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Device-independent quantum key distribution does not need a precise quantum mechanical model of employed
devices to guarantee security. Despite its beauty, it is still a very challenging experimental task. We compare a
recent proposal by Gisin et al. [Phys. Rev. Lett. 105, 070501 (2010)] to close the detection loophole problem with
that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for
both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate
which is even considerably higher than that of the first alternative. The resulting key rates and required detection
efficiencies of approximately 95% for both schemes, however, strongly depend on the underlying security proof.
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Despite its often praised unconditional security, quantum
cryptography also relies on some assumptions. Some of them
are quite natural, such as the validity of quantum mechanics,
the existence of true random number generators, or the
assumption that the legitimate users are well shielded from
the eavesdropper. Other assumptions, such as considering that
the honest parties have an accurate and complete description
of their physical devices, are more severe. Obviously, if the
functioning of the real setup differs from that considered in the
mathematical model, this may become completely vulnerable
to new types of attacks not covered by the security proof [1].

In principle, this presumably hard-verifiable requirement of
characterizing real devices can be circumvented using device-
independent quantum key distribution (diQKD) [2–4]. Here,
the legitimate users only need to specify a certain number of
possible inputs and outputs for each “black box,” and they can
prove the security of the protocol based on the violation of
an appropriate Bell inequality, which certifies the presence of
quantum correlations. In practice, however, diQKD is a very
challenging experimental problem. Specially, it is necessary to
close the detection loophole which is present in all optical tests
of Bell’s inequalities realized so far, even at short distances
[5]. Current experimental nonlocality tests use the so-called
fair-sampling assumption to cope with the low efficiencies of
both the quantum channel and detectors, but unfortunately this
premise cannot be justified in a complete device-independent
scenario.

In this Rapid Communication we investigate a potential
solution to bypass this detection loophole problem due to
channel losses in diQKD in order to cover long distances.
In particular, we compare a recent proposal by Gisin et al. [6]
based on so-called qubit amplification, with that of a stan-
dard quantum relay which employs entanglement swapping.
Contrary to recent arguments [6,7], our full-mode simulation
for both schemes demonstrates that the second alternative can
indeed provide a positive key rate using only linear optical
components. This key rate is also considerably higher than that
of the first alternative. Let us stress that our main motivation
lies in experimental realizations of diQKD over long distances,
rather than presenting a rigorous full security proof for such

schemes in the presence of losses. For that, we employ the
security analysis provided in Ref. [6], which holds for specific
kinds of eavesdropping attacks that are assumed, but unproven,
to be optimal. For comparison reasons, we also evaluate a
conservative lower bound on the secret key generation rate
that can be obtained by deterministic or random assignment
of inconclusive to conclusive events [4]. In this last scenario,
however, the employed detectors must have almost perfect
efficiency in order to distribute a secret key with practical
signals. These differences should further emphasize the strong
performance and requirements dependence of these schemes
with respect to the underlying security analysis.

As a starting point of our considerations let us recall the
heralded-qubit amplifier introduced by Gisin et al. in Ref. [6],
extending an earlier work by Ralph and Lund [8]. The goal
is to determine if an arriving light pulse contains precisely
one photon or not, without disturbing its state of polarization.
Such a scheme can be seen as a quantum-nondemolition
measurement that distinguishes single-photon signals from
vacuum or multiphoton pulses. The basic setup is illustrated
in Fig. 1. The amplifier consists of a linear optics network,
together with two single-photon sources, which are denoted
in the figure as ρh

single and ρv
single, emitting horizontally (h)

and vertically (v) polarized photons, respectively. Whenever
a single-photon pulse from the channel enters the amplifier,
its state of polarization is teleported to a photon situated at its
output port. If the incoming light pulse is empty or contains
more than one photon, however, the teleportation process fails
with high probability. By looking at the detection pattern
observed in the photodetectors Di , with i ∈ {h,v}, Bob can
verify which of these two possible events occurred.

Let us consider first for simplicity the scenario where all
optical elements within the amplifier are lossless, and all
detectors Di are noiseless, have photon number resolution, and
have perfect detection efficiency. Moreover, let us assume that
ρh

single and ρv
single emit exactly one photon each in the correct

polarization, and

ρAB = (1 − p)|0〉〈0| + p
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FIG. 1. Basic setup of a diQKD scheme with a quantum
teleportation-based heralded-qubit amplifier located on Bob’s side
[6]. The entanglement source ρAB is near Alice’s transmitter. The
parameter ηc denotes the efficiency of optical couplers, t is the
transmittance of a beamsplitter (BS), PBS stands for a polarizing
BS, ρh

single and ρv
single represent two single-photon sources generating

horizontally (h) and vertically (v) polarized photons respectively,
R is a polarization rotator, and D and Di , with i ∈ {h,v}, denote
photodetectors. The single-photon sources ρsingle can be realized,
for instance, with heralded entanglement sources like spontaneous
parametric down-conversion sources.

where |0〉 denotes the vacuum state, a
†
h and b

†
h (a†

v and b†v)
represent the creation operators for the horizontal (vertical)
polarization modes, and 0 < p � 1. In this situation, it turns
out that whenever Bob’s detectors Di observe two photons
prepared in orthogonal polarizations, the unnormalized condi-
tional state at the input ports of Alice’s and Bob’s measurement
devices X and Y (see Fig. 1) has the form (after an appropriate
one-photon rotation R)
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Here, t is the transmittance of a beamsplitter (BS) within the
amplifier, and ηt denotes the transmission efficiency of the
quantum channel.

