION

The coordinates of a Gibbs model ω ∈ πσ
G (S), and hence its

location on the Gibbs manifold, might not be precisely known
but have some probability distribution. Such a distribution
over the Gibbs manifold is entropic, ω ∼ E(α,σ,G), if it has
the form

prob(ω|α,σ,G) ∝
{

exp[−αS(ω‖σ )] : ω ∈ πσ
G (S)

0 : else
, (E1)

with α > 0 and a factor of proportionality that does not depend
on ω. For large α, this is approximately a Gaussian on πσ

G (S)
of width 1/

√
α around the reference state σ .

The entropic distribution has a number of important
properties. (i) If ω is entropically distributed, then so is UωU †

for any unitary U , with co-transformed reference state and
level of description,

prob(UωU †|α,UσU †,UGU †) = prob(ω|α,σ,G). (E2)

(ii) Coarse graining G → H ⊂ G leaves relative probabilities
invariant,

prob
(
πσ
H(ω)|α,σ,H

) ∝ prob
(
πσ
H(ω)|α,σ,G

)
, (E3)
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with a factor of proportionality that is independent of ω.
(iii) If the reference state is uncorrelated, then the entropic
distribution does not introduce any bias toward spurious
correlations:

prob(ωAB |α,σA ⊗ σB,GA ⊗ FB)

� prob(ωA ⊗ ωB |α,σA ⊗ σB,GA ⊗ FB), (E4)

where ωA,ωB are the respective reductions of ωAB . And (iv)
for uncorrelated states, the probability factorizes:

prob(ωA ⊗ ωB |α,σA ⊗ σB,GA ⊗ FB)

∝ prob(ωA|α,σA,GA) prob(ωB |α,σB,FB). (E5)

If the reference state σ is uniform, then the entropic distribution
is in fact the only probability distribution with the above
four properties, both in the classical [45] and in the quantum
case [46]. In contrast, for arbitrary σ the uniqueness of the
entropic distribution has been shown in the classical case
only [47]; but I conjecture that this result, too, should carry
over to the quantum case.

Finally, the product of two entropic distributions is again
entropic,

prob(ω|N,µ,G) prob(ω|α,σ,G)

∝ prob(ω|α + N,ρ(µ,σ ; t),G), (E6)

provided they are defined over the same Gibbs manifold,
π

µ

G (S) = πσ
G (S). Here ρ(µ,σ ; t) ∈ πσ

G (S) denotes the inter-
polated reference state,

ρ(µ,σ ; t) ∝ exp[(1 − t) ln µ + t ln σ ], (E7)

with t := α/(α + N ).

APPENDIX F: GAUSSIAN APPROXIMATION AND
THERMODYNAMIC LIMIT

In many practical applications, the states under consid-
eration are all concentrated inside some small region of
state space. It is then often justified to make the Gaussian
approximation, in which relative entropies are quadratic in
the coordinate differentials. In this approximation, the relative
entropy is symmetric:

S(ρ‖ω) ≈ S(ω‖ρ). (F1)

Furthermore, the normalization factor of the entropic distribu-
tion becomes∫

πσ
G (S)

dω exp[−αS(ω‖σ )] ≈ (2π/α)dim πσ
G (S)/2, (F2)

and is thus independent not only of ω but also of σ . As
a consequence, the entropic distribution becomes invariant
under exchange of ω and σ :

prob(ω|α,σ,G) ≈ prob(σ |α,ω,G). (F3)

When the Gibbs manifold πσ
G (S) is considered as a fiber

bundle (see Appendix C), with some reduced manifold πσ
H(S),

H ⊂ G, as its base, then in the Gaussian approximation the
fiber over ζ ∈ πσ

H(S) is given by

πσ
G ◦ (

πσ
H
)−1

(ζ ) ≈ π
ζ

¬G,ζH(S). (F4)

Moreover, for any ω ∈ πσ
G (S), the four states

πσ
H(ω) ω

| |
σ πσ

¬G,σH(ω)
(F5)

form a rectangle as shown, with opposite sides having ap-
proximately equal length as measured by the relative entropy.
Together with the (exact) law of Pythagoras [48] for the
relative entropy,

S(ω‖σ ) = S
(
ω‖πσ

H(ω)
) + S

(
πσ
H(ω)‖σ )

, (F6)

these properties imply that the entropic distribution factorizes
into separate distributions over fiber and base:

prob(ω|α,σ,G) ≈ prob
(
πσ

¬G,σH(ω)|α,σ,¬G,σH
)

× prob
(
πσ
H(ω)|α,σ,H

)
. (F7)

If a model µ is entropically distributed, µ ∼ E(N,ω,F),
around a reference state ω which is itself entropically dis-
tributed, ω ∼ E(α,σ,G), then in the Gaussian approximation
and for F ⊃ G, the product of these entropic distributions is

prob(µ|N,ω,F) prob(ω|α,σ,G)

∝ prob(µ|N,ρ,F)prob(ω|α + N,ρ,G) prob(ρ|α,σ,F ∩ G),

(F8)

with a factor of proportionality that is independent of both µ

and ω, and with ρ ∈ πσ
F∩G(S) short for the interpolated state

ρ(πσ
F∩G(µ),σ ; t) as defined in Eq. (E7). In the case F ⊂ G, the

product is approximately

prob(µ|N,ω,F) prob(ω|α,σ,G)

