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By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced
to being “device-independent.” Here we ask whether such a strong form of security could also be established
for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that
security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the
devices used by the trusted parties are noncharacterized, but the dimensionality of the quantum systems used
in the protocol is assumed to be bounded. Our security proof relies on the analogies between one-way QKD,
dimension witnesses, and random-access codes.
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The aim of quantum cryptography [1] is to warrant security
against an eavesdropper solely limited by the laws of quantum
mechanics. However, any quantum key distribution (QKD)
scheme relies on an additional assumption which concerns
information leakage out of the laboratories of Alice and
Bob. Specifically, both parties must be free to choose which
measurement they perform in each run of the protocol, and
this choice of measurement, as well as the outcome of this
measurement, should remain unknown to the eavesdropper.
Indeed, if the eavesdropper has access to the laboratory of
Alice or Bob, then security cannot be guaranteed.

Apart from these basic requirements, standard security
proofs of QKD [2] also assume that Alice and Bob have
excellent control on the quantum states and measurements
used in the protocol. This assumption is, however, hard to
justify in practice, where devices always feature some level
of imperfection. Moreover, this assumption turns out to be
crucial, as nicely illustrated in Ref. [3]. There it was shown
that the security of the Bennett-Brassard (BB84) protocol [4] is
entirely compromised if Alice and Bob use four-dimensional
states instead of qubits, as usual security proofs always assume.
It is, however, possible to avoid this requirement by basing
the security on nonlocality. Specifically, by checking for the
violation of a Bell inequality [5], Alice and Bob can ensure
that they share nonlocal correlations, in which case security
can be guaranteed without having any detailed knowledge on
the functioning of the cryptographical devices [6,7]. This is
“device-independent” (DI) QKD [8] (see also [9]).

The promise of a higher level of security, as well as the
recently demonstrated attacks on actual QKD systems [10],
have motivated research toward the practical implementation
of DI-QKD. Despite recent progress [11], this remains a
challenging problem. Moreover, the fact that DI-QKD is based
on nonlocality strongly suggests that only entanglement-based
protocols are suitable for obtaining this stronger notion of
security. However, almost none of the practical QKD systems,
in particular, none of the commercially available ones, use
entanglement; they all operate in a one-way configuration, in
which Alice prepares a quantum state and sends it to Bob,
who then performs a measurement on it (hence, often called
“prepare and measure”).

Here we argue that a form of DI security—thus, stronger
than usual security proofs—can nevertheless be obtained for
QKD protocols which do not make use of entanglement.
Specifically, we see that in a semi-device-independent sce-
nario, in which the devices are noncharacterized but only
assumed to produce quantum systems of a given dimension,
security of one-way QKD against individual attacks can
be demonstrated. In particular, our proof will make use of
the analogy between one-way QKD protocols, dimension
witnesses [12], and random-access codes [13]. Our work
shows that security of QKD can be proven directly for the
one-way configuration.

We start by presenting the semi-DI scenario we consider,
stating clearly all assumptions we make. Then we consider the
BB84 protocol and show that it becomes completely insecure
in this context. This will also make clear that dimension
witnesses are suitable tools for tackling this problem. Next
we discuss the intimate relation existing between dimension
witnesses and random-access codes [14]. Finally, we describe a
specific QKD protocol and derive, via its associated dimension
witness (or random-access code), a security proof.

Preliminaries. In a one-way QKD scheme Alice encodes
classical information in a quantum system, which she sends to
Bob via a quantum channel. Bob then performs a measurement
on the system, from which he decodes some information. After
repeating these operations many times, Alice and Bob estimate
the error rate (by revealing randomly chosen bits from the raw
key), which leads to an upper bound on Eve’s information.
Finally, Alice and Bob perform classical postprocessing—
error correction, privacy amplification—to extract the sifted
key on which Eve has arbitrarily small information.

Here we work in a semi-DI scenario. That is, we assume
that the (relevant) Hilbert space dimension of the quantum
systems is known,1 but that the quantum preparations and
measurements are noncharacterized. It will thus be convenient
to describe the devices of Alice and Bob by black boxes.

1Here we mean the dimension of the relevant part of the Hilbert
space, that is, the degrees of freedom that are correlated with the
classical information encoded by Alice.

010302-11050-2947/2011/84(1)/010302(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.010302


RAPID COMMUNICATIONS

MARCIN PAWŁOWSKI AND NICOLAS BRUNNER PHYSICAL REVIEW A 84, 010302(R) (2011)

FIG. 1. Semi-device-independent one-way QKD.