By selecting a sufficiently high value for the parameter t ,
Alice and Bob can always amplify the maximally entangled
component of σAB for any transmission efficiency of the
quantum channel. This technique provides them with a
powerful tool to overcome the problem of transmission losses
in diQKD. Any successful amplifier event acts as a kind of
fair-sampling device. Since the real measurement input is only
chosen afterward, there should be no correlations between
the trigger and the input choice [9]. As a result, it turns
out that the overall detection efficiency which is needed to
close the detection loophole in diQKD can be reduced to
basically that of Alice’s and Bob’s devices, but it no longer
depends on the loss of the quantum channel. A drawback
of this technique is, however, the small success probability,
Psucc = (1 − t)[1 − t − pηt (1 − 2t)], of having a successful
heralding signal from the amplifier for large t , which might
strongly reduce the achievable secret key rate of the protocols.
This imposes a trade-off on the value of the transmittance

FIG. 2. Basic setup of a diQKD system with a standard quantum
relay using linear optics. When compared to Fig. 1, now the
two single-photon sources ρh

single and ρv
single, together with the BS

of transmittance t , have been replaced by just one entanglement
source ρBB ′ .

t . Guaranteeing that Alice and Bob share a high entangled
state σAB suitable for diQKD favors t ≈ 1, but for small
transmission efficiencies this implies an almost zero success
probability.

A more direct approach to implement a heralded-qubit
amplifier is to use a standard quantum relay with linear
optics. The basic setup is illustrated in Fig. 2. The working
principle of this scheme is essentially the same as that of
a teleportation-based amplifier. The only difference between
the two solutions relies on Bob’s mechanism of generating
an entangled state in the amplifier for teleportation. While in
Ref. [6] Bob mixes two-photon pulses with a vacuum signal
at a BS whose transmittance is optimized, in a quantum relay
architecture he directly uses an entanglement photon source,
which might be easier to realize experimentally. Intuitively
speaking, one could expect that a linear optics quantum relay
might be valuable for long-distance diQKD only when Alice
and Bob have a high-quality entanglement source at their
disposal. Otherwise, the conditional signals σAB shared by
the legitimate users (after a successful amplifier event) might
be poorly entangled. That is the case, for instance, when
ρAB and ρBB ′ (see Fig. 2) are generated with spontaneous
parametric down-conversion (SPDC) sources. We will show
that this intuition is wrong, and a quantum relay can indeed be
used to achieve considerable higher secret key rates than those
obtained with the teleportation-based amplifier of Fig. 1, even
with practical signals.

Let us begin again by considering a simplified scenario
where all detectors Di are noiseless, photon number resolving,
and perfectly efficient. Moreover, we assume only for the
moment that ηt = 1 and the states ρAB = ρBB ′ have the
form

ρAB = p0|0〉〈0| + p1
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with p0 + p1 + p2 = 1. In this situation, it can be shown that
whenever Bob’s detectors Di observe precisely two photons
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prepared in orthogonal polarizations, the unnormalized condi-
tional quantum state shared with Alice is given by

σAB = p0p2
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In contrast to Eq. (2), there is no parameter now that
Alice and Bob could tune to amplify further the maximally
entangled component of σAB . Actually, depending on the
probability distribution pn of the entanglement sources ρAB

and ρBB ′ , the fidelity of the outgoing state σAB with respect to
a maximally entangled state could be very low. This occurs, for
example, when Bob uses SPDC sources with a photon number
distribution given by pn = (n + 1)λn/(1 + λ)n+2, where λ

denotes a parameter related to the pump amplitude of the
laser. For small values of λ, this fidelity is roughly equal to
1/2. The scenario changes if Alice and Bob post-select only
those detection events where both of them see precisely one
photon in their measurement devices X and Y . However, such
a strategy seems to open the detection loophole. Note that the
probability μcc that Alice and Bob obtain a conclusive result
(i.e., both of them observe exactly one photon each in their
measurement apparatuses) is also about 1/2 for small values
of λ. This result is far below the typical detection efficiency of
82.8% that is required to violate the Clauser-Horne-Shimony-
Holt (CHSH) inequality [10] that prevents eavesdropping
exploiting the detection loophole. This argumentation seems
to render the conditional signal states σAB given by Eq. (4)
unsuitable for diQKD [6,7].