∝ prob
(
πσ
F (µ)|N,ρ,F

)
prob

(
πσ
F (ω)|α + N,ρ,F

)
× prob

(
π

ρ

¬G,ρF (ω)|α,ρ,¬G,ρF
)

prob(ρ|α,σ,F ∩ G). (F9)

In the thermodynamic limit, the parameter N (but not
the parameter α) approaches infinity, N → ∞. The inter-
polation parameter t then approaches zero, t → 0, and as a
consequence, ρ → πσ

F∩G(µ). In this limit, the above product
approaches asymptotically, for F ⊃ G,

prob(µ|N,ω,F) prob(ω|α,σ,G)

∼ δ¬F ,σG(µ − ρ)δG(ω − ρ) prob(ρ|α,σ,F ∩ G), (F10)

where δ¬F ,σG and δG are multidimensional delta functions on
the Gibbs manifolds π

ρ

¬F ,σG(S) and π
ρ

G (S), respectively; and
for F ⊂ G,

prob(µ|N,ω,F) prob(ω|α,σ,G)

∼ δF
(
πσ
F (ω) − ρ

)
prob

(
π

ρ

¬G,ρF (ω)|α,ρ,¬G,ρF
)

× prob(ρ|α,σ,F ∩ G). (F11)

APPENDIX G: THERMODYNAMIC RELATIONS

Much of conventional thermodynamics amounts to explor-
ing the differential geometry of the Gibbs manifold, and in
particular, transforming its coordinates to that set of variables
which is best suited for the problem at hand. Contained in this
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set is usually the thermodynamic entropy, which for a Gibbs
model ω ∈ πσ

G (S) is defined as

S := −S(ω‖σ ) − 〈ln σ 〉σ . (G1)

(I employ natural units with kB = 1.) If the reference state
is uniform, this reduces to the more familiar expression
S = −〈ln ω〉ω. The thermodynamic entropy is related to the
Lagrange parameters and expectation values via

S = ln Z +
∑

a

λaga, (G2)

with differential

dS =
∑

a

λadga. (G3)

In addition to the Lagrange parameters {λa}, the partition
function Z might depend on further parameters {ξb}; these
might be, say, parameters that determine the choice of Hilbert
space (e.g., a fixed spatial volume or particle number) or
control parameters on which the operators {Ga} depend (e.g.,
an external field). Associated with these parameters {ξb} are
then further variables

κb := ∂(ln Z)/∂ξb. (G4)

Taking these into account, the entropy differential reads

dS =
∑

a

λadga +
∑

b

κbdξb. (G5)

Being the only assured constant of the motion, the internal
energy U features always as a variable in conventional ther-
modynamics, with the inverse temperature β as its conjugate.
Depending on whether the energy is given on average or as
a sharp constraint, the pair (U,β) may be of the type (g,λ)
(“canonical ensemble”) or (ξ,κ) (“microcanonical ensemble”),
respectively. In both cases, defining the temperature

T := 1/β (G6)

and new variables

wa := −λa/β, Xb := −κb/β, (G7)

one obtains from Eq. (G5) the first law of thermodynamics,

dU = T dS︸︷︷︸
δQ

+
∑

a

wadga +
∑

b

Xbdξb

︸ ︷︷ ︸
δW

. (G8)

Here, the differential δQ denotes heat, and δW denotes work.
Some common choices for the pairs (g,w) and (ξ,X) are listed
in Table III.

TABLE III. Common examples of thermodynamic variables. In
cases where two alternative pairings are given, the proper choice
depends on the specific situation: For instance, ( �M, �B) should be
used if the magnetization is an (approximate) constant of the motion
and given on average, whereas ( �B, − �M) should be employed if the
magnetic field is an external control parameter for the Hamiltonian.

(g,w) (ξ,X) Names

( �p,�v) Momentum, velocity

( �L, �ω) Angular momentum, angular velocity

(N,µ) (N,µ) Particle number, chemical potential

( �M, �B) ( �B, − �M) Magnetic field, magnetization

( �P , �E) ( �E, − �P ) Electric field, electric polarization

(V, −p) Volume, pressure

The internal energy U is an example of a thermodynamic
potential. Other examples are the free energy

F := U − T S (G9)

and the grand potential

A := U − T S −
∑

a

waga, (G10)

with respective differentials

dF = −SdT +
∑

a

wadga +
∑

b

Xbdξb (G11)

and

dA = −SdT −
∑

a

gadwa +
∑

b

Xbdξb. (G12)

The latter implies, e.g., S = −(∂A/∂T )w,ξ , where the sub-
scripts denote the variables to be kept fixed when taking the
partial derivative.

The grand potential is linked directly to the partition
function,

A(T ,wa,ξb) = −T ln Z(T ,wa,ξb), (G13)

which in turn can be calculated microscopically. An important
part of statistical mechanics is determining the partition
function and hence the grand potential and subsequently
relating the latter, via suitable coordinate transformations on
the Gibbs manifold, to the other thermodynamic variables of
interest.
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