Specifically Alice’s black box is a “state preparator.” Alice
has the freedom to choose among a certain set of preparations
ρa ∈ Cd with a ∈ {0, . . . ,N − 1}, but knows nothing about
these quantum states apart from their dimensionality d. We
also assume that Alice’s preparations ρa are unentangled from
Eve; note that if Alice’s preparations were entangled with Eve’s
system, then the communication capacity would be effectively
doubled using dense coding. Bob’s device is a measurement
black box. He can choose to perform a measurement My with
y ∈ {0, . . . ,m − 1} and gets the outcome b ∈ {0, . . . ,k − 1}.
The measurement operators My are noncharacterized; note that
Eve could, in principle, send a system of arbitrary dimension to
Bob. The boxes may also feature shared classical variables λ,
known to Eve, but uncorrelated from the choice of preparation
made by Alice and the choice of measurement made by Bob.

After repeating this procedure many times, Alice and Bob
can estimate the probability distribution (or data table [15])

P (b|a,y) = tr
(
ρaM

b
y

)
, (1)

which denotes the probability of Bob finding outcome b when
he performed measurement My and Alice prepared ρa . Our
goal will be to show that, in some cases, the security of a given
protocol against a quantum eavesdropper can be guaranteed
solely from its associated data table P (b|a,y). The security is
thus semi-DI in the sense that we do not require any knowledge
on how the data table P (b|a,y) was obtained, except from the
fact that the device of Alice emits quantum systems of a given
dimension.

Here we restrict ourselves to individual attacks, in which
Eve attacks independently each system sent by Alice (using the
same strategy) and measures her system before the classical
postprocessing [1]. Indeed, we also need to make the basic
assumption about information leakage from the devices. That
is, no information about the inputs and output (i.e., a, y, and b)
leaks out of the boxes to Eve.

Dimension witnesses. At this point one can already see a
first requirement for obtaining semi-DI security for a given
protocol. Suppose Alice’s device prepares d-dimensional
quantum systems. Then it must be impossible to reproduce
the quantum data table with classical systems of dimension d.
If not, then it could have been the case that Alice’s device
emits orthogonal quantum states (or equivalently classical
states) from which Eve can get full information. Thus, full DI
security, that is, where no assumption is made on the Hilbert
space dimension, is impossible, since every data table can be
reproduced using classical systems of sufficient dimension.

It turns out that a simple method for establishing lower
bounds on the dimension of classical systems necessary
to reproduce a given data table was recently developed in

Ref. [12]. More precisely, the authors devised “dimension
witnesses” of the form∑

a,y,b

wabyP (b|a,y) � Cd, (2)

which can be thought of as Bell-type inequalities for data
tables. Here the bound Cd denotes the maximal value of
the left-hand-side polynomial obtainable when Alice’s de-
vice prepares classical d-dimensional systems. Interestingly,
d-dimensional classical dimension witnesses can be violated
by d-dimensional quantum systems, thus indicating that
certain quantum data tables cannot be reproduced using
classical states of the same dimension. Below, we make use
of this “quantum advantage.” We consider a simple dimension
witness which provides a separation between qubits and bits.
In particular, we show how this witness can be naturally
understood as a random-access code, which allows us to prove
semi-DI security of the corresponding QKD protocol.

From now we now focus on the case where Alice’s device
prepares two-dimensional quantum systems and restrict to four
preparations (N = 4) indexed by two bits a0,a1. Bob’s device
can perform two binary measurements (m = 2, k = 2). For
the rest of the Rapid Communication it is convenient to use
expectation values of the form

Ea0a1,y = P (b = 0|a0a1,y). (3)

Thus, every experiment corresponds to a data table, given by
a vector �E = {Ea0a1,y}a0a1,y of Nm = 8 correlators.

First, we would like to characterize the set of data tables
(i.e., the set of vectors �E) which can be obtained when
Alice’s box emits classical bits. We follow the geometrical
methods of Ref. [12]. The set of interest to us is a polytope
(in an eight-dimensional space). Its facets are (tight) two-
dimensional classical witnesses; that is, inequalities of the
form (2) with d = 2 (note that here probabilities are simply
replaced by correlators). It turns out that there are only two
types of witnesses in the case. The first is a straightforward
extension2 of the witness I3 of Ref. [12]. The second is of the
following form:

S = +E00,0 + E00,1 + E01,0 − E01,1

−E10,0 + E10,1 − E11,0 − E11,1 � 2. (4)

This witness will be our main tool to assess the security of
one-way QKD protocols.