The key point here, however, is simple, but counterintuitive:
the detection efficiency limit of 82.8% does not apply to
the correlations observed when measuring the signals σAB .
This can be seen with a simple example. Suppose, for
instance, that Alice and Bob employ a post-processing strategy
where inconclusive outcomes are assigned to conclusive “+1”
outcomes in a deterministic fashion [4]. In this situation, the
CHSH quantity becomes

S = μccScc + 2(1 − μcc), (5)

where the parameter Scc denotes the CHSH value computed
only on the set of conclusive results obtained before applying
the post-processing step. For small λ, we find that S is roughly
given by S = 1 + √

2 > 2. That is, Alice and Bob can indeed
detect the presence of nonlocal correlations in the signals
σAB . This result mainly arises because σAB provides Alice
and Bob with an atypical detection pattern: both of them
obtain either a conclusive or an inconclusive outcome. But no
conclusive-inconclusive or inconclusive-conclusive outcomes
are observed, as typically present for “local detection losses.”
This argument actually holds for any value of p1 > 0 in Eq. (3).
When the detection efficiency of Alice’s and Bob’s detectors is
not perfect (but high enough), it turns out that the probability
to observe conclusive-inconclusive or inconclusive-conclusive
results is very low, and they can still violate the CHSH
inequality and distribute a secret key.

To evaluate the performance of both setups in a more
realistic situation, we consider a full-mode description of
the sources for the case where Alice and Bob use both
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FIG. 3. (Color online) Lower bound on the secret key rate on a
logarithmic scale (base 10) vs distance for a diQKD setup using the
amplifier illustrated in Fig. 1 (dashed line) and the quantum relay
with linear optics shown in Fig. 2 (solid line). The upper figure
corresponds to the security analysis provided in Refs. [6,12]. The
lower figure represents the situation where the legitimate users assign
inconclusive to conclusive results deterministically [4]. In this last
case, the minimum detection efficiency of Alice’s and Bob’s detectors
is around 98% (for the teleportation-based amplifier) and 99% (for
the quantum relay). In the simulations we assume ηc = ηdet and a loss
coefficient of the optical fiber of α = 0.2 dB/km.

entangled and heralded single-photon sources based on SPDC,
together with inefficient photon-number-resolving detectors.
For simplicity, however, we do not consider any misalignment
effect in the quantum channel or in Alice’s and Bob’s detection
apparatuses (in the view that photon loss is the dominant error
mechanism), and we also neglect the effect of dark counts in
the photodetectors (which typically results in a cutoff distance
where the dark-count free key generation rate and the overall
dark count probability are roughly equal). To compute a lower
bound on the secret key rate we employ the diQKD protocol
based on the violation of the CHSH inequality analyzed in
Refs. [3,4,11], and we evaluate two different secret key rate
formulas. The first follows the security analysis presented in
Ref. [6] and holds for particular eavesdropping attacks that
are assumed to be optimal [12]. The second one corresponds
to the conservative situation where the legitimate users assign
inconclusive to conclusive events in a deterministic fashion [4].
For the cases studied, this last strategy seems to perform better
than that based on a purely random assignment of inconclusive
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to conclusive outcomes [13]. The results are illustrated in
Fig. 3 for a few values of the coupling efficiency ηc and
the detection efficiency ηdet of Alice’s and Bob’s detectors.
For a given distance, we optimize the transmittance t and the
intensity of each laser numerically to maximize the resulting
key rate. When ηc and ηdet are high enough, Fig. 3 shows that
the use of a quantum relay can provide significantly higher
key rates than a teleportation-based amplifier, while this last
alternative can tolerate slightly lower detection efficiencies
(around 95%) than the former one (around 96%), though the
achievable key rates in this regime are already quite low. The
improved performance of the quantum relay in comparison
with the amplifier scheme seems to rest mainly on the quality
of the single-photon sources ρh

single and ρv
single. Only if one

considers the ideal scenario where these sources are perfect
and on-demand can the second scheme deliver key rates similar
to those of a quantum relay with practical SPDC sources.
However, when Bob uses heralded single-photon sources
based on SPDC instead (see Fig. 3), the small probability
of finding one photon in the idler mode of both sources
at the same time strongly reduces the resulting key rate of
a teleportation-based amplifier. Although less efficient, the
use of threshold detectors might also be an alternative to
photon-number-resolving detectors. However, the analysis of

this scenario is more involved since the probability that Alice
and Bob obtain conclusive or inconclusive events depends on
the basis choice. Details of this analysis will be presented
somewhere else.

To conclude, we have performed a full-mode analysis of two
potential solutions to circumvent the problem of transmission
losses in diQKD using only linear optical components. Con-
trary to recent findings, we have demonstrated that a standard
quantum relay is indeed an alternative and can outperform
a teleportation-based amplifier. Still, a main technological
challenge here is to develop photodetectors with nearly perfect
detection efficiency and negligible noise. Recent results in this
field give reasons to be optimistic [14].
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