BB84 is not secure. As a warmup, it is instructive to consider
first the case of the BB84 protocol. In this case, the four
preparations of Alice are given by

ρ00 = |0〉 〈0| , ρ11 = |1〉 〈1| ,
(5)

ρ10 = |+〉 〈+| , ρ01 = |−〉 〈−| .
Here |0〉 and |1〉 are the eigenstates of the Pauli matrix σz,
and |±〉 = (|0〉 ± |1〉)/√2 are the eigenstates of σx . The two
measurements of Bob are given by M0 = σz and M1 = σx .

2Note that the witness I3 of [12] uses only N = 3 preparations. Here
we obtain the lifting of I3 to the case N = 4; the fourth preparation
does simply not appear into the expression.
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Thus, the corresponding data table is given by E00,0 =
tr(ρ00σz) = 1, and similarly E10,1 = 1, E01,1 = E11,0 = 0, and
E00,1 = E01,0 = E10,0 = E11,1 = 1/2. Thus, the BB84 data
table achieves S = 2 and thus does not violate the witness
(4)—note that it also satisfies the witness I3 of [12] as well
as all symmetries—which indicates that it can be reproduced
by sending one classical bit when the boxes of Alice and Bob
share randomness. Note that this is a peculiarity of the BB84
data table.3 Indeed, this result also applies to any protocol using
the same states and measurements as BB84, for instance, the
Scarani-Acin-Ribordy-Gisin (SARG) protocol [16].

A possible strategy is the following. Alice and Bob share
one random bit λ. Considering Alice’s preparations, note that
the bit a0 ⊕ a1 denotes the basis, while the bit a1 denotes
the encoded bit. When λ = 0, Alice sends to Bob the (one-
bit) message m = a0. Bob, upon getting his input y and the
message from Alice m, outputs b = m ⊕ y = a0 ⊕ y. Thus,
b = a1 whenever Alice and Bob choose the same basis (a0 ⊕
a1 = y), and b �= a1 when they choose a different basis (a0 ⊕
a1 �= y). When λ = 1, Alice sends the message m = a1, and
Bob outputs b = m = a1. Thus, we have that a1 = b for any
pair of basis a0 ⊕ a1,y. Since the shared variable λ is unbiased,
Alice and Bob reproduce the BB84 data table.

Connection to random-access codes. To devise a secure
QKD protocol in the semi-DI setup, we need to consider data
tables which violate (at least) one of the dimension witness I3

or S. Here we focus on the latter, which is useful to think of in
terms of a random-access code.

Specifically, let us imagine that Alice receives two (uni-
formly distributed) bits a0 and a1. She is then allowed to
send a physical system to Bob, which encodes information
about her input bit string. Bob is asked to guess the yth bit of
Alice (y is uniformly distributed as well), and thus performs a
measurement on the system he received from Alice to extract
this information. This is a 2-to-1 random-access code. When
Alice sends one bit of classical communication, the optimal
average probability for Bob to succeed is 3/4 [13].

The witness S (4) represents a 2-to-1 random-access code.
For each of her four possible input bit strings {a0,a1}, Alice
associates a preparation ρa0a1 . Upon being asked to guess
bit y, Bob performs measurement My . The outcome of the
measurement b is then his guess for ay .

From inspection of S, we see that wa0a1,y = (−1)ay (where
wa0a1,y is the coefficient of the term Ea0a1,y), which implies
that

S =
∑

a0,a1,y

P (b = ay |a0a1,y) − 4. (6)

Thus, for a given data table, Bob’s success probability,

PB = 1

8

∑
a0,a1,y

P (b = ay |a0a1,y) = S + 4

8
, (7)

is determined by the value of the dimension witness S, and
inversely. Indeed, the inequality PB � 3/4 corresponds to

3It turns out that any deviation from the BB84 data table, obtained
from modifying one (or more) preparations and/or one measurement,
will lead to a value of S > 2. Thus, BB84 appears to be worst case in
this context.

S � 2. Note that the relation between dimension witnesses
and random-access codes can be generalized (see also [14] for
a related approach).

It turns out that Alice and Bob can perform better at this
task when using qubits. The optimal set of preparations are,
for instance, obtained by having preparations (5), but changing
Bob’s measurements to M0 = (σz + σx)/

√
2 and M1 = (σz −

σx)/
√

2. This choice of preparations and measurements leads
to S = 8 cos2 (π/8) − 4 or, equivalently,

PB = cos2 (π/8) ≈ 0.8536. (8)

Note that this set of preparations and measurements is
intimately related to the Clauser-Horne-Shimony-Holt Bell
inequality (see also [14]).

Security of one-way QKD. The protocol is based on
the preparations and measurements achieving the optimal
violation of S for qubits. Alice generates two random bits a0,a1

and sends the corresponding preparations ρa0a1 to Bob. Bob
generates a random bit y and performs measurement My and
guesses bit ay . After repeating these operations a large number
of times (we consider here only the asymptotic limit), Alice and
Bob can estimate the data table by revealing part of their data
on a public channel. By computing the value of S they obtain
PB . Below we show that if PB > 5+√

3
8 ≈ 0.8415—a value

slightly lower than the optimal value using qubits (8)—security
is obtained.

Proof. Csiszar and Körner [17] showed that Alice and Bob
can obtain a secret key if I (A : B) > I (A : E), where the
mutual information is given by

I (A : X) =
∑

j

1 − h(PX(ayj
)). (9)

Here yj denotes the choice of basis (or, equivalently, which bit
of Alice party X chose to guess) in the j th run of the protocol,
and h(p) is the Shannon binary entropy. From this, one can
get a sufficient condition for security given by

PB > PE, (10)

where PX = 1
2 [PX(a0) + PX(a1)] denotes the average proba-

bility of guessing correctly for party X.
Our main ingredient is a result derived by König [18].

Consider the set Fn of all (Boolean) balanced functions on
n-bit strings, that is, which return 0 for exactly half of the 2n

strings. Alice gets as input the n-bit string and Bob is asked to
guess the value of a randomly (and uniformly) chosen function
in Fn after receiving from Alice s qubits. Then the average
probability for Bob to succeed is upper bounded as follows:

Pn � 1

2

(
1 +

√
2s − 1

2n − 1

)
. (11)

For the case of interest to us, that is, n = 2 bits, the set of
all balanced functions is a0, a1, a0 ⊕ a1, and their negations.
Clearly, the optimal probability of guessing a function or its
negation are equal. Thus, when Alice sends a single qubit to
Bob (s = 1), we have that

PB(a0) + PB(a1) + PB(a0 ⊕ a1) � 3

2

(
1 + 1√

3

)
. (12)
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Clearly, the previous inequality holds also when Bob and Eve
collaborate—the index B is then simply replaced by BE—and
we make use of it in this case. Using the relations PBE(ai) �
PB(ai) and PBE(ai) � PE(ai) and

PBE(a0 ⊕ a1) � PBE(a0,a1)

� PBE(a0) + PBE(a1) − 1, (13)

where the second inequality follows from the sum rule, we get

PBE(a0) + PBE(a1) + PBE(a0 ⊕ a1)

� 2PB(a0) + 2PE(a1) − 1. (14)

Using (12) we get that

PB(a0) + PE(a1) � 5 + √
3

4
(15)

and an analogous inequality with a0 and a1 interchanged. This
shows that when Eve tries to guess a different bit than Bob (i.e.,
she measures in the wrong basis) she will necessarily disturb
the statistics of Bob. From inequality (15) and its symmetry
with respect to a0 and a1, we get that

PB + PE � 5 + √
3

4
. (16)

This implies that PB > PE as long as

PB >
5 + √

3

8
≈ 0.8415, (17)

as announced. For the optimal qubit preparations and mea-
surements achieving (8), the key rate is found to be

r = I (A : B) − I (A : E) ≈ 0.0581. �
Discussion. We have discussed the security of one-way

QKD in a semi-device-independent context. By making links

to dimension witnesses and random-access codes, we showed
that security against individual attacks is possible.

It is natural to ask whether this concept is relevant from
a practical viewpoint. Since semi-DI QKD represents a
relaxation of the assumption of standard QKD proofs, it offers
several advantages, notably that no assumptions on the devices
are required (apart from the fact that Alice’s device emits
preparations of bounded dimension), and that it can be applied
directly to the one-way configuration. At this stage, our result
should, however, be understood as a proof of principle. A next
step would be to study robustness to imperfections (such as
losses or detection efficiency) as well as against more general
attacks. It would also be interesting to improve on our bound
for security (which is likely to be suboptimal) and to see
whether all data tables violating a classical dimension witness
could offer security. In this context it might also be relevant to
consider entropic quantities [14,19].

A comparison to full DI QKD is also worthwhile. Arguably,
the main drawback of our approach is the assumption of
bounded dimensionality, as it forces us to assume that Alice’s
device features no side channels from which Eve could extract
information. This requirement could, however, be partly lifted
by finding protocols where qubits offer security under the
assumption that the preparations are arbitrary quantum states
of higher dimensions—note that this would require protocols
using more preparations.

Finally, from a more foundational point of view, it would be
interesting to study the connection between semi-DI one-way
QKD and DI entanglement-based QKD in the light of the
strong link that exists between nonlocality and random-access
codes [20].